-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
213 lines (181 loc) · 7.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import torch
import torch.nn as nn
import torch.optim
from tensorboardX import SummaryWriter
import os
import numpy as np
import glob
import shutil
import dataset
import unet
import copy
import torchvision
WATERSHED_ENDPOINTS = [0, 1, 2, 3, 4, 5, 6, 7, 10, 15, 25, 35, 55, 100, 200, 362]
# neural net will classify pixels as label i if its distance (rounded to the nearest integer) to a lens center is in the half-open interval [WATERSHED_ENDPOINTS[i], WATERSHED_ENDPOINTS[i+1])
NUM_WATERSHED_CLASSES = len(WATERSHED_ENDPOINTS) #= 16
# weighting based on relative sizes of level sets and some ad-hoc normalization/clipping/upweighting of center pixel (level = 0); definitely not optimized!
LOSS_WEIGHTS = np.array([40, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 12.96, 2.6244, 1.,1.]).astype(np.float32)
class Trainer():
def __init__(self, args):
self.args = copy.deepcopy(args)
if args.watershed:
model = unet.unet_model.UNet(1,NUM_WATERSHED_CLASSES)
self.num_classes = NUM_WATERSHED_CLASSES
else:
model = torchvision.models.resnet34(num_classes=3)
self.num_classes = 3
self.model=model
self.build_datasets()
self.build_optimizer()
def build_optimizer(self):
model = self.model
args = self.args
parameters = model.parameters()
if args.SGD:
self.optimizer = torch.optim.SGD(parameters, args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay)
else:
self.optimizer = torch.optim.Adam(parameters, args.learning_rate, weight_decay=args.weight_decay)
def build_datasets(self):
args = self.args
if args.watershed:
self.train_loader, self.val_loader = dataset.get_dataloaders(args.batch_size, augment=True, skip_no_lenses_frames=False, watershed_endpoints=WATERSHED_ENDPOINTS)
else:
self.train_loader, self.val_loader = dataset.get_classifier_dataloaders(args.batch_size, augment=True)
def train(self):
args = self.args
args.print_out()
setup_save(self.model, args)
self.model = self.model.cuda()
self.model.train()
self.writer = SummaryWriter(args.save_dir + '/tensorboard')
self.writer.add_text('args', str(sorted(args.__dict__.items())))
for i in range(1,args.epochs+1):
self.train_epoch(i)
self.validate_epoch(i)
self.save_checkpoint(i)
if args.debug: break
def loss(self, image, output, label):
args = self.args
if args.watershed:
loss_function = nn.CrossEntropyLoss(weight=torch.tensor(LOSS_WEIGHTS)).cuda()
# output from (B,n,H,W) to (B,H,W,n)
for i, j in [[1, 2], [2, 3]]:
output = torch.transpose(output, i, j)
loss = loss_function(output.contiguous().view(-1, self.num_classes), label.view(-1))
else:
loss_function = nn.CrossEntropyLoss().cuda()
loss = loss_function(output.view(-1,self.num_classes), label.view(-1))
return loss
def train_epoch(self, epoch):
args = self.args
model, train_loader, optimizer,writer = self.model, self.train_loader, self.optimizer, self.writer
model.train()
train_len = len(train_loader)
global_step = train_len * (epoch-1)
adjust_learning_rate(self.optimizer, args, epoch)
self.writer.add_scalar('learning_rate', self.optimizer.param_groups[0]['lr'], epoch)
for i, (image, label) in enumerate(train_loader):
global_step += 1
image = image.cuda()
label = label.cuda()
output = model(image).cuda()
loss = self.loss(image,output,label)
optimizer.zero_grad()
loss.backward()
for p in model.parameters():
if p.grad is not None:
p.grad.data.clamp_(-args.grad_clip_by_value,args.grad_clip_by_value)
optimizer.step()
self.iteration_hook(global_step, loss, image, output, label)
if args.debug: break
if i == 0:
for j in range(image.shape[0]):
writer.add_image('input/train/%d'%i, viz_format(image[j:j+1]), global_step)
if args.watershed:
prediction_mask = torch.argmax(output, dim=1, keepdim=True).view(-1, 1, 256, 256)
for j in range(image.shape[0]):
writer.add_image('label/train/%d' % i, viz_format(label[j:j + 1]), global_step)
writer.add_image('prediction/train/%d'%i, viz_format(prediction_mask[j:j+1]), global_step)
def save_checkpoint(self, epoch):
args = self.args
model = self.model
if args.save:
if args.save_freq and epoch % args.save_freq == 0: # if args.save_freq > 0, save with that frequency
torch.save(model.state_dict(), args.save_dir + '/epoch%s.pth' % str(epoch).zfill(3))
print('Saving model at epoch %d' % epoch)
elif epoch == args.epochs: # save at end of training
torch.save(model.state_dict(), args.save_dir + '/epoch%s.pth' % str(epoch).zfill(3))
print('Saving model at epoch %d' % epoch)
def iteration_hook(self, global_step, loss, image, output, label):
args = self.args
if summary_checkpoint(global_step) or args.debug or True:
self.writer.add_scalar('loss/training_loss', loss.data.item(), global_step)
print('training_loss %.2f' % loss.data.item())
def validate_epoch(self, epoch):
args = self.args
val_loader, model, writer = self.val_loader, self.model, self.writer
losses = AverageMeter()
# switch to evaluate mode
model.eval()
for i, (image, label) in enumerate(val_loader):
label = label.cuda()
image = image.cuda()
output = model(image).cuda()
loss = self.loss(image, output, label)
losses.update(loss.data.item(), image.size(0))
# images
if epoch == 0 and i == 0:
for j in range(image.shape[0]):
writer.add_image('input/val/%d' % j, viz_format(image[j:j + 1]), epoch)
if args.watershed and i == 0:
prediction_mask = torch.argmax(output, dim=1, keepdim=True)
for j in range(image.shape[0]):
writer.add_image('label/val/%d' % j, viz_format(label[j:j + 1]), epoch)
writer.add_image('prediction/val/%d' % j, viz_format(prediction_mask[j:j + 1]), epoch)
if args.debug: break
# scalars
writer.add_scalar('loss/val_loss_avg', losses.avg, epoch)
print('===== Epoch %d, val_loss_avg: %.2f' % (epoch, losses.avg))
return losses.avg
def adjust_learning_rate(optimizer, args, epoch):
"""Sets the learning rate to the initial LR decayed by 10 after args.lr_decay_step steps"""
lr = args.learning_rate * (0.1 ** (epoch // args.lr_decay_step))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def summary_checkpoint(step):
if step == 1 or step % 10 == 0: return True
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def viz_format(img):
assert len(img.shape) == 4, img.shape
if img.shape[1] == 1:
img = torch.tensor(img[0,0]*255/torch.max(img[0,0]),dtype=torch.uint8)
elif img.shape[1] == 3:
img = torch.tensor(img[0] * 255 / torch.max(img[0]), dtype=torch.uint8)
return img
def get_save_dir(args):
return os.getcwd() + '/%s/%s' % (args.exp_folder, args.exp_name)
def setup_save(model, args):
save_dir = args.save_dir
os.makedirs(save_dir)
with open(save_dir + '/args.txt', 'w+') as f:
f.write(str(vars(args)))
f.write(str(model))
os.makedirs(save_dir + '/code')
scripts = glob.glob(os.getcwd() + '/*.py')
for script in scripts:
shutil.copy(script, save_dir + '/code/' + os.path.basename(script)) # save state of code, for reproducibility
if args.save:
torch.save(model.state_dict(), save_dir + '/epoch000.pth')