-
Notifications
You must be signed in to change notification settings - Fork 75
/
Copy pathagilex_inference.py
658 lines (556 loc) · 29.4 KB
/
agilex_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
#!/home/lin/software/miniconda3/envs/aloha/bin/python
# -- coding: UTF-8
"""
#!/usr/bin/python3
"""
import argparse
import sys
import threading
import time
import yaml
from collections import deque
import numpy as np
import rospy
import torch
from cv_bridge import CvBridge
from geometry_msgs.msg import Twist
from nav_msgs.msg import Odometry
from PIL import Image as PImage
from sensor_msgs.msg import Image, JointState
from std_msgs.msg import Header
import cv2
from scripts.agilex_model import create_model
# sys.path.append("./")
CAMERA_NAMES = ['cam_high', 'cam_right_wrist', 'cam_left_wrist']
observation_window = None
lang_embeddings = None
# debug
preload_images = None
# Initialize the model
def make_policy(args):
with open(args.config_path, "r") as fp:
config = yaml.safe_load(fp)
args.config = config
# pretrained_text_encoder_name_or_path = "google/t5-v1_1-xxl"
pretrained_vision_encoder_name_or_path = "google/siglip-so400m-patch14-384"
model = create_model(
args=args.config,
dtype=torch.bfloat16,
pretrained=args.pretrained_model_name_or_path,
# pretrained_text_encoder_name_or_path=pretrained_text_encoder_name_or_path,
pretrained_vision_encoder_name_or_path=pretrained_vision_encoder_name_or_path,
control_frequency=args.ctrl_freq,
)
return model
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
# Interpolate the actions to make the robot move smoothly
def interpolate_action(args, prev_action, cur_action):
steps = np.concatenate((np.array(args.arm_steps_length), np.array(args.arm_steps_length)), axis=0)
diff = np.abs(cur_action - prev_action)
step = np.ceil(diff / steps).astype(int)
step = np.max(step)
if step <= 1:
return cur_action[np.newaxis, :]
new_actions = np.linspace(prev_action, cur_action, step + 1)
return new_actions[1:]
def get_config(args):
config = {
'episode_len': args.max_publish_step,
'state_dim': 14,
'chunk_size': args.chunk_size,
'camera_names': CAMERA_NAMES,
}
return config
# Get the observation from the ROS topic
def get_ros_observation(args,ros_operator):
rate = rospy.Rate(args.publish_rate)
print_flag = True
while True and not rospy.is_shutdown():
result = ros_operator.get_frame()
if not result:
if print_flag:
print("syn fail when get_ros_observation")
print_flag = False
rate.sleep()
continue
print_flag = True
(img_front, img_left, img_right, img_front_depth, img_left_depth, img_right_depth,
puppet_arm_left, puppet_arm_right, robot_base) = result
# print(f"sync success when get_ros_observation")
return (img_front, img_left, img_right,
puppet_arm_left, puppet_arm_right)
# Update the observation window buffer
def update_observation_window(args, config, ros_operator):
# JPEG transformation
# Align with training
def jpeg_mapping(img):
img = cv2.imencode('.jpg', img)[1].tobytes()
img = cv2.imdecode(np.frombuffer(img, np.uint8), cv2.IMREAD_COLOR)
return img
global observation_window
if observation_window is None:
observation_window = deque(maxlen=2)
# Append the first dummy image
observation_window.append(
{
'qpos': None,
'images':
{
config["camera_names"][0]: None,
config["camera_names"][1]: None,
config["camera_names"][2]: None,
},
}
)
img_front, img_left, img_right, puppet_arm_left, puppet_arm_right = get_ros_observation(args,ros_operator)
img_front = jpeg_mapping(img_front)
img_left = jpeg_mapping(img_left)
img_right = jpeg_mapping(img_right)
qpos = np.concatenate(
(np.array(puppet_arm_left.position), np.array(puppet_arm_right.position)), axis=0)
qpos = torch.from_numpy(qpos).float().cuda()
observation_window.append(
{
'qpos': qpos,
'images':
{
config["camera_names"][0]: img_front,
config["camera_names"][1]: img_right,
config["camera_names"][2]: img_left,
},
}
)
# RDT inference
def inference_fn(args, config, policy, t):
global observation_window
global lang_embeddings
# print(f"Start inference_thread_fn: t={t}")
while True and not rospy.is_shutdown():
time1 = time.time()
# fetch images in sequence [front, right, left]
image_arrs = [
observation_window[-2]['images'][config['camera_names'][0]],
observation_window[-2]['images'][config['camera_names'][1]],
observation_window[-2]['images'][config['camera_names'][2]],
observation_window[-1]['images'][config['camera_names'][0]],
observation_window[-1]['images'][config['camera_names'][1]],
observation_window[-1]['images'][config['camera_names'][2]]
]
# fetch debug images in sequence [front, right, left]
# image_arrs = [
# preload_images[config['camera_names'][0]][max(t - 1, 0)],
# preload_images[config['camera_names'][2]][max(t - 1, 0)],
# preload_images[config['camera_names'][1]][max(t - 1, 0)],
# preload_images[config['camera_names'][0]][t],
# preload_images[config['camera_names'][2]][t],
# preload_images[config['camera_names'][1]][t]
# ]
# # encode the images
# for i in range(len(image_arrs)):
# image_arrs[i] = cv2.imdecode(np.frombuffer(image_arrs[i], np.uint8), cv2.IMREAD_COLOR)
# proprio = torch.from_numpy(preload_images['qpos'][t]).float().cuda()
images = [PImage.fromarray(arr) if arr is not None else None
for arr in image_arrs]
# for i, pos in enumerate(['f', 'r', 'l'] * 2):
# images[i].save(f'{t}-{i}-{pos}.png')
# get last qpos in shape [14, ]
proprio = observation_window[-1]['qpos']
# unsqueeze to [1, 14]
proprio = proprio.unsqueeze(0)
# actions shaped as [1, 64, 14] in format [left, right]
actions = policy.step(
proprio=proprio,
images=images,
text_embeds=lang_embeddings
).squeeze(0).cpu().numpy()
# print(f"inference_actions: {actions.squeeze()}")
print(f"Model inference time: {time.time() - time1} s")
# print(f"Finish inference_thread_fn: t={t}")
return actions
# Main loop for the manipulation task
def model_inference(args, config, ros_operator):
global lang_embeddings
# Load rdt model
policy = make_policy(args)
lang_dict = torch.load(args.lang_embeddings_path)
print(f"Running with instruction: \"{lang_dict['instruction']}\" from \"{lang_dict['name']}\"")
lang_embeddings = lang_dict["embeddings"]
max_publish_step = config['episode_len']
chunk_size = config['chunk_size']
# Initialize position of the puppet arm
left0 = [-0.00133514404296875, 0.00209808349609375, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, 3.557830810546875]
right0 = [-0.00133514404296875, 0.00438690185546875, 0.034523963928222656, -0.053597450256347656, -0.00476837158203125, -0.00209808349609375, 3.557830810546875]
left1 = [-0.00133514404296875, 0.00209808349609375, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3393220901489258]
right1 = [-0.00133514404296875, 0.00247955322265625, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3397035598754883]
ros_operator.puppet_arm_publish_continuous(left0, right0)
input("Press enter to continue")
ros_operator.puppet_arm_publish_continuous(left1, right1)
# Initialize the previous action to be the initial robot state
pre_action = np.zeros(config['state_dim'])
pre_action[:14] = np.array(
[-0.00133514404296875, 0.00209808349609375, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3393220901489258] +
[-0.00133514404296875, 0.00247955322265625, 0.01583099365234375, -0.032616615295410156, -0.00286102294921875, 0.00095367431640625, -0.3397035598754883]
)
action = None
# Inference loop
with torch.inference_mode():
while True and not rospy.is_shutdown():
# The current time step
t = 0
rate = rospy.Rate(args.publish_rate)
action_buffer = np.zeros([chunk_size, config['state_dim']])
while t < max_publish_step and not rospy.is_shutdown():
# Update observation window
update_observation_window(args, config, ros_operator)
# When coming to the end of the action chunk
if t % chunk_size == 0:
# Start inference
action_buffer = inference_fn(args, config, policy, t).copy()
raw_action = action_buffer[t % chunk_size]
action = raw_action
# Interpolate the original action sequence
if args.use_actions_interpolation:
# print(f"Time {t}, pre {pre_action}, act {action}")
interp_actions = interpolate_action(args, pre_action, action)
else:
interp_actions = action[np.newaxis, :]
# Execute the interpolated actions one by one
for act in interp_actions:
left_action = act[:7]
right_action = act[7:14]
if not args.disable_puppet_arm:
ros_operator.puppet_arm_publish(left_action, right_action) # puppet_arm_publish_continuous_thread
if args.use_robot_base:
vel_action = act[14:16]
ros_operator.robot_base_publish(vel_action)
rate.sleep()
# print(f"doing action: {act}")
t += 1
print("Published Step", t)
pre_action = action.copy()
# ROS operator class
class RosOperator:
def __init__(self, args):
self.robot_base_deque = None
self.puppet_arm_right_deque = None
self.puppet_arm_left_deque = None
self.img_front_deque = None
self.img_right_deque = None
self.img_left_deque = None
self.img_front_depth_deque = None
self.img_right_depth_deque = None
self.img_left_depth_deque = None
self.bridge = None
self.puppet_arm_left_publisher = None
self.puppet_arm_right_publisher = None
self.robot_base_publisher = None
self.puppet_arm_publish_thread = None
self.puppet_arm_publish_lock = None
self.args = args
self.init()
self.init_ros()
def init(self):
self.bridge = CvBridge()
self.img_left_deque = deque()
self.img_right_deque = deque()
self.img_front_deque = deque()
self.img_left_depth_deque = deque()
self.img_right_depth_deque = deque()
self.img_front_depth_deque = deque()
self.puppet_arm_left_deque = deque()
self.puppet_arm_right_deque = deque()
self.robot_base_deque = deque()
self.puppet_arm_publish_lock = threading.Lock()
self.puppet_arm_publish_lock.acquire()
def puppet_arm_publish(self, left, right):
joint_state_msg = JointState()
joint_state_msg.header = Header()
joint_state_msg.header.stamp = rospy.Time.now() # Set timestep
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] # 设置关节名称
joint_state_msg.position = left
self.puppet_arm_left_publisher.publish(joint_state_msg)
joint_state_msg.position = right
self.puppet_arm_right_publisher.publish(joint_state_msg)
def robot_base_publish(self, vel):
vel_msg = Twist()
vel_msg.linear.x = vel[0]
vel_msg.linear.y = 0
vel_msg.linear.z = 0
vel_msg.angular.x = 0
vel_msg.angular.y = 0
vel_msg.angular.z = vel[1]
self.robot_base_publisher.publish(vel_msg)
def puppet_arm_publish_continuous(self, left, right):
rate = rospy.Rate(self.args.publish_rate)
left_arm = None
right_arm = None
while True and not rospy.is_shutdown():
if len(self.puppet_arm_left_deque) != 0:
left_arm = list(self.puppet_arm_left_deque[-1].position)
if len(self.puppet_arm_right_deque) != 0:
right_arm = list(self.puppet_arm_right_deque[-1].position)
if left_arm is None or right_arm is None:
rate.sleep()
continue
else:
break
left_symbol = [1 if left[i] - left_arm[i] > 0 else -1 for i in range(len(left))]
right_symbol = [1 if right[i] - right_arm[i] > 0 else -1 for i in range(len(right))]
flag = True
step = 0
while flag and not rospy.is_shutdown():
if self.puppet_arm_publish_lock.acquire(False):
return
left_diff = [abs(left[i] - left_arm[i]) for i in range(len(left))]
right_diff = [abs(right[i] - right_arm[i]) for i in range(len(right))]
flag = False
for i in range(len(left)):
if left_diff[i] < self.args.arm_steps_length[i]:
left_arm[i] = left[i]
else:
left_arm[i] += left_symbol[i] * self.args.arm_steps_length[i]
flag = True
for i in range(len(right)):
if right_diff[i] < self.args.arm_steps_length[i]:
right_arm[i] = right[i]
else:
right_arm[i] += right_symbol[i] * self.args.arm_steps_length[i]
flag = True
joint_state_msg = JointState()
joint_state_msg.header = Header()
joint_state_msg.header.stamp = rospy.Time.now() # Set the timestep
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] # 设置关节名称
joint_state_msg.position = left_arm
self.puppet_arm_left_publisher.publish(joint_state_msg)
joint_state_msg.position = right_arm
self.puppet_arm_right_publisher.publish(joint_state_msg)
step += 1
print("puppet_arm_publish_continuous:", step)
rate.sleep()
def puppet_arm_publish_linear(self, left, right):
num_step = 100
rate = rospy.Rate(200)
left_arm = None
right_arm = None
while True and not rospy.is_shutdown():
if len(self.puppet_arm_left_deque) != 0:
left_arm = list(self.puppet_arm_left_deque[-1].position)
if len(self.puppet_arm_right_deque) != 0:
right_arm = list(self.puppet_arm_right_deque[-1].position)
if left_arm is None or right_arm is None:
rate.sleep()
continue
else:
break
traj_left_list = np.linspace(left_arm, left, num_step)
traj_right_list = np.linspace(right_arm, right, num_step)
for i in range(len(traj_left_list)):
traj_left = traj_left_list[i]
traj_right = traj_right_list[i]
traj_left[-1] = left[-1]
traj_right[-1] = right[-1]
joint_state_msg = JointState()
joint_state_msg.header = Header()
joint_state_msg.header.stamp = rospy.Time.now() # 设置时间戳
joint_state_msg.name = ['joint0', 'joint1', 'joint2', 'joint3', 'joint4', 'joint5', 'joint6'] # 设置关节名称
joint_state_msg.position = traj_left
self.puppet_arm_left_publisher.publish(joint_state_msg)
joint_state_msg.position = traj_right
self.puppet_arm_right_publisher.publish(joint_state_msg)
rate.sleep()
def puppet_arm_publish_continuous_thread(self, left, right):
if self.puppet_arm_publish_thread is not None:
self.puppet_arm_publish_lock.release()
self.puppet_arm_publish_thread.join()
self.puppet_arm_publish_lock.acquire(False)
self.puppet_arm_publish_thread = None
self.puppet_arm_publish_thread = threading.Thread(target=self.puppet_arm_publish_continuous, args=(left, right))
self.puppet_arm_publish_thread.start()
def get_frame(self):
if len(self.img_left_deque) == 0 or len(self.img_right_deque) == 0 or len(self.img_front_deque) == 0 or \
(self.args.use_depth_image and (len(self.img_left_depth_deque) == 0 or len(self.img_right_depth_deque) == 0 or len(self.img_front_depth_deque) == 0)):
return False
if self.args.use_depth_image:
frame_time = min([self.img_left_deque[-1].header.stamp.to_sec(), self.img_right_deque[-1].header.stamp.to_sec(), self.img_front_deque[-1].header.stamp.to_sec(),
self.img_left_depth_deque[-1].header.stamp.to_sec(), self.img_right_depth_deque[-1].header.stamp.to_sec(), self.img_front_depth_deque[-1].header.stamp.to_sec()])
else:
frame_time = min([self.img_left_deque[-1].header.stamp.to_sec(), self.img_right_deque[-1].header.stamp.to_sec(), self.img_front_deque[-1].header.stamp.to_sec()])
if len(self.img_left_deque) == 0 or self.img_left_deque[-1].header.stamp.to_sec() < frame_time:
return False
if len(self.img_right_deque) == 0 or self.img_right_deque[-1].header.stamp.to_sec() < frame_time:
return False
if len(self.img_front_deque) == 0 or self.img_front_deque[-1].header.stamp.to_sec() < frame_time:
return False
if len(self.puppet_arm_left_deque) == 0 or self.puppet_arm_left_deque[-1].header.stamp.to_sec() < frame_time:
return False
if len(self.puppet_arm_right_deque) == 0 or self.puppet_arm_right_deque[-1].header.stamp.to_sec() < frame_time:
return False
if self.args.use_depth_image and (len(self.img_left_depth_deque) == 0 or self.img_left_depth_deque[-1].header.stamp.to_sec() < frame_time):
return False
if self.args.use_depth_image and (len(self.img_right_depth_deque) == 0 or self.img_right_depth_deque[-1].header.stamp.to_sec() < frame_time):
return False
if self.args.use_depth_image and (len(self.img_front_depth_deque) == 0 or self.img_front_depth_deque[-1].header.stamp.to_sec() < frame_time):
return False
if self.args.use_robot_base and (len(self.robot_base_deque) == 0 or self.robot_base_deque[-1].header.stamp.to_sec() < frame_time):
return False
while self.img_left_deque[0].header.stamp.to_sec() < frame_time:
self.img_left_deque.popleft()
img_left = self.bridge.imgmsg_to_cv2(self.img_left_deque.popleft(), 'passthrough')
while self.img_right_deque[0].header.stamp.to_sec() < frame_time:
self.img_right_deque.popleft()
img_right = self.bridge.imgmsg_to_cv2(self.img_right_deque.popleft(), 'passthrough')
while self.img_front_deque[0].header.stamp.to_sec() < frame_time:
self.img_front_deque.popleft()
img_front = self.bridge.imgmsg_to_cv2(self.img_front_deque.popleft(), 'passthrough')
while self.puppet_arm_left_deque[0].header.stamp.to_sec() < frame_time:
self.puppet_arm_left_deque.popleft()
puppet_arm_left = self.puppet_arm_left_deque.popleft()
while self.puppet_arm_right_deque[0].header.stamp.to_sec() < frame_time:
self.puppet_arm_right_deque.popleft()
puppet_arm_right = self.puppet_arm_right_deque.popleft()
img_left_depth = None
if self.args.use_depth_image:
while self.img_left_depth_deque[0].header.stamp.to_sec() < frame_time:
self.img_left_depth_deque.popleft()
img_left_depth = self.bridge.imgmsg_to_cv2(self.img_left_depth_deque.popleft(), 'passthrough')
img_right_depth = None
if self.args.use_depth_image:
while self.img_right_depth_deque[0].header.stamp.to_sec() < frame_time:
self.img_right_depth_deque.popleft()
img_right_depth = self.bridge.imgmsg_to_cv2(self.img_right_depth_deque.popleft(), 'passthrough')
img_front_depth = None
if self.args.use_depth_image:
while self.img_front_depth_deque[0].header.stamp.to_sec() < frame_time:
self.img_front_depth_deque.popleft()
img_front_depth = self.bridge.imgmsg_to_cv2(self.img_front_depth_deque.popleft(), 'passthrough')
robot_base = None
if self.args.use_robot_base:
while self.robot_base_deque[0].header.stamp.to_sec() < frame_time:
self.robot_base_deque.popleft()
robot_base = self.robot_base_deque.popleft()
return (img_front, img_left, img_right, img_front_depth, img_left_depth, img_right_depth,
puppet_arm_left, puppet_arm_right, robot_base)
def img_left_callback(self, msg):
if len(self.img_left_deque) >= 2000:
self.img_left_deque.popleft()
self.img_left_deque.append(msg)
def img_right_callback(self, msg):
if len(self.img_right_deque) >= 2000:
self.img_right_deque.popleft()
self.img_right_deque.append(msg)
def img_front_callback(self, msg):
if len(self.img_front_deque) >= 2000:
self.img_front_deque.popleft()
self.img_front_deque.append(msg)
def img_left_depth_callback(self, msg):
if len(self.img_left_depth_deque) >= 2000:
self.img_left_depth_deque.popleft()
self.img_left_depth_deque.append(msg)
def img_right_depth_callback(self, msg):
if len(self.img_right_depth_deque) >= 2000:
self.img_right_depth_deque.popleft()
self.img_right_depth_deque.append(msg)
def img_front_depth_callback(self, msg):
if len(self.img_front_depth_deque) >= 2000:
self.img_front_depth_deque.popleft()
self.img_front_depth_deque.append(msg)
def puppet_arm_left_callback(self, msg):
if len(self.puppet_arm_left_deque) >= 2000:
self.puppet_arm_left_deque.popleft()
self.puppet_arm_left_deque.append(msg)
def puppet_arm_right_callback(self, msg):
if len(self.puppet_arm_right_deque) >= 2000:
self.puppet_arm_right_deque.popleft()
self.puppet_arm_right_deque.append(msg)
def robot_base_callback(self, msg):
if len(self.robot_base_deque) >= 2000:
self.robot_base_deque.popleft()
self.robot_base_deque.append(msg)
def init_ros(self):
rospy.init_node('joint_state_publisher', anonymous=True)
rospy.Subscriber(self.args.img_left_topic, Image, self.img_left_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.img_right_topic, Image, self.img_right_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.img_front_topic, Image, self.img_front_callback, queue_size=1000, tcp_nodelay=True)
if self.args.use_depth_image:
rospy.Subscriber(self.args.img_left_depth_topic, Image, self.img_left_depth_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.img_right_depth_topic, Image, self.img_right_depth_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.img_front_depth_topic, Image, self.img_front_depth_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.puppet_arm_left_topic, JointState, self.puppet_arm_left_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.puppet_arm_right_topic, JointState, self.puppet_arm_right_callback, queue_size=1000, tcp_nodelay=True)
rospy.Subscriber(self.args.robot_base_topic, Odometry, self.robot_base_callback, queue_size=1000, tcp_nodelay=True)
self.puppet_arm_left_publisher = rospy.Publisher(self.args.puppet_arm_left_cmd_topic, JointState, queue_size=10)
self.puppet_arm_right_publisher = rospy.Publisher(self.args.puppet_arm_right_cmd_topic, JointState, queue_size=10)
self.robot_base_publisher = rospy.Publisher(self.args.robot_base_cmd_topic, Twist, queue_size=10)
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--max_publish_step', action='store', type=int,
help='Maximum number of action publishing steps', default=10000, required=False)
parser.add_argument('--seed', action='store', type=int,
help='Random seed', default=None, required=False)
parser.add_argument('--img_front_topic', action='store', type=str, help='img_front_topic',
default='/camera_f/color/image_raw', required=False)
parser.add_argument('--img_left_topic', action='store', type=str, help='img_left_topic',
default='/camera_l/color/image_raw', required=False)
parser.add_argument('--img_right_topic', action='store', type=str, help='img_right_topic',
default='/camera_r/color/image_raw', required=False)
parser.add_argument('--img_front_depth_topic', action='store', type=str, help='img_front_depth_topic',
default='/camera_f/depth/image_raw', required=False)
parser.add_argument('--img_left_depth_topic', action='store', type=str, help='img_left_depth_topic',
default='/camera_l/depth/image_raw', required=False)
parser.add_argument('--img_right_depth_topic', action='store', type=str, help='img_right_depth_topic',
default='/camera_r/depth/image_raw', required=False)
parser.add_argument('--puppet_arm_left_cmd_topic', action='store', type=str, help='puppet_arm_left_cmd_topic',
default='/master/joint_left', required=False)
parser.add_argument('--puppet_arm_right_cmd_topic', action='store', type=str, help='puppet_arm_right_cmd_topic',
default='/master/joint_right', required=False)
parser.add_argument('--puppet_arm_left_topic', action='store', type=str, help='puppet_arm_left_topic',
default='/puppet/joint_left', required=False)
parser.add_argument('--puppet_arm_right_topic', action='store', type=str, help='puppet_arm_right_topic',
default='/puppet/joint_right', required=False)
parser.add_argument('--robot_base_topic', action='store', type=str, help='robot_base_topic',
default='/odom_raw', required=False)
parser.add_argument('--robot_base_cmd_topic', action='store', type=str, help='robot_base_topic',
default='/cmd_vel', required=False)
parser.add_argument('--use_robot_base', action='store_true',
help='Whether to use the robot base to move around',
default=False, required=False)
parser.add_argument('--publish_rate', action='store', type=int,
help='The rate at which to publish the actions',
default=30, required=False)
parser.add_argument('--ctrl_freq', action='store', type=int,
help='The control frequency of the robot',
default=25, required=False)
parser.add_argument('--chunk_size', action='store', type=int,
help='Action chunk size',
default=64, required=False)
parser.add_argument('--arm_steps_length', action='store', type=float,
help='The maximum change allowed for each joint per timestep',
default=[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.2], required=False)
parser.add_argument('--use_actions_interpolation', action='store_true',
help='Whether to interpolate the actions if the difference is too large',
default=False, required=False)
parser.add_argument('--use_depth_image', action='store_true',
help='Whether to use depth images',
default=False, required=False)
parser.add_argument('--disable_puppet_arm', action='store_true',
help='Whether to disable the puppet arm. This is useful for safely debugging',default=False)
parser.add_argument('--config_path', type=str, default="configs/base.yaml",
help='Path to the config file')
# parser.add_argument('--cfg_scale', type=float, default=2.0,
# help='the scaling factor used to modify the magnitude of the control features during denoising')
parser.add_argument('--pretrained_model_name_or_path', type=str, required=True, help='Name or path to the pretrained model')
parser.add_argument('--lang_embeddings_path', type=str, required=True,
help='Path to the pre-encoded language instruction embeddings')
args = parser.parse_args()
return args
def main():
args = get_arguments()
ros_operator = RosOperator(args)
if args.seed is not None:
set_seed(args.seed)
config = get_config(args)
model_inference(args, config, ros_operator)
if __name__ == '__main__':
main()