-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHiercModAna_lib.py
212 lines (187 loc) · 9.38 KB
/
HiercModAna_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
#import numpy as np
#import os
#import scipy
#import matplotlib.pyplot as plt
#import pandas as pd
# python implementation of functions needed to run hierarchical modular partitioning analysis
# source: https://github.com/TobousRong/Hierarchical-module-analysis
# v 1, 11 feb 2021, Oldenburg
#
#ROIts = np.genfromtxt('ROIts_CC00907XX16_4230_mat.csv', delimiter=',')
#SCmat = np.genfromtxt('SC_CC00907XX16_4230_mat.csv', delimiter=' ')
#matlab_eigv = np.genfromtxt('./HiModAn_py/ev.csv', delimiter=',')
#FC = np.corrcoef(ROIts)
#N = 360
#%% FUNCTIONAL_HP.M -> tested
def functional_hp(FC, N=360):
import numpy as np
import pandas as pd
# This function performs the hierarchical module partition of FC networks using the NSP method.
# Input:
# data--original FC matrix; N-- number of ROI
# Output:
# Clus_num---modular number in each level, normalized to [0 1];
# Clus_size-- the size (e.g., ROI number) of each module in each level;
# FC-- the optimized FC network after the hierarchical modular partition, the regions are reordered.
# inputs :
data, N = FC, N
# This method requires the complete positive connectivity in FC matrix,
# that generates the global integration in the first level.
data[data < 0] = 0
data = (data+data.conj().T)/2
FE, FEC = np.linalg.eig(data) # eigenvalues and eigenvector out from numpy are reversed to matlab
# sort descending? no need they are ordered correctly in python
#FEC = np.flip(FEC)
H0_0 = np.where(FEC[:, 0] < 0)[0]
H0_1 = np.where(FEC[:, 0] >= 0)[0]
# The first level has one module and corresponds to the global integration.
Clus_num = [1] # cluster number 1
Clus_size = []
# is FE diag mat?
#empty_mat = np.zeros_like(data)
#np.fill_diagonal(empty_mat, FE)
#FE = np.flip(empty_mat)
#FEC = matlab_eigv
for mode in range(1, N+1): # bisection "counter",
x = np.where(FEC[:, mode] >= 0)[0]
y = np.where(FEC[:, mode] < 0)[0]
H = pd.DataFrame()
for j in range(0, 2*Clus_num[mode-1]):
# assume the number of cluster in j-1 level is 2^(mode-1)
# so each level j-1 has the number of clusters in mode-1 times 2
H['H' + str(mode-1) + '_' + str(j)] = [np.array(eval('H' + str(mode-1) + '_'+ str(j)))]
id = [len(val) for val in H[H.columns].to_numpy()[0]] # length of each cluster in H
keep0s = np.where(np.array(id) != 0)[0] # keep only non zero cluisters
Clus_size += [np.array(id)[keep0s]] # list of size of clusters
rm0s = np.where(np.array(id) == 0) # empty clusters
H = H.drop(columns=H.columns[rm0s]) # drop empty clusters
Clus_num += [ H.size ] # number of cluster ina level
for k, j in enumerate(range(0, 2 * Clus_num[mode], 2)): # Intersect currect cluster(mode) with previous cluster(mode-1) brought by H
Positive_Node = np.intersect1d(x, H[H.columns[k]].to_numpy()[0])
Negative_Node = np.intersect1d(y, H[H.columns[k]].to_numpy()[0])
exec('H' + str(mode) + '_' + str(j + 1) + ' = ' + 'Positive_Node')
exec('H' + str(mode) + '_' + str(j) + ' = ' + 'Negative_Node')
for j in range(0, 2 * Clus_num[mode - 1]): #delete variables
exec('del' + ' H' + str(mode - 1) + '_' + str(j))
Z = []
if (Clus_num[-1] == N): # save structure of the cluster in the last level
for j in range(0, 2 * Clus_num[mode]):
Z += [eval('H' + str(mode) + '_' + str(j))]
# Delete last variables
for j in range(0, 2 * Clus_num[mode]):
exec('del' + ' H' + str(mode) + '_' + str(j))
break
Clus_num= Clus_num[1:]
Clus_num = np.array(Clus_num)/N
c = np.ones([N])
c[0:len(Clus_num)] = Clus_num
Clus_num = c
FCn = np.zeros([N,N])
z = [elm for elm in Z if elm.shape[0] != 0]
z = np.stack(z).squeeze()
# Reorder the matrix
for i in range(0, N):
for j in range(0, N):
FCn[i, j] = data[z[i], z[j]]
return Clus_num, Clus_size, FCn
# %% BALANCE.M -> tested
def balance(FC, N, Clus_num, Clus_size):
import numpy as np
import pandas as pd
#function [Hin,Hse,p] =Balance(FC,N,Clus_size,Clus_num)
# This function calculates the integration and segregation component
# input: FC-- functional matrix, N-- number of ROI
# Clus_size-- modular size in each level, Clus_num-- modular number;
# Clus_size and Clus_num are calcuated from the functuon 'Functional_HP'
# output: Hin--integration component, Hse-- segregation component, p-- correction fator of modular size
FC = (FC + FC.conj().T) / 2
FC[FC < 0] = 0
[FE, FEC] = np.linalg.eig(FC) # FE/1000 = matlab FE!!?? doens't change the result
FE[FE < 0] = 0
FE = FE ** 2 # using the squared Lambda, ask question
p = np.zeros([N])
for i in range(0, len(np.where(Clus_num<1)[0])): #i=1:length(find(Clus_num<1))
p[i] = np.sum(np.abs(Clus_size[i]-1 / Clus_num[i] )) / N # modular size correction
HF = FE[np.newaxis,:] * Clus_num[np.newaxis,:] * (1-p[np.newaxis,:]) # element-wise
HF = HF.squeeze()
Hin = np.sum(HF[0]) / N # integration component
Hse = np.sum(HF[1:N]) / N # segregation component
return Hin, Hse, p
# %% STABLE_CORRECT.M
# Calibrating the individual static segregation and integration component
# compute mean Hin and Hse of the multiple subjects. IN and IM are Hse_static and Hin_static of multiple subjects
# So thge correction is based on multiple babies
# Is it necessary for me? YES
def stable_correct(sub_code, sFC, IN, IM, N):
import numpy as np
import HiercModAna_lib as HMA
# input: sFC-- stable FC matrix from long-enough fMRI time; IN-- individual static integration component;
# IM-- individual static segregation component; N-- number of ROI
# output: Hin-- calibrated individual integration component; Hse-- calibrated individual segregation component
Clus_num, Clus_size, mFC = HMA.functional_hp(sFC, N)
R_IN, R_IM, p = HMA.balance(sFC, N, Clus_num, Clus_size)
#integration component R_IN and segregation component R_IM for stable Fc matrix.
# Proportional calibration scheme. Since our Gaussian model has proved a theoretical functional balance,
# the mean individual integration and segregation components were calibrated to the equal value, R_IN.
p2 = (np.mean(IM) - R_IN) / np.mean(IM)
Hse = IM[IN.index == sub_code] * (1-p2)
p1 = (np.mean(IN) - R_IN) / np.mean(IN)
Hin = IN[IN.index == sub_code] * (1 - p1)
return Clus_num, Clus_size, mFC, Hin[0], Hse[0], [p1, p2]
# %% STRUCTURAL NETWORK.M -> tested
def structural_network(A, N=360):
import numpy as np
# Create laplacian matrix for structural connectivity
# remember to (SCmat + SCmat.conj().T)/2 before inputting A -> A=(SCmat + SCmat.conj().T)/2
A = -A
for i in range(0, N):
A[i, i] = -np.sum(A[i, :])
B = A / np.max(np.linalg.eig(A)[0]) # np.eig(A)[0] -> eig vals, np.eig(A)[1] -> R eig vects
return B
# %% Ideal_Predication_Model.M -> tested
# inputs: B = laplace mat of structural connectivity
# g = g parameter to be interated outside
# N = number areas (360)
def Ideal_Predication_Model(B, g, N=360):
import numpy as np
Q = np.linalg.matrix_power((np.eye(N) + g * B), -1) # matlab ^ is matrix_power, while .^ = **, elementwise
Q = Q @ Q.conj().T
C = np.zeros([N, N])
for i in range(0, N):
for j in range(0, N):
C[i, j] = Q[i, j] / np.sqrt(Q[i, i] * Q[j, j])
return Q, C
# %% individual_correction.m
def individual_correction(IN,R_IN):
import numpy as np
# This function calibrates the dynamic Hin and Hse of each individual to their static values that have been calibrated.
# input: IN-- dynamic integration component (or segregation component) for a subject;
# R_IN-- the calibrated static integration component (or segregation component) for the subject;
# output: calibrated integration component (or segregation component) for the subject;
p = (np.mean(IN) - R_IN) / np.mean(IN)
Hin = IN * (1-p)
return Hin
# %% Flexible.m
# compute dynamic measures
# HB = Hin-Hse, TR = 0.72 in the paper, is it fMRI sampling frequency. -> TR=0.39130
def Flexible(HB,TR=0.39130, window_size=154):
import numpy as np
# strength: amplitude of dynamic deviation from the balanced state to the integrated state or segregated state
DIn = np.sum(HB[np.where(HB > 0)])
DSe = np.sum(HB[np.where(HB < 0)])
# dwell time in segregated and integrated states
In_time = len(np.where(HB >= 0)[0]) / (2300-window_size) # -> 2300vol @ 15 min -> (15*60)/2300=0.39130
Se_time = len(np.where(HB < 0 )[0]) / (2300-window_size)
# transition frequency / switching frequency. transition speed between segregated and integrated states
HB[HB < 0] = -1
HB[HB > 0] = 1
Fre = len(np.where(np.abs(np.diff(HB)) > 0)[0]) / ((2300-window_size) * TR) # TR transforms timepoints to seconds
return Fre, DIn, DSe, In_time, Se_time
#%% test, static analysis
#Clus_num, Clus_size, FCn = functional_hp(FC, N)
#Hin, Hse = balance(FC, N, Clus_num, Clus_size)
#%% test, gaussian simulation
#SC = (SCmat + SCmat.conj().T)/2
#B = structural_network(SC)
#Q, C = Ideal_Predication_Model(B, 10)
# %%