
Intel® Corporation – © 2018

Writing CHIPSEC Modules & Tools
Module & Command Development

Erik Bjorge, Maggie Jauregui & Brian Richardson
Platform Armoring & Resiliency Team
OSFC 2018

Why are we here?

• Supporting CHIPSEC at Intel

• Help the CHIPSEC community to write more modules

• Improve the functionality of CHIPSEC

2

Agenda

• A Little History

• Architecture

• Modules (Tests & Tools)

• Utility Commands

3

CHIPSEC History

• CHIPSEC is a framework for analyzing the security of PC platforms
including hardware, system firmware (BIOS/UEFI), and platform
components.

• Originally developed by Yuriy Bulygin (@c7zero)

• First version of CHIPSEC was released in March 2014 at CanSecWest

• Currently used by firmware developers, system validation and system
integrators

https://github.com/chipsec/chipsec.git

4

https://github.com/chipsec/chipsec.git

Running CHIPSEC

Boot to the USB drive

• Ubuntu 18.04 with CHIPSEC source

• Password: 0$fc2018

From a terminal:

cd ~/src/chipsec

python setup.py build_ext -i

sudo python chipsec_util.py platform

sudo python chipsec_main.py

5

Common Terms

• Device ID (DID)

• Hardware Abstraction Layer (HAL)

• Platform Controller Hub (PCH)

• Serial Peripheral Interface (SPI)

• System Management Mode (SMM)

• Unified Extensible Firmware Interface (UEFI)

• Vendor ID (VID)

6

CHIPSEC Architecture

Chipsec Main Chipsec Util

Modules Tools Commands

HAL

OS Helper

Linux Helper

Linux Driver

Windows Helper

Windows Driver

UEFI Helper

UEFI Code

Config

OSX Helper

OSX Driver

7

CHIPSEC Architecture

Modules & Tools

• Implementation of tests or other functionality for chipsec_main

Configuration Files

• Provide a human readable abstraction for registers in the system

Commands

• Implement functionality of chipsec_util

HAL

• Useful abstractions for common tasks such as accessing the SPI

OS Helpers & Drivers

• Provides a translation layer to convert a common interface to OS specific driver calls

8

CHIPSEC_MAIN Program Flow

1. Load OS Specific Driver

2. Detect Platform

3. Load Modules

4. Load Configuration Files

5. Run Loaded Modules

6. Report Results

9

Platform Detection

• Uses PCI VID and DID to detect processor and PCH

– Processor 0:0.0

– PCH 0:31.0

• Chip information located in chipsec/chipset.py

– Currently requires VID of 0x8086

– DID is used as the lookup key

• Select a specific platform using the -p flag

• Ignore the platform specific registers using the -i flag

10

Configuration Files

• Broken into common and platform specific configuration files

• Used to define controls, registers and bit fields

• Common files always loaded first so the platform files can override
values

• Correct platform configuration files loaded based off of platform
detection

11

Configuration File Examples
<mmio>

<bar name="SPIBAR" bus="0" dev="0x1F" fun="5" reg="0x10" width="4" mask="0xFFFFF000"
size="0x1000" desc="SPI Controller Register Range" offset="0x0"/>

</mmio>

<registers>

<register name="BC" type="pcicfg" bus="0" dev="0x1F" fun="5" offset="0xDC" size="4"
desc="BIOS Control">

<field name="BIOSWE" bit="0" size="1" desc="BIOS Write Enable" />

…

<field name="BILD" bit="7" size="1" desc="BIOS Interface Lock Down"/>

</register>

</registers>

<controls>

<control name="BiosInterfaceLockDown" register="BC" field="BILD" desc="BIOS Interface
Lock-Down"/>

</controls>

12

Register Interfaces

• Used to access controls, registers and fields based on the human
readable name

• Enables test code to be portable when registers move or are renamed

• Controls allow for mapping different register names to a common
control name

• Interfaces exist for reading and writing as well as checking for
existence

13

Register Interface Summary

Control Access:

• is_control_defined, get_control, set_control

Register Access:

• is_register_defined, read_register, write_register,

print_register

Field Access:

• register_has_field, read_register_field, write_register_field,

get_register_field_mask, get_register_field, set_register_field

Note: Only commonly used interfaces listed

14

Logging Interface

• CHIPSEC defines its own logging interface

– Used for display to terminal

– Used to write to different log file types

• Provides color text output to the console

– Linux support without additional modules

– Windows color console support requires additional python modules

• Should be used to display output instead of print()

15

Logging Interface Summary

log

• Logs the specific string same as a print

log_*

• Prepends formatted text to the provided string

• log_warning will prepend the string with “[!] WARNING:” in yellow

log_*_check

• Used to log the overall result for the module

• Always called once (and only once) in a module

• Also used to finalize XML log entry

16

HAL Overview
cpu

• Access to processor registers and special instructions like cupid

mmio

• Direct or register based access to MMIO regions

pci

• Access to PCI devices and Option ROM information

spi

• Simplifies accessing the SPI flash and enumerating different regions

uefi

• Access to UEFI functionality such as variables, system tables or compression

* Many more exist in the chipsec/hal directory

17

Return Values

PASSED - Test detected mitigation

FAILED - Test failed to detect mitigation

WARNING - Test results require manual investigation

INFORMATION - Test output is informational only

SKIPPED - Test not implemented for current platform (test not run)

NOTAPPLICABLE - Test does not apply to current platform (test not run)

ERROR - The test generated an exception

18

Modules (Tests & Tools)

• Test Modules

– Verify a specific vulnerability has been mitigated

– Do not modify the system configuration

– Enumerated and run automatically by chipsec_main

• Tool Modules

– Allowed to modify the state of the system

– May be destructive to the system

– Must be run manually via command line parameter

– Stored in the chipsec/modules/tools directory

• All module classes are derived from BaseModule

• Only difference between tests and tools is where the file is stored

19

Module Interfaces

__init__(self)

• Initialize your modules class state if needed

is_supported(self)

• Determines if the module should be run on the current platform

run(self, module_argv)

• Entry point for the actual test or tool

• Modules can accept arguments

• Return value determines the exit state of the module

– Pass, Failure, Warning, etc.

20

is_supported Guidance

Reduce maintenance…

• Check to see if registers are defined

• Check for PCI device types or classes

• Check CPUID or specific feature support

• Avoid checking for a specific platform if possible

– Checking for a class of processor like all Atom processors is fine

def is_supported(self):

supported = self.cs.helper.EFI_supported()

if not supported: self.logger.log_skipped_check("OS does not support UEFI Runtime API")

return supported

21

run Guidance

• Call self.logger.start_test() early in execution

– This will display the test header

• Try to map test code to a single vulnerability

– May require multiple mitigations

– Not always logical to do this

• Log intermediate results if required

• Log final result of module with log_*_check

– Called once per execution of the module

22

Example Module

The goal is to generate a new informational module to gather useful data
about the host processor and display it to the user.

• Processor brand string

• Family, model and stepping

• Microcode revision

Full source in chipsec/modules/common/cpu/cpu_info.py on USB drive

23

Initial Template

class cpu_info(BaseModule):

def __init__(self):

BaseModule.__init__(self)

def is_supported(self):

return True

def run(self, module_argv):

Log the start of the test

self.logger.start_test('Current Processor Information')

return ModuleResult.INFORMATION

24

Collect & Display Brand String

Get processor brand string

brand = ''

for eax_val in [0x80000002, 0x80000003, 0x80000004]:

regs = self.cs.cpu.cpuid(eax_val, 0)

for i in range(4):

brand += struct.pack('<I', regs[i])

self.logger.log('[*] Processor: {}'.format(brand))

25

Collect & Display More Data

Get microcode revision

microcode_rev =

self.cs.read_register_field('IA32_BIOS_SIGN_ID', 'Microcode')

self.logger.log('[*] Microcode:

{:08X}'.format(microcode_rev))

self.logger.log_information_check('Current information

displayed')

return ModuleResult.INFORMATION

26

Module Output

[*] running module: chipsec.modules.common.cpu.cpu_info

[x][===

[x][Module: Current Processor Information

[x][===

[*] Processor: Intel(R) Core(TM) i7-6770HQ CPU @ 2.60GHz

[*] Family: 06 Model: 5E Stepping: 3

[*] Microcode: 000000C2

[#] INFORMATION: Current information displayed

Command Line:

sudo python chipsec_main.py -m common.cpu.cpu_info

27

CHIPSEC Commands

• Run using chipsec_util

• Provide interactive access to system components from command line

– Most support read/write access

– Can be destructive

• Useful when doing research or other investigations

• Command classes are derived from BaseCommand

• Command line parameters available in self.argv

• Files in the chipsec/utilcmd directory

28

Command Interfaces

requires_driver(self)

• Used to determine if the OS specific driver is required to run the
command

run(self)

• Main entry point to perform the command and display the results

commands

• Dictionary to map command names to class implementation

29

Command Example

class PlatformCommand(BaseCommand):

def requires_driver(self):

return True

def run(self):

try:

print_supported_chipsets()

self.logger.log("")

self.cs.print_chipset()

self.cs.print_pch()

except UnknownChipsetError, msg:

self.logger.error(msg)

commands = { 'platform': PlatformCommand }

30

Summary

Now that you have the basics, start writing new modules and commands

Submit pull requests and issues on GitHub

https://github.com/chipsec/chipsec

Contact the Intel CHIPSEC team

chipsec@intel.com

31

https://github.com/chipsec/chipsec
mailto:chipsec@intel.com

32

Legal Notice
No computer system can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by
this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising
from course of performance, course of dealing, or usage in trade.

This document contains information on products, services and/or processes in development. All
information provided here is subject to change without notice.

The products and services described may contain defects or errors known as errata which may cause
deviations from published specifications. Current characterized errata are available on request.

Intel, the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other
countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

