-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbcd_dnn_resnet_mnist.m
452 lines (385 loc) · 16.7 KB
/
bcd_dnn_resnet_mnist.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
%% Block Coodinate Proximal Point (BPP) Algorithm for Training DNNs (2nd Layer ResNet)
clear all
close all
clc
addpath Algorithms Tools
disp('Three Hidden-Layer with Residual Connection using the MNIST dataset')
rng('default');
seed = 10;
rng(seed);
fprintf('Seed = %d \n', seed)
% read in MNIST dataset into Matlab format if not exist
if exist('mnist.mat', 'file')
mnist = load('mnist.mat');
else
disp('reading in MNIST dataset into Matlab format')
addpath mnist-matlab
convertMNIST
mnist = load('mnist.mat');
end
% train data and labels
[x_d1,x_d2,x_d3] = size(mnist.training.images);
x_train = reshape(mnist.training.images,x_d1*x_d2,x_d3); % train data
% x_train = gpuArray(x_train);
y_train = mnist.training.labels; % labels
% y_train = gpuArray(y_train);
%% Extract Classes
num_classes = 10; % choose the first num_class classes in the MNIST dataset for training
X = [y_train';x_train];
[~,col] = find(X(1,:) < num_classes);
X = X(:,col);
[~,N] = size(X);
X = X(:,randperm(N)); % shuffle the dataset
x_train = X(2:end,:);
y_train = X(1,:)';
clear X
y_one_hot = ind2vec((y_train'+1));
[K,N] = size(y_one_hot);
[d,~] = size(x_train);
%% Test data
% read in test data and labels
[x_test_d1,x_test_d2,x_test_d3] = size(mnist.test.images);
x_test = reshape(mnist.test.images,x_test_d1*x_test_d2,x_test_d3); % test data
y_test = mnist.test.labels; % labels
X_test = [y_test';x_test];
[~, col_test] = find(X_test(1,:) < num_classes);
X_test = X_test(:,col_test);
[~,N_test] = size(X_test);
X_test = X_test(:,randperm(N_test,N_test));
x_test = X_test(2:end,:);
y_test = X_test(1,:)';
clear X_test
y_test_one_hot = ind2vec((y_test'+1));
[~,N_test] = size(y_test_one_hot);
%% Visual data samples
% figure;
% for i = 1:100
% subplot(10,10,i)
% img{i} = reshape(x_train(:,i),x_d1,x_d2);
% imshow(img{i})
% end
%
% close all
%% Main Algorithm 1 (Proximal Point)
% Initialization of parameters/hyperparameters
d0 = d; d1 = 2048; d2 = d; d3 = 2048;
% d4 = d; d5 = d; d6 = d;
dL = K; % Layers: input + 3 hidden + output
% W1 = 0.0001*randn(d1,d0); b1 = 0.0001*randn(d1,1)+1;
W1 = 0.01*randn(d1,d0); b1 = 0.1*ones(d1,1);
% W1 = 0.01*sprand(d1,d0,0.5); b1 = 0.1*ones(d1,1);
% W1 = zeros(d1,d0); b1 = zeros(d1,1);
% W2 = 0.0001*randn(d2,d1); b2 = 0.0001*randn(d2,1)+1;
W2 = 0.01*randn(d2,d1); b2 = 0.1*ones(d2,1);
% W2 = 0.01*sprand(d2,d1,0.5); b2 = 0.1*ones(d2,1);
% W2 = zeros(d2,d1); b2 = zeros(d2,1);
% W3 = 0.0001*randn(d3,d2); b3 = 0.0001*randn(d3,1)+1;
W3 = 0.01*randn(d3,d2); b3 = 0.1*ones(d3,1);
% W3 = 0.01*sprand(d3,d2,0.5); b3 = 0.1*ones(d3,1);
% W3 = zeros(d3,d2); b3 = zeros(d3,1);
% W4 = 0.01*sprand(d4,d3,0.5); b4 = 0.1*ones(d4,1);
% W4 = 0.01*randn(d4,d3); b4 = 0.1*ones(d4,1);
% V = 0.01*sprand(dL,d4,0.1); c = zeros(dL,1);
% V = 0.0001*randn(dL,d3); c = 0.0001*randn(dL,1)+1;
V = 0.01*randn(dL,d3); c = 0.1*ones(dL,1);
% V = 0.01*randn(dL,d4); c = 0.1*ones(dL,1);
% V = zeros(d4,d3); c = zeros(d4,1);
indicator = 1; % 1 = ReLU; 2 = tanh; 3 = sigmoid
switch indicator
case 1 % ReLU
a1 = max(0,W1*x_train+b1); a2 = max(0,W2*a1+b2+x_train); a3 = max(0,W3*a2+b3); %a4 = max(0,W4*a3+b4);
case 2 % tanh
a1 = tanh_proj(W1*x_train+b1); a2 = tanh_proj(W2*a1+b2+x_train); a3 = tanh_proj(W3*a2+b3); %a4 = tanh_proj(W4*a3+b4);
case 3 % sigmoid
a1 = sigmoid_proj(W1*x_train+b1); a2 = sigmoid_proj(W2*a1+b2+x_train); a3 = sigmoid_proj(W3*a2+b3); %a4 = sigmoid_proj(W4*a3+b4);
end
u1 = zeros(d1,N); u2 = zeros(d2,N); u3 = zeros(d3,N); %u4 = zeros(d4,N);
lambda = 0;
gamma = 0.1; gamma1 = gamma; gamma2 = gamma; gamma3 = gamma; gamma4 = gamma; gammaL = gamma;
% alpha1 = 10;
alpha1 = 1;
alphao = 5;
alphae = 10;
alpha2 = alphae; alpha3 = alphao; alpha4 = alphae;
alpha5 = alphao; alpha6 = alphae; alpha7 = alphao;
% alpha8 = alpha; alpha9 = alpha; alpha10 = alpha;
beta = 0.95;
beta1 = beta; beta2 = beta; beta3 = beta; beta4 = beta;
beta5 = beta; beta6 = beta; beta7 = beta;
% beta8 = beta; beta9 = beta; beta10 = beta;
t = 0.1;
% s = 10; % number of mini-batches
% niter = input('Number of iterations: ');
niter = 20;
loss1 = zeros(niter,1);
loss2 = zeros(niter,1);
accuracy_train = zeros(niter,1);
accuracy_test = zeros(niter,1);
time1 = zeros(niter,1);
% Iterations
for k = 1:niter
tic
% % Forward Propagation
% switch indicator
% case 1 % ReLU
% a1 = max(0,W1*x_train+b1); a2 = max(0,W2*a1+b2+x_train); a3 = max(0,W3*a2+b3);
% case 2 % tanh
% a1 = tanh_proj(W1*x_train+b1); a2 = tanh_proj(W2*a1+b2+x_train); a3 = tanh_proj(W3*a2+b3);
% case 3 % sigmoid
% a1 = sigmoid_proj(W1*x_train+b1); a2 = sigmoid_proj(W2*a1+b2+x_train); a3 = sigmoid_proj(W3*a2+b3);
% end
% update stepsize
% alpha1 = (1+k)/alpha1; alpha2 = (1+k)/alpha2; alpha3 = (1+k)/alpha3; alpha4 = (1+k)/alpha4; alpha5 = (1+k)/alpha5;
% alpha6 = (1+k)/alpha6; alpha7 = (1+k)/alpha7; alpha8 = (1+k)/alpha8; alpha9 = (1+k)/alpha9; alpha10 = (1+k)/alpha10;
% update V and c (output/loss layer)
% [Vstar,cstar] = updateVb(y_one_hot,a3,V,c,alpha1,gamma4,lambda);
[Vstar,cstar] = updateWb(y_one_hot,a3,V,c,alpha1,gammaL,lambda);
% [Vstar,cstar] = updateWb(y_one_hot,a4,V,c,alpha1,gammaL,lambda);
% Vstar = l1_prox(Vstar,1);
% adaptive momentum and update
% [V,c,beta1] = AdaptiveVb_3(lambda,y_one_hot,a4,V,Vstar,c,cstar,beta1,t);
[V,c,beta1] = AdaptiveVb_4(lambda,gammaL,y_one_hot,a3,V,Vstar,c,cstar,beta1,t);
% [V,c,beta1] = AdaptiveVb_4(lambda,gammaL,y_one_hot,a4,V,Vstar,c,cstar,beta1,t);
% [V,c,beta1] = AdaptiveWb1_3(a3(:,indices(J)),y_one_hot(:,indices(J)),V,Vstar,c,cstar,beta1,t);
% % update a4
% a4star = updatea_2(a3,a4,y_one_hot,W4,V,b4,c,u4,zeros(dL,1),alpha2,gamma4,gammaL,indicator);
% [a4,beta2] = Adaptivea1_3(gamma4,gammaL,y_one_hot,a3,a4,a4star,W4,V,b4+u4,c,beta2,t);
%
% % update u4
% u4 = a4-W4*a3-b4;
%
% % update W4 and b4
% [W4star,b4star] = updateWb_2(a4,a3,u4,W4,b4,alpha3,gamma4,lambda);
% [W4,b4,beta3] = AdaptiveWb1_4(lambda,gamma4,a3,a4,W4,W4star,b4,b4star,u4,beta3,t);
% update a3
a3star = updatea_2(a2,a3,y_one_hot,W3,V,b3,c,u3,zeros(dL,1),alpha2,gamma3,gammaL,indicator);
% a3star = updatea_2(a2,a3,a4,W3,W4,b3,b4,u3,zeros(d4,1),alpha4,gamma3,gamma4,indicator);
% adaptive momentum and update
[a3,beta2] = Adaptivea1_3(gamma3,gammaL,y_one_hot,a2,a3,a3star,W3,V,b3+u3,c,beta2,t);
% [a3,beta4] = Adaptivea1_3(gamma3,gamma4,a4,a2,a3,a3star,W3,W4,b3+u3,b4,beta4,t);
% update u3
% u3 = updateu_2(u3,W3,b3,a2,a3,alpha3,gamma3);
u3 = a3-W3*a2-b3;
% update W3 and b3 (3rd layer)
[W3star,b3star] = updateWb_2(a3,a2,u3,W3,b3,alpha5,gamma3,lambda);
% adaptive momentum and update
[W3,b3,beta3] = AdaptiveWb1_4(lambda,gamma3,a2,a3,W3,W3star,b3,b3star,u3,beta3,t);
% [W3,b3,beta5] = AdaptiveWb1_3(a2,a3-u3,W3,W3star,b3,b3star,beta5,t);
% update a2
% a2star = updatea_2(a1,a2,a3,W2,W3,b2,b3,u2,u3,alpha4,gamma2,gamma3,indicator);
a2star = updatea_2(a1,a2,a3,W2,W3,b2+x_train,b3,u2,u3,alpha4,gamma2,gamma3,indicator);
% adaptive momentum and update
% [a2,beta4] = Adaptivea1_3(gamma2,gamma3,a3,a1,a2,a2star,W2,W3,b2,b3,beta4,t);
[a2,beta4] = Adaptivea1_3(gamma2,gamma3,a3,a1,a2,a2star,W2,W3,b2+x_train+u2,b3+u3,beta4,t);
% update u2
% u2 = a2-W2*a1-b2;
u2 = a2-W2*a1-b2-x_train;
% update W2 and b2 (2nd layer)
% [W2star,b2star] = updateWb_2(a2,a1,u2,W2,b2,alpha5,gamma2,lambda);
[W2star,b2star] = updateWb_ResNet(x_train,a2,a1,u2,W2,b2,alpha5,gamma2,lambda);
% adaptive momentum and update
[W2,b2,beta5] = AdaptiveWb_ResNet(lambda,gamma2,x_train,a1,a2-u2,W2,W2star,b2,b2star,beta5,t);
% update a1
% a1star = updatea_2(x_train,a1,a2,W1,W2,b1,b2,u1,u2,alpha6,gamma1,gamma4,indicator);
a1star = updatea_2(x_train,a1,a2,W1,W2,b1,b2+x_train,u1,u2,alpha6,gamma1,gamma4,indicator);
% adaptive momentum and update
% [a1,beta6] = Adaptivea1_3(gamma1,gamma4,a2,x_train,a1,a1star,W1,W2,b1,b2,beta6,t);
[a1,beta6] = Adaptivea1_3(gamma1,gamma4,a2,x_train,a1,a1star,W1,W2,b1+u1,b2+x_train+u2,beta6,t);
% update u1
u1 = a1-W1*x_train-b1;
% update W1 and b1 (1st layer)
% [W1star,b1star] = updateWb(a1,x_train,W1,b1,alpha7,gamma1,lambda);
[W1star,b1star] = updateWb_2(a1,x_train,u1,W1,b1,alpha7,gamma1,lambda);
% adaptive momentum and update
[W1,b1,beta7] = AdaptiveWb1_4(lambda,gamma1,x_train,a1,W1,W1star,b1,b1star,u1,beta7,t);
% Compute Training Accuracy
switch indicator
case 1 % ReLU
a1_train = max(0,W1*x_train+b1);
a2_train = max(0,W2*a1_train+b2+x_train);
a3_train = max(0,W3*a2_train+b3);
% a4_train = max(0,W4*a3_train+b4);
case 2 % tanh
a1_train = tanh_proj(W1*x_train+b1);
a2_train = tanh_proj(W2*a1_train+b2+x_train);
a3_train = tanh_proj(W3*a2_train+b3);
% a4_train = tanh_proj(W4*a3_train+b4);
case 3 % sigmoid
a1_train = sigmoid_proj(W1*x_train+b1);
a2_train = sigmoid_proj(W2*a1_train+b2+x_train);
a3_train = sigmoid_proj(W3*a2_train+b3);
% a4_train = sigmoid_proj(W4*a3_train+b4);
end
[~,pred] = max(V*a3_train+c,[],1);
% [~,pred] = max(V*a4_train+c,[],1);
% Compute Test/Validation Accuracy
switch indicator
case 1 % ReLU
a1_test = max(0,W1*x_test+b1);
a2_test = max(0,W2*a1_test+b2+x_test);
a3_test = max(0,W3*a2_test+b3);
% a4_test = max(0,W4*a3_test+b4);
case 2 % tanh
a1_test = tanh_proj(W1*x_test+b1);
a2_test = tanh_proj(W2*a1_test+b2+x_test);
a3_test = tanh_proj(W3*a2_test+b3);
% a4_test = tanh_proj(W4*a3_test+b4);
case 3 % sigmoid
a1_test = sigmoid_proj(W1*x_test+b1);
a2_test = sigmoid_proj(W2*a1_test+b2+x_test);
a3_test = sigmoid_proj(W3*a2_test+b3);
% a4_test = sigmoid_proj(W4*a3_test+b4);
end
[~,pred_test] = max(V*a3_test+c,[],1);
% [~,pred_test] = max(V*a4_test+c,[],1);
time1(k) = toc;
loss1(k) = gamma4/2*norm(V*a3+c-y_one_hot,'fro')^2;
loss2(k) = loss1(k)+lambda*norm(V,'fro')^2+gamma1/2*norm(W1*x_train+b1-a1+u1,'fro')^2+lambda*norm(W1,'fro')^2+gamma2/2*norm(W2*a1+b2+x_train-a2+u2,'fro')^2+lambda*norm(W2,'fro')^2+gamma3/2*norm(W3*a2+b3-a3+u3,'fro')^2+lambda*norm(W3,'fro')^2;
% loss1(k) = gamma4/2*norm(V*a4+c-y_one_hot,'fro')^2;
% loss1(k) = cross_entropy(y_one_hot,a3,V,c);
% loss2(k) = loss2(k)+gamma4/2*norm(W4*a3+b4-a4+u4,'fro')^2+lambda*norm(W4,'fro')^2;
% loss1(k) = cross_entropy(y_one_hot,a1,W2,b2)+gamma1/2*norm(W1*x_train+b1-a1,'fro')^2;
accuracy_train(k) = sum(pred'-1 == y_train)/N;
accuracy_test(k) = sum(pred_test'-1 == y_test)/N_test;
fprintf('epoch: %d, squared loss: %f, total loss: %f, training accuracy: %f, validation accuracy: %f, time: %f\n',k,loss1(k),loss2(k),accuracy_train(k),accuracy_test(k),time1(k));
end
fprintf('squared error: %f\n',loss1(k))
fprintf('sum of inter-layer loss: %f\n',loss2(k)-loss1(k))
%disp(full(cross_entropy(y_one_hot,a2,V,c)))
switch indicator
case 1 % ReLU
a1_train = max(0,W1*x_train+b1);
a2_train = max(0,W2*a1_train+b2+x_train);
a3_train = max(0,W3*a2_train+b3);
% a4_train = max(0,W4*a3_train+b4);
case 2 % tanh
a1_train = tanh_proj(W1*x_train+b1);
a2_train = tanh_proj(W2*a1_train+b2+x_train);
a3_train = tanh_proj(W3*a2_train+b3);
% a4_train = tanh_proj(W4*a3_train+b4);
case 3 % sigmoid
a1_train = sigmoid_proj(W1*x_train+b1);
a2_train = sigmoid_proj(W2*a1_train+b2+x_train);
a3_train = sigmoid_proj(W3*a2_train+b3);
% a4_train = sigmoid_proj(W4*a3_train+b4);
end
%% Plots
figure;
graph1 = semilogy(1:niter,loss1,1:niter,loss2);
set(graph1,'LineWidth',1.5);
legend('Squared loss','Total loss');
ylabel('Loss')
xlabel('Epochs')
title('Three-layer Fully-connected Network (2nd ResNet Hidden Layer)')
figure;
graph2 = semilogy(1:niter,accuracy_train,1:niter,accuracy_test);
set(graph2,'LineWidth',1.5);
legend('Training accuracy','Test accuracy','Location','southeast');
ylabel('Accuracy')
xlabel('Epochs')
title('Three-layer Fully-connected Network (2nd ResNet Hidden Layer)')
%% Training error
[~,pred] = max(V*a3_train+c,[],1);
% [~,pred] = max(V*a4_train+c,[],1);
pred_one_hot = ind2vec(pred);
accuracy_final = sum(pred'-1 == y_train)/N;
fprintf('Training accuracy using output layer: %f\n',accuracy_final);
% error = 1-accuracy;
% fprintf('Training error using output layer: %f\n',error);
%% Test error
switch indicator
case 1 % ReLU
a1_test = max(0,W1*x_test+b1);
a2_test = max(0,W2*a1_test+b2+x_test);
% a3_test = W3*a2_test+b3;
a3_test = max(0,W3*a2_test+b3);
% a4_test = max(0,W4*a3_test+b4);
case 2 % tanh
a1_test = tanh_proj(W1*x_test+b1);
a2_test = tanh_proj(W2*a1_test+b2+x_test);
% a3_test = W3*a2_test+b3;
a3_test = tanh_proj(W3*a2_test+b3);
% a4_test = tanh_proj(W4*a3_test+b4);
case 3 % sigmoid
a1_test = sigmoid_proj(W1*x_test+b1);
a2_test = sigmoid_proj(W2*a1_test+b2+x_test);
% a3_test = W3*a2_test+b3;
a3_test = sigmoid_proj(W3*a2_test+b3);
% a4_test = sigmoid_proj(W4*a3_test+b4);
end
[~,pred_test] = max(V*a3_test+c,[],1);
% [~,pred_test] = max(V*a4_test+c,[],1);
pred_test_one_hot = ind2vec(pred_test);
accuracy_test_final = sum(pred_test'-1 == y_test)/N_test;
fprintf('Test accuracy using output layer: %f\n',accuracy_test_final);
% error_test = 1-accuracy_test;
% fprintf('Test error using output layer: %f\n',error_test);
%% Linear SVM for train errors
% rng(seed); % For reproducibility
% SVMModel = fitcecoc(a3_train,y_train,'ObservationsIn','columns');
% L = resubLoss(SVMModel,'LossFun','classiferror');
% % fprintf('Training error classified with SVM: %f\n',L);
% fprintf('Training accuracy classified with SVM: %f\n',1-L);
%% SVM test error
% predictedLabels = predict(SVMModel,a3_test,'ObservationsIn','columns');
% accuracy = sum(predictedLabels==y_test)/numel(predictedLabels);
% fprintf('Test accuracy classified with SVM: %f\n',accuracy);
%% Toolbox training
% layers = [imageInputLayer([28 28 1],'Name','input');
% fullyConnectedLayer(d1,'Name','fc_1');
% reluLayer('Name','relu_1');
% fullyConnectedLayer(d2,'Name','fc_2');
% additionLayer(2,'Name','add')
% reluLayer('Name','relu_2');
% fullyConnectedLayer(d3,'Name','fc_3');
% reluLayer('Name','relu_3');
% fullyConnectedLayer(K,'Name','fc_4');
% softmaxLayer('Name','softmax');
% classificationLayer('Name','classOutput')];
%
% lgraph = layerGraph(layers);
% figure
% plot(lgraph)
%
% lgraph = connectLayers(lgraph,'input','add/in2');
% plot(lgraph)
%
%
% layers(2).Weights = 0.01*randn(d1,d0);
% layers(4).Weights = 0.01*randn(d2,d1);
% layers(7).Weights = 0.01*randn(d3,d2);
% layers(9).Weights = 0.01*randn(dL,d3);
%
% layers(2).Bias = 0.1*ones(d1,1);
% layers(4).Bias = 0.1*ones(d2,1);
% layers(7).Bias = 0.1*ones(d3,1);
% layers(9).Bias = 0.1*ones(dL,1);
%
% options = trainingOptions('sgdm',...
% 'ExecutionEnvironment','gpu',...
% 'MaxEpochs',10,...
% 'InitialLearnRate',0.01,...
% 'Plots','training-progress');
% % options = trainingOptions('sgdm','ExecutionEnvironment','gpu','MaxEpochs',20,'InitialLearnRate',0.01);
%
% rng(seed)
% net = trainNetwork(reshape(x_train,28,28,1,N),categorical(y_train),lgraph,options);
%
% % Test accuracy
% YTest = classify(net,reshape(x_test,28,28,1,N_test));
% TTest = categorical(y_test);
% accuracy1 = sum(YTest == TTest)/numel(TTest);
% fprintf('Test accuracy with backprop: %f\n',accuracy1);
%
% net.traininfo;
%% Feature extraction + SVM + Test accuracy
% trainFeatures = activations(net,reshape(x_train,28,28,1,N),3);
% svm = fitcecoc(trainFeatures,categorical(y_train));
% L2 = resubLoss(svm,'LossFun','classiferror');
% fprintf('Training error using backprop classified with SVM: %f\n',L2);
% fprintf('Training accuracy using backprop classified with SVM: %f\n',1-L2);
%
% testFeatures = activations(net,reshape(x_test,28,28,1,N_test),3);
% testPredictions = predict(svm,testFeatures);
% accuracy2 = sum(categorical(y_test) == testPredictions)/numel(categorical(y_test));
% fprintf('Test accuracy using backprop classified with SVM: %f\n',accuracy2);