-
Notifications
You must be signed in to change notification settings - Fork 17
/
2316-count-unreachable-pairs-of-nodes-in-an-undirected-graph.py
47 lines (42 loc) · 1.39 KB
/
2316-count-unreachable-pairs-of-nodes-in-an-undirected-graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class UnionFind:
def __init__(self, n):
self.parent = [i for i in range(n)]
self.rank = [0 for _ in range(n)]
self.weight = [1 for _ in range(n)]
def find(self, p):
while p != self.parent[p]:
self.parent[p] = self.parent[self.parent[p]]
p = self.parent[p]
return p
def union(self, p, q):
root_p = self.find(p)
root_q = self.find(q)
if root_p == root_q:
return
if self.rank[root_p] > self.rank[root_q]:
self.parent[root_q] = root_p
self.weight[root_p] += self.weight[root_q]
self.weight[root_q] = 0
elif self.rank[root_p] < self.rank[root_q]:
self.parent[root_p] = root_q
self.weight[root_q] += self.weight[root_p]
self.weight[root_p] = 0
else:
self.parent[root_p] = root_q
self.rank[root_q] += 1
self.weight[root_q] += self.weight[root_p]
self.weight[root_p] = 0
def get_weight(self, p):
return self.weight[self.find(p)]
class Solution:
def countPairs(self, n: int, edges: List[List[int]]) -> int:
uf = UnionFind(n)
for p, q in edges:
uf.union(p, q)
res = 0
for i in range(n):
res += n - uf.get_weight(i)
return res // 2
# time O(V+E)
# space O(V)
# using graph and union find