
Scanpath – An R Package for Analyzing Scanpaths

Titus von der Malsburg

February 21, 2018

Contents

https://zenodo.org/badge/doi/10.5281/zenodo.31800.svg

An R package for analyzing scanpaths in eye movement data. The package includes a
simple toy dataset and example code. Consult von der Malsburg & Vasishth (2011) for
the details of this analysis method. The manual of the package can be found here and a
PDF-version of this page here.

1 News

[2018-02-21 Wed] Added new functions rscasim and plot_alignment. See section
’How the sausage is made’ below for details. Also note that the order of parameters
for plot_scanpaths has changed for consistency with ggplot2.

[2018-02-20 Tue] The new default is no normalization of scasim scores. Improved docu-
mentation and examples for find.fixation and match.scanpath. Minor improve-
ment in functions for plotting scanpaths.

[2018-01-30 Tue] Version 1.06 doesn’t logarithmize fixation durations when calculating
scanpath similarities. (In previous versions, when normalize="durations" was
used, the normalization was done using non-log-transformed durations, which could
in some rare cases break the triangle inequality.)

2 Install

To install the latest version of the package, execute the following commands:

library("devtools");
install_github("tmalsburg/scanpath/scanpath", dependencies=TRUE)

1

http://dx.doi.org/10.5281/zenodo.31800
https://www.sciencedirect.com/science/article/pii/S0749596X11000179
https://github.com/tmalsburg/scanpath/blob/master/Documentation/scanpath-manual.pdf?raw=true
https://github.com/tmalsburg/scanpath/blob/master/README.pdf?raw=true

3 USAGE EXAMPLE

3 Usage example

The code shown below can also be found in the file README.R. Open that file in RStudio
and play with it as you read through this mini-tutorial.

Let’s have a look at the toy data that is included in the package:

library(tidyverse)
library(magrittr)
library(scanpath)
data(eyemovements)
head(eyemovements)

subject trial word x y duration
Anne 1 1 46 384 319
Anne 1 3 131 388 147
Anne 1 2 106 386 88
Anne 1 3 165 387 156
Anne 1 4 186 386 244
Anne 1 5 264 388 193

3.1 Plotting scanpaths

To get a sense of what is going on in this data set, we create a series of plots. For this
purpose, we use the function plot_scanpaths from the scanpath package. In the first
plot below, each panel shows the data from one trial. There are three participants which
are coded by color. The data is from a sentence reading task. The x-axis shows words
and the y-axis time within trial in milliseconds.

plot_scanpaths(eyemovements, duration ~ word | trial, subject)

2

README.R

3.1 Plotting scanpaths 3 USAGE EXAMPLE

We can see that the participants differ in their reading speed. Also we see that each par-
ticipant read the sentence more or less straight from left to right (trials: 1, 4, 7), or with a
short regressions from the end of the sentence to its beginning (trials: 2, 5, 8), or with a
long regression from the end of the sentence (trials: 3, 6, 9).

In the next plot, we use the fixations’ x- and y-coordinates. Each circle is a fixation and
the size of the circle represents the duration of the corresponding fixation.

plot_scanpaths(eyemovements, duration ~ x + y | trial, subject)

3

3.1 Plotting scanpaths 3 USAGE EXAMPLE

The function plot_scanpaths returns a ggplot object. This means that we add more
elements to the plot before rendering. For example, we can labels the fixations with their
index and change the limits of the axes:

plot_scanpaths(eyemovements, duration ~ x + y | trial, subject) +
geom_text(aes(label=i), vjust=2.5, show.legend=FALSE, size=3) +
xlim(0, 600) + ylim(284, 484)

4

3.2 Extracting subsets of fixations or sub-scanpaths 3 USAGE EXAMPLE

3.2 Extracting subsets of fixations or sub-scanpaths

In many analyses, it is not desirable to analyze the complete scanpaths as recorded dur-
ing the experiment but to analyze some subset of the fixations. For instance, in a reading
experiment, we might want to investigate how readers responded to a certain word and
not care about what happened earlier. The scanpath package offers two functions that
can be used to easily pinpoint and extract the fixations of interest: find.fixation and
match.scanpath.

The function find.fixation identifies fixations that match a set of criteria which can be
specified using regular expressions. For instance, the following code finds fixations on
word 6:

idx <- find.fixation(eyemovements$word, eyemovements$trial, "6")
eyemovements[idx,]

5

https://en.wikipedia.org/wiki/Regular_expression

3.2 Extracting subsets of fixations or sub-scanpaths 3 USAGE EXAMPLE

subject trial word x y duration
Anne 1 6 330 381 290
Anne 2 6 330 381 290
Anne 3 6 330 381 290
Anne 3 6 320 381 189
Udi 4 6 330 381 319
Udi 5 6 330 381 319
Udi 6 6 330 381 319
Udi 6 6 320 381 208
Gustave 7 6 330 381 348
Gustave 8 6 330 381 348
Gustave 9 6 330 381 348
Gustave 9 6 320 381 227

Finding these fixations could also have been achieved with a subset operation. However,
if have more complex criteria for the fixations we’re interested in, things can get rather
tricky. For instance, a subset is not enough when we’re only interested in the second
fixation on word 6 in each trial. The following code extracts only those:

idx <- find.fixation(eyemovements$word, eyemovements$trial, "6", nth=2)
eyemovements[idx,]

subject trial word x y duration
Anne 3 6 320 381 189
Udi 6 6 320 381 208
Gustave 9 6 320 381 227

Regular expressions also allow us to specify the context in which the fixations of interest
appear. For instance the code below finds fixations on word 3 but only those that are
followed by fixations on word 4:

idx <- find.fixation(eyemovements$word, eyemovements$trial, "34")
eyemovements[idx,]

subject trial word x y duration
Anne 1 3 165 387 156
Anne 2 3 165 387 156
Anne 3 3 165 387 156
Udi 4 3 165 387 172
Udi 5 3 165 387 172
Udi 6 3 165 387 172
Gustave 7 3 165 387 187
Gustave 8 3 165 387 187
Gustave 9 3 165 387 187

6

3.2 Extracting subsets of fixations or sub-scanpaths 3 USAGE EXAMPLE

Here, we find fixations on word 3 that are preceded by fixations on word 1:

idx <- find.fixation(eyemovements$word, eyemovements$trial, "1(3)", subpattern=1)
eyemovements[idx,]

subject trial word x y duration
Anne 1 3 131 388 147
Anne 2 3 131 388 147
Anne 3 3 131 388 147
Udi 4 3 131 388 162
Udi 5 3 131 388 162
Udi 6 3 131 388 162
Gustave 7 3 131 388 176
Gustave 8 3 131 388 176
Gustave 9 3 131 388 176

The following code finds fixations on the last word but only of those that are not directly
preceded by fixations on words 4 to 7:

idx <- find.fixation(eyemovements$word, eyemovements$trial, "[^4-7](8)", subpattern=1)
eyemovements[idx,]

subject trial word x y duration
Anne 2 8 492 382 143
Udi 5 8 492 382 157
Gustave 8 8 492 382 172

The function match.scanpath works similarly but can be used to identify not just individ-
ual fixations but sequences of fixations (let’s call them scanpathlets). For example, the
following code finds scanpathslets spanning words 6, 7, and 8 but only those that directly
preceded by a fixation on word 4:

idx <- match.scanpath(eyemovements$word, eyemovements$trial, "4([678]+)", subpattern=1)
scanpathlets <- eyemovements[idx,]
plot_scanpaths(scanpathlets, duration~word|trial)

7

3.3 Calculating scanpath dissimilarities 3 USAGE EXAMPLE

See the documentation of find.fixation and match.scanpath for more details and
examples.

3.3 Calculating scanpath dissimilarities

Next, we calculate the pair-wise similarities of the nine scanpaths in the dataset using the
scasim measure. A simplifying intuition is that the measure quantifies the time that was
spent looking at different things (or at the same things but in different order). For a precise
definition see von der Malsburg & Vasishth (2011).

d1 <- scasim(eyemovements, duration ~ x + y | trial, 512, 384, 60, 1/30)
round(d1)

1 2 3 4 5 6 7 8 9
1 0 454 1129 217 717 1395 435 980 1670
2 454 0 675 671 263 941 889 526 1216
3 1129 675 0 1346 938 320 1564 1201 641
4 217 671 1346 0 500 1242 218 763 1509
5 717 263 938 500 0 742 718 263 1009
6 1395 941 320 1242 742 0 1460 1005 321
7 435 889 1564 218 718 1460 0 545 1355
8 980 526 1201 763 263 1005 545 0 810
9 1670 1216 641 1509 1009 321 1355 810 0

Like the function plot_scanpaths, the function scasim takes a data frame and a formula
as parameters. The formula specifies which columns in the data frame should be used
for the calculations. To account for distortion due to visual perspective, the comparison of
the scanpaths is carried out in visual field coordinates (latitude and longitude). In order
to transform the pixel coordinates provided by the eye-tracker to visual field coordinates,
the scasim function needs some extra information. The first is the position of the gaze
when the participant looked straight ahead (512, 384, in the present case), the distance
of the eyes from the screen (60 cm), and the size of one pixel in the unit that was used to
specify the distance from the screen (1/30). Finally, we have to specify a normalization
procedure. normalize=FALSE means that we don’t want to normalize. See the documen-
tation of the scasim function for details.

The time that was spent looking at different things of course depends on the duration of
the two compared trials. (total duration of the two compared scanpaths constitutes an up-
per bound). This means that two long scanpaths may have a larger dissimilarity than two
shorter scanpaths even if they look more similar. Depending on the research question,
this may be undesirable. One way to get rid of the trivial influence of total duration is to
normalize the dissimilarity scores. For example, we can divide them by the total duration
of the two compared scanpaths:

8

https://www.sciencedirect.com/science/article/pii/S0749596X11000179

3.4 Maps of scanpath space 3 USAGE EXAMPLE

d2 <- scasim(eyemovements, duration ~ x + y | trial, 512, 384, 60, 1/30,
normalize="durations")

round(d2*100)

1 2 3 4 5 6 7 8 9
1 0 9 21 5 14 25 9 18 28
2 9 0 12 13 5 15 17 9 19
3 21 12 0 24 15 5 27 19 9
4 5 13 24 0 9 21 4 14 24
5 14 5 15 9 0 12 13 4 15
6 25 15 5 21 12 0 24 15 4
7 9 17 27 4 13 24 0 9 21
8 18 9 19 14 4 15 9 0 12
9 28 19 9 24 15 4 21 12 0

The number are smaller now and can be interpreted as the percentage of time that was
spent looking at different things.

3.4 Maps of scanpath space

The numbers in the matrix above capture a lot of information about the scanpath vari-
ance in the data set. However, dissimilarity scores are somewhat tricky to analyze. One
problem is that these values have strong statistical dependencies. When we change one
scanpath, this affects n dissimilarity scores. This has to be kept in mind when doing in-
ferential stats directly on the dissimilarity scores. While there are solutions for this, it is
typically more convenient to produce a representation of scanpath variance that is free
from this problem. One such representation is what we call the “map of scanpath space.”
On such a map, every point represents a scanpath and the distances on the map reflect
the dissimilarities according to our scanpath measure, i.e. the dissimilarity scores in the
matrix above.

The method for calculating these maps is called multi-dimensional scaling and one simple
version of the general idea is implemented in the function cmdscale (see also isoMDS in
the MASS package).

map <- cmdscale(d2)
round(map, 2)

9

3.4 Maps of scanpath space 3 USAGE EXAMPLE

V1 V2
1 -0.12 -0.07
2 -0.01 -0.06
3 0.12 -0.08
4 -0.11 0
5 -0.01 0.01
6 0.12 0
7 -0.11 0.07
8 0 0.07
9 0.13 0.07

The table above contains two numbers for each scanpath in the data set. These num-
bers (V1 and V2) determine a scanpath’s location in the two-dimensional scanpath space
created by cmdscale. How many dimensions we need is an empirical question.

Below is a plot showing the map of scanpaths:

map <- map %*% matrix(c(1, 0, 0, -1), 2) # flip y-axis
plot(map, cex=4)
text(map, labels=rownames(map))

10

3.4 Maps of scanpath space 3 USAGE EXAMPLE

Interestingly, the scanpaths are arranged in the same way as in the plot of the data at
the top. Participants are arranged vertically and reading patterns are horizontally. This
suggests that scasim not just recovered these two different kinds of information (reading
speed and reading strategy) but also that it can distinguish between them.

To test how well this map represents the original dissimilarity scores, we can calculate the
pair-wise differences on the map and compare them to the pair-wise scasim scores:

d2.dash <- as.matrix(dist(map))
plot(d2, d2.dash)
abline(0, 1)

11

3.4 Maps of scanpath space 3 USAGE EXAMPLE

This plot suggests that the map preserves the variance in dissimilarity scores really well.
Given this very good fit of the map, it appears that two dimensions were sufficient to de-
scribe the scanpath variance that is captured by scasim. This is not surprising because
the scanpaths in the toy data set were designed to vary with respect to two properties: 1.)
The speed of the reader, and 2.) whether there was a regression back to the beginning of
the sentence and how long it was.

The benefit of the map representation is that it has much weaker statistical dependencies
and that it is much more suitable for all kinds of analyses. For example, we can choose
among a large number of clustering algorithms to test whether there are groups of similar
scanpaths in a data set. Below, we use the simple k-means algorithm to illustrate this:

set.seed(4)
clusters <- kmeans(map, 3, iter.max=100)
plot(map, cex=4, col=clusters$cluster, pch=19)
text(map, labels=rownames(map), col="white")
points(clusters$centers, col="blue", pch=3, cex=4)

12

3.5 How the sausage is made 3 USAGE EXAMPLE

In this plot, color indicates to which cluster a scanpath belongs and the crosses show
the center of each cluster. We see that the clusters correspond to the different reading
patterns and that participants are ordered according to their reading speed within the
clusters.

Apart from cluster analyses there are many other ways to analyze scanpath variance.
See the articles listed below for more details.

3.5 How the sausage is made

For educational purposes, the package also includes a pure-R implementation of the
scasim measure in the form of the function rscasim. This function calculates the similar-
ity of two scanpaths and returns the alignment of fixations obtained with the Needleman-
Wunsch algorithm.

s <- subset(eyemovements, trial==1)

13

3.5 How the sausage is made 3 USAGE EXAMPLE

t <- subset(eyemovements, trial==9)
alignment <- rscasim(s, t, duration ~ x + y | trial,

512, 384, 60, 1/30)
round(alignment)

s t cost
1 1 4
2 2 29
3 3 18
4 4 31
5 5 49
6 6 39
7 7 58
8 8 28
9 9 30

10 10 34
11 11 55
NA 12 146
NA 13 222
NA 14 151
NA 15 216
NA 16 227
NA 17 161
NA 18 172

Each row in the table above describes one edit operation. The columns s and t contain
the indices of the fixations involved in the edit and the column cost shows the cost of
the edit. The sum of the values in the cost column is the total dissimilarity of the two
scanpaths.

If both s and t contain an index, this means that two fixations were matched. If either
column contains an NA, that means that a fixation in one scanpath had no matching
counterpart in the other scanpath. The alignment can be visualized with the function
plot_alignment:

plot_alignment(s, t, alignment, duration ~ x + y | trial, 10, 10)

14

4 REFERENCES

4 References

• von der Malsburg, T., & Vasishth, S. (2011). What is the scanpath signature of
syntactic reanalysis? Journal of Memory and Language, 65(2), 109–127. http:
//dx.doi.org/10.1016/j.jml.2011.02.004

• von der Malsburg, T., Kliegl, R., & Vasishth, S. (2015). Determinants of scanpath
regularity in reading. Cognitive Science, 39(7), 1675–1703. http://dx.doi.org/
10.1111/cogs.12208

• von der Malsburg, T., & Vasishth, S. (2013). Scanpaths reveal syntactic underspec-
ification and reanalysis strategies. Language and Cognitive Processes, 28(10),
1545–1578. http://dx.doi.org/10.1080/01690965.2012.728232

• von der Malsburg, T., Vasishth, S., & Kliegl, R. (2012). Scanpaths in reading are
informative about sentence processing. In P. B. Michael Carl, & K. K. Choudhary,
Proceedings of the First Workshop on Eye-tracking and Natural Language Process-
ing (pp. 37–53). Mumbai, India: The COLING 2012 organizing committee.

15

http://dx.doi.org/10.1016/j.jml.2011.02.004
http://dx.doi.org/10.1016/j.jml.2011.02.004
http://dx.doi.org/10.1111/cogs.12208
http://dx.doi.org/10.1111/cogs.12208
http://dx.doi.org/10.1080/01690965.2012.728232

