forked from facebookresearch/directclr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathretrieval.py
295 lines (248 loc) · 11 KB
/
retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import argparse
import torch as T
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.models as models
import numpy as np
import warnings
import os
import timm
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from PIL import Image
# import kornia.augmentation as Kg
warnings.filterwarnings("ignore", category=DeprecationWarning)
from collections import OrderedDict
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import matplotlib.pyplot as plt
from utils import Transform
def load_img(img_name):
with open(img_name, "rb") as f:
image = Image.open(f)
return image.convert("RGB")
class Loader(Dataset):
def __init__(self, img_dir, txt_dir, NB_CLS=None, transform=None):
self.img_dir = img_dir
self.file_list = np.loadtxt(txt_dir, dtype='str')
self.NB_CLS = NB_CLS
self.trainsform = transform
if 'imagenet' in txt_dir:
self.dset = 'imagenet'
trainset = torchvision.datasets.ImageFolder(os.path.join(img_dir, 'train'))
valset = torchvision.datasets.ImageFolder(os.path.join(img_dir, 'val'))
samples = trainset.samples + valset.samples
self.headers = list(set(['/'.join(s[0].split('/')[:-1]) for s in samples]))
elif 'nuswide_m' in txt_dir:
self.dset = 'nuswide_m'
else:
self.dset = 'coco'
def __len__(self):
return len(self.file_list)
def __getitem__(self, idx):
if T.is_tensor(idx):
idx = idx.tolist()
if self.dset == 'imagenet':
for header in self.headers:
if os.path.exists(os.path.join(header, self.file_list[idx][0])):
break
img_name = os.path.join(header, self.file_list[idx][0])
# elif self.dset == 'nuswide_m':
# assert False
else:
img_name = os.path.join(self.img_dir,
self.file_list[idx][0])
image = load_img(img_name)
if self.NB_CLS != None:
if len(self.file_list[idx])>2:
label = [int(self.file_list[idx][i]) for i in range(1,self.NB_CLS+1)]
label = T.FloatTensor(label)
else:
label = int(self.file_list[idx][1])
return self.trainsform(image), label, idx
else:
return self.trainsform(image)
@T.no_grad()
def Evaluate_mAP(device, gallery_codes, query_codes, gallery_labels, query_labels, Top_N=None):
num_query = query_labels.shape[0]
mean_AP = 0.0
mean_P = 0.0
all_retrieval = (query_labels @ gallery_labels.t() > 0).float()
gallery_codes = F.normalize(gallery_codes, dim=1)
query_codes = F.normalize(query_codes, dim=1)
all_hamming_dist = (gallery_codes.shape[1] - query_codes @ gallery_codes.t())
all_sort_idx = T.cat([T.argsort(all_hamming_dist[i*num_query//10:(i+1)*num_query//10], dim=-1)[..., :Top_N] for i in range(10)], 0)
retrievals = []
for i in range(num_query):
retrieval = all_retrieval[i] #(query_labels[i, :] @ gallery_labels.t() > 0).float()
# hamming_dist = all_hamming_dist[i] # (gallery_codes.shape[1] - query_codes[i, :] @ gallery_codes.t())
# sort_idx = T.argsort(hamming_dist.cpu())[:Top_N].to(device)
sort_idx = all_sort_idx[i] #T.argsort(hamming_dist)[:Top_N]
retrieval = retrieval[sort_idx]
retrieval_cnt = retrieval.sum().int().item()
retrievals.append(sort_idx[:20])
if retrieval_cnt == 0:
continue
score = T.linspace(1, retrieval_cnt, retrieval_cnt).to(device)
index = (T.nonzero(retrieval == 1, as_tuple=False).squeeze() + 1.0).float().to(device)
mean_AP += (score / index).mean()
mean_P += retrieval.mean()
mean_AP = mean_AP / num_query
mean_P = mean_P / num_query
return mean_AP, mean_P, T.stack(retrievals)
def DoRetrieval(device, net, log_dir, Img_dir, Gallery_dir, Query_dir, NB_CLS, Top_N, batch_size, subset=None, dname='coco', random_runs=None, pca=False):
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
Gallery_set = Loader(Img_dir, Gallery_dir, NB_CLS, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
Gallery_loader = T.utils.data.DataLoader(Gallery_set, batch_size=batch_size, num_workers=4, shuffle=True)
Query_set = Loader(Img_dir, Query_dir, NB_CLS, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
Query_loader = T.utils.data.DataLoader(Query_set, batch_size=batch_size, num_workers=4)
# q_img = Query_set[234][0]
# q_img = q_img.mul(T.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)).add(T.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1))
# print(q_img.min(), q_img.max())
# q_img = (q_img * 255).clamp(0, 255).to(T.uint8)
# q_img = q_img.permute(1, 2, 0)
# q_img = q_img.contiguous().cpu().numpy()
# fig = plt.figure()
# fig.set_figheight(4)
# fig.set_figwidth(44)
# plt.imsave("{}/test.pdf".format(log_dir), q_img[:,:,:])
# plt.axis('off')
# return
if pca:
dataset = torchvision.datasets.ImageFolder(os.path.join('/home/data/ImageNet', 'train'), Transform(None))
loader = T.utils.data.DataLoader(
dataset, batch_size=1024, num_workers=16,
pin_memory=True, sampler=None)
with T.no_grad():
cov_ = 0
cnt = 0
for i, ((data, _), _) in enumerate(loader, 0):
if i % 100 == 0:
print(i)
data = data.to(device)
with T.cuda.amp.autocast():
outputs = net(data).float()
cov_ += outputs.T @ outputs
cnt += outputs.shape[0]
cov_ /= cnt
L, Q = T.linalg.eigh(cov_)
print(L[:5], L[-5:])
with T.no_grad():
for i, data in enumerate(Gallery_loader, 0):
gallery_x_batch, gallery_y_batch, gallery_idx_batch = data[0].to(device), data[1].to(device), data[2].to(device)
if gallery_y_batch.dim() == 1:
gallery_y_batch = T.eye(NB_CLS, device=device)[gallery_y_batch]
outputs = net(gallery_x_batch)
if i == 0:
gallery_c = outputs
gallery_y = gallery_y_batch
gallery_idx = gallery_idx_batch
else:
gallery_c = T.cat([gallery_c, outputs], 0)
gallery_y = T.cat([gallery_y, gallery_y_batch], 0)
gallery_idx = T.cat([gallery_idx, gallery_idx_batch], 0)
# if subset is not None and i == 50:
# break
for i, data in enumerate(Query_loader, 0):
query_x_batch, query_y_batch, query_idx_batch = data[0].to(device), data[1].to(device), data[2].to(device)
if query_y_batch.dim() == 1:
query_y_batch = T.eye(NB_CLS, device=device)[query_y_batch]
outputs = net(query_x_batch)
if i == 0:
query_c = outputs
query_y = query_y_batch
query_idx = query_idx_batch
else:
query_c = T.cat([query_c, outputs], 0)
query_y = T.cat([query_y, query_y_batch], 0)
query_idx = T.cat([query_idx, query_idx_batch], 0)
if subset is not None and i == subset:
break
# gallery_c = T.sign(gallery_c)
# query_c = T.sign(query_c)
ks = [4]
while ks[-1] * 2 <= query_c.shape[-1]:
ks.append(ks[-1] * 2)
if ks[-1] != query_c.shape[-1]:
ks.append(query_c.shape[-1])
# print(ks)
maps = []
ppp = T.randperm(query_c.shape[0])[:10]
if random_runs:
rand_indices = T.argsort(T.rand(random_runs, gallery_c.shape[-1]), dim=-1)
for k in ks:
if random_runs:
mAP, mean_P = [], []
for run in range(random_runs):
gallery_c_k = gallery_c[...,rand_indices[run, :k]]
query_c_k = query_c[...,rand_indices[run, :k]]
mAP_, mean_P_, retrievals = Evaluate_mAP(device, gallery_c_k, query_c_k, gallery_y, query_y, Top_N)
mAP.append(mAP_.cpu()); mean_P.append(mean_P_.cpu())
print(' k: %.0f mAP: %.4f %.4f mean_P: %.4f %.4f' %
(k,np.mean(mAP),np.std(mAP),np.mean(mean_P),np.std(mean_P)))
maps.append(np.mean(mAP))
else:
if pca:
gallery_c_k = gallery_c @ Q[:, -k:]
query_c_k = query_c @ Q[:, -k:]
else:
gallery_c_k = gallery_c[...,:k]
query_c_k = query_c[...,:k]
mAP, mean_P, retrievals = Evaluate_mAP(device, gallery_c_k, query_c_k, gallery_y, query_y, Top_N)
maps.append(mAP)
print(' k: %.0f mAP: %.4f mean_P: %.4f' % (k, mAP, mean_P))
for ite, i in enumerate(ppp):
q_img = Query_set[query_idx[i]][0]
q_img = (q_img.mul(T.tensor([0.229, 0.224, 0.225]).view(-1, 1, 1)).add(T.tensor([0.485, 0.456, 0.406]).view(-1, 1, 1)) * 255).clamp(0, 255).to(T.uint8)
q_img = q_img.permute(1, 2, 0)
q_img = q_img.contiguous().cpu().numpy()
v_imgs = [Gallery_set[gallery_idx[j]][0] for j in retrievals[i]]
v_imgs = T.stack(v_imgs)[:10]
num_v_imgs = v_imgs.shape[0]
v_imgs = (v_imgs.mul(T.tensor([0.229, 0.224, 0.225]).view(1, -1, 1, 1)).add(T.tensor([0.485, 0.456, 0.406]).view(1, -1, 1, 1)) * 255).clamp(0, 255).to(T.uint8)
v_imgs = v_imgs.permute(0, 2, 3, 1)
v_imgs = v_imgs.contiguous().cpu().numpy()
v_imgs = v_imgs.reshape((1, num_v_imgs, 224, 224, 3)).transpose((0, 2, 1, 3, 4)).reshape((1 * 224, num_v_imgs * 224, 3))
img = np.concatenate([q_img, np.zeros((224, 10, 3)).astype(np.uint8), v_imgs], 1)
im = Image.fromarray(img).convert('RGB')
im.save("{}/{}_{}_{}.pdf".format(log_dir, dname, k, ite))
# plt.figure(figsize=(4, 44))
# plt.imsave("{}/retrieval_{}_{}.pdf".format(log_dir, k, ite), img[:,:,:])
# plt.axis('off')
return maps
# for k, mAP in zip(ks, maps):
def retrieval(Img_dir, Gallery_dir, Query_dir, device, model_fn, batch_size, log_dir, subset=None, dname='coco', random_runs=None, pca=False):
if dname=='coco':
NB_CLS=80
Top_N=5000
elif dname=='imagenet':
NB_CLS=100
Top_N=100
elif dname=='nuswide':
NB_CLS=21
Top_N=5000
elif dname=='nuswide_m':
NB_CLS=21
Top_N=5000
elif dname=='voc2012':
NB_CLS=20
Top_N=100
elif dname=='mirflickr':
NB_CLS=38
Top_N=100
else:
print("Wrong dataset name.")
return
return DoRetrieval(device, model_fn, log_dir, Img_dir, Gallery_dir, Query_dir, NB_CLS, Top_N, batch_size, subset, dname, random_runs, pca)