-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
202 lines (163 loc) · 8.58 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
output: github_document
bibliography: bibliography.bib
csl: apa-single-spaced.csl
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
# edmdata
<!-- badges: start -->
[![R build status](https://github.com/tmsalab/edmdata/workflows/R-CMD-check/badge.svg)](https://github.com/tmsalab/edmdata/actions)
[![Package-License](http://img.shields.io/badge/license-MIT-brightgreen.svg?style=flat)](https://opensource.org/licenses/MIT)
[![CRAN status](https://www.r-pkg.org/badges/version/edmdata)](https://CRAN.R-project.org/package=edmdata)
<!-- badges: end -->
The goal of `edmdata` R data package is to provide a set of assessment data sets
for psychometric modeling.
## Installation
The `edmdata` package is available on both
[CRAN](https://CRAN.R-project.org/package=edmdata) and
[GitHub](https://github.com/tmsalab/edmdata). The CRAN version is considered
stable while the GitHub version is in a state of development and may break.
You can install the stable version of the `edmdata` package with:
```{r}
#| label: cran-installation
#| eval: false
install.packages("edmdata")
```
For the development version, you can install the `edmdata` package from GitHub with:
```{r}
#| label: gh-installation
#| eval: false
# install.packages("remotes")
remotes::install_github("tmsalab/edmdata")
```
## Using data in the package
There are two ways to access the data contained within this package.
The first is to load the package itself and type the name of a data set.
This approach takes advantage of *R*’s lazy loading mechanism, which
avoids loading the data until it is used in *R* session. For details on
how lazy loading works, please see [Section 1.17: Lazy
Loading](https://cran.r-project.org/doc/manuals/r-release/R-ints.html#Lazy-loading)
of the [R
Internals](https://cran.r-project.org/doc/manuals/r-release/R-ints.html)
manual.
``` r
# Load the `edmdata` package
library("edmdata")
# See the first 10 observations of the `items_revised_psvtr` dataset
head(items_revised_psvtr)
# View the help documentation for `items_revised_psvtr`
?items_revised_psvtr
```
The second approach is to use the `data()` command to load data on the
fly without loading the package. After using `data()`, the data set
will be available to use under the given name.
``` r
# Loading `items_revised_psvtr` without a `library(edmdata)` call
data("items_revised_psvtr", package = "edmdata")
# See the first 10 observations of the `items_revised_psvtr` dataset
head(items_revised_psvtr)
# View the help documentation for `items_revised_psvtr`
?items_revised_psvtr
```
## Data Sets Included
```{r}
#| echo: false
library(edmdata)
```
- Examination for the Certificate of Proficiency in English (ECPE) [@Templin:2013:DCMECPE; @Templin:2014:HierarchicalDCM].
- `items_ecpe`: N = `r nrow(items_ecpe)` subject responses to J = `r ncol(items_ecpe)` items.
- `qmatrix_ecpe`: J = `r nrow(qmatrix_ecpe)` items and K = `r ncol(qmatrix_ecpe)` traits.
- **TMSA Papers:** @Culpepper:2019:ErRUM
- Fraction Addition and Subtraction [@Tatsuoka:1984:FractionSubtraction; @Tatsuoka:2002:FractionSubtractionRelease].
- `items_fractions`: N = `r nrow(items_fractions)` subject responses to J = `r ncol(items_fractions)` items.
- `qmatrix_fractions`: J = `r nrow(items_fractions)` items and K = `r ncol(items_fractions)` traits.
- **TMSA Papers:** @Chen:2021:InferK, @Chen:2020:SLCMDC, @Culpepper:2019:EGDM, @Culpepper:2019:ErRUM, @Chen:2018:EDINA
- Elementary Probability Theory [@Heller:2013:ProbabilityKS].
- `items_probability_part_one_full`: N = `r nrow(items_probability_part_one_full)`
subject responses to J = `r ncol(items_probability_part_one_full)` items.
- `items_probability_part_one_reduced`: N = `r nrow(items_probability_part_one_reduced)`
subject responses to J = `r ncol(items_probability_part_one_reduced)` items.
- `qmatrix_probability_part_one`: J = `r nrow(qmatrix_probability_part_one)`
items and K = `r ncol(qmatrix_probability_part_one)` traits.
- **TMSA Papers:** @Chen:2021:InferK
- Revised PSVT:R [@Yoon:2011:RevisedPSVTR; @Culpepper:2017:ChoiceIRT].
- `items_revised_psvtr`: N = `r nrow(items_revised_psvtr)` subject responses
to J = `r ncol(items_revised_psvtr)` items.
- **TMSA Papers:** @Culpepper:2017:ChoiceIRT, @Culpepper:2015:BayesianDINA
- Subset of Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999's
Approaches to Learning [@ECLSK:2010:ATLData].
- `items_ordered_eclsk_atl`: N = `r nrow(items_ordered_eclsk_atl)` subject responses
to J = `r ncol(items_ordered_eclsk_atl)` items.
- **TMSA Papers:** @Culpepper:2019:EODM
- Trends in International Mathematics and Science Study 2015 (TIMSS) Grade 8
Student Background Survey Item Responses [@TIMSS:2015:Background].
- `items_ordered_timss15_background`: N = `r nrow(items_ordered_timss15_background)` subject responses
to J = `r ncol(items_ordered_timss15_background)` items.
- Calculus-based probability and statistics course homework problems [@Culpepper:2014:SequentialIRT, @Jimenez:2023:OPGEDM]
- `items_ordered_pswc_hw`: N = `r nrow(items_ordered_pswc_hw)`
subject responses to J = `r ncol(items_ordered_pswc_hw)` items.
- Programme for International Student Assessment (PISA) 2012
U.S. Student Questionnaire Problem-Solving Vignettes [@Culpepper:2021:OHOEGDM].
- `items_ordered_pisa12_us_vignette`:
N = `r nrow(items_ordered_pisa12_us_vignette)`
subject responses to J = `r ncol(items_ordered_pisa12_us_vignette)` items.
- Programme for International Student Assessment (PISA) 2012
U.S. Math Assessment.
- `items_pisa12_us_math`:
N = `r nrow(items_pisa12_us_math)`
subject responses to J = `r ncol(items_pisa12_us_math)` items.
- Last Series of the Standard Progressive Matrices (SPM-LS) [@Raven:1941:SPM; @Myszkowski:2018:IRTSPMLS; @Robitzsch:2020:IRTRCLMSPMLS].
- `items_spm_ls`: N = `r nrow(items_spm_ls)`
subject responses to J = `r ncol(items_spm_ls)` items.
- Human Connectome Project's Penn Progressive Matrices Fluid Intelligence Assessment
- `items_hcp_penn_matrix`: N = `r nrow(items_hcp_penn_matrix)`
subject responses to J = `r ncol(items_hcp_penn_matrix)` items.
- `items_hcp_penn_matrix_missing`: N = `r nrow(items_hcp_penn_matrix_missing)`
subject responses with missing data indicators to J = `r ncol(items_hcp_penn_matrix_missing)` items.
- Experimental Matrix Reasoning Test [@OpenPsychometrics:2012:IQ1].
- `items_matrix_reasoning`: N = `r nrow(items_matrix_reasoning)`
subject responses to J = `r ncol(items_matrix_reasoning)` items.
- **TMSA Papers:** @Chen:2020:SLCMDC
- Taylor Manifest Anxiety Scale [@Taylor:1953:TMI; @OpenPsychometrics:2012:TaylorAnxietyScale].
- `items_taylor_manifest_anxiety_scale`: N = `r nrow(items_taylor_manifest_anxiety_scale)`
subject responses to J = `r ncol(items_taylor_manifest_anxiety_scale)` items.
- Narcissistic Personality Inventory [@Raskin:1988:NPI; @OpenPsychometrics:2013:NPI].
- `items_narcissistic_personality_inventory`: N = `r nrow(items_narcissistic_personality_inventory)`
subject responses to J = `r ncol(items_narcissistic_personality_inventory)` items.
- Pre-generated identified Q matrices.
- `qmatrix_oracle_k2_j12`: 12 items and 2 traits.
- `qmatrix_oracle_k3_j20`: 20 items and 3 traits.
- `qmatrix_oracle_k4_j20`: 20 items and 4 traits.
- `qmatrix_oracle_k5_j30`: 30 items and 5 traits.
- Pre-generated strategy sets.
- `strategy_oracle_k3_j20_s2`: 20 items, 3 traits, and 2 strategies.
- `strategy_oracle_k3_j30_s2`: 30 items, 3 traits, and 2 strategies.
- `strategy_oracle_k3_j40_s2`: 40 items, 3 traits, and 2 strategies.
- `strategy_oracle_k3_j50_s2`: 50 items, 3 traits, and 2 strategies.
- `strategy_oracle_k4_j20_s2`: 20 items, 4 traits, and 2 strategies.
- `strategy_oracle_k4_j30_s2`: 30 items, 4 traits, and 2 strategies.
- `strategy_oracle_k4_j40_s2`: 40 items, 4 traits, and 2 strategies.
- `strategy_oracle_k4_j50_s2`: 50 items, 4 traits, and 2 strategies.
## Build Scripts
Want to see how each data set was imported? Check out the
[`data-raw`](https://github.com/tmsalab/edmdata/tree/master/data-raw)
folder!
## Authors
James Joseph Balamuta, Steven Andrew Culpepper, Jeffrey Douglas
## Citing the `edmdata` package
To ensure future development of the package, please cite `edmdata`
package if used during an analysis or simulation study. Citation information
for the package may be acquired by using in *R*:
```{r, eval = FALSE}
citation("edmdata")
```
## License
MIT
## References