-
Notifications
You must be signed in to change notification settings - Fork 70
/
houghlines.py
238 lines (173 loc) · 7.22 KB
/
houghlines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
#####################################################################
# Example : hough line detection based on canny edge detection
# for a a video file specified on the command line (e.g. python FILE.py
# video_file) or from an attached web camera
# Author : Toby Breckon, toby.breckon@durham.ac.uk
# Copyright (c) 2021 Dept. Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import cv2
import argparse
import sys
import numpy as np
#####################################################################
keep_processing = True
use_probablistic_hough = False
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# this function is called as a call-back everytime the trackbar is moved
# (here we just do nothing)
def nothing(x):
pass
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "Live Camera Input" # window name
window_name2 = "Hough Lines" # window name
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_name2, cv2.WINDOW_NORMAL)
# add some track bar controllers for settings
lower_threshold = 25
cv2.createTrackbar("lower", window_name2, lower_threshold, 255, nothing)
upper_threshold = 120
cv2.createTrackbar("upper", window_name2, upper_threshold, 255, nothing)
smoothing_neighbourhood = 3
cv2.createTrackbar(
"smoothing",
window_name2,
smoothing_neighbourhood,
15,
nothing)
sobel_size = 3 # greater than 7 seems to crash
cv2.createTrackbar("sobel size", window_name2, sobel_size, 7, nothing)
while (keep_processing):
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read() # rescale if specified
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# get parameters from track bars
lower_threshold = cv2.getTrackbarPos("lower", window_name2)
upper_threshold = cv2.getTrackbarPos("upper", window_name2)
smoothing_neighbourhood = cv2.getTrackbarPos("smoothing", window_name2)
sobel_size = cv2.getTrackbarPos("sobel size", window_name2)
# check neighbourhood is greater than 3 and odd
smoothing_neighbourhood = max(3, smoothing_neighbourhood)
if not (smoothing_neighbourhood % 2):
smoothing_neighbourhood = smoothing_neighbourhood + 1
sobel_size = max(3, sobel_size)
if not (sobel_size % 2):
sobel_size = sobel_size + 1
# convert to grayscale
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# performing smoothing on the image using a 5x5 smoothing mark (see
# manual entry for GaussianBlur())
smoothed = cv2.GaussianBlur(
gray_frame, (smoothing_neighbourhood, smoothing_neighbourhood), 0)
# perform canny edge detection
canny = cv2.Canny(
smoothed,
lower_threshold,
upper_threshold,
apertureSize=sobel_size)
# perform hough line detection
# based on tutorial at:
# https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html
if not (use_probablistic_hough):
lines = cv2.HoughLines(canny, 1, np.pi/180, 40)
if lines is not None:
for rho, theta in lines[0]:
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
y0 = b*rho
x1 = int(x0 + 1000*(-b))
y1 = int(y0 + 1000*(a))
x2 = int(x0 - 1000*(-b))
y2 = int(y0 - 1000*(a))
cv2.line(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
else:
# use use probablistic hough transform
min_line_length = 100 # requires tuning
max_line_gap = 10 # requires tuning
lines = cv2.HoughLinesP(canny, 1, np.pi/180, 10,
min_line_length, max_line_gap)
if lines is not None:
for x1, y1, x2, y2 in lines[0]:
cv2.line(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
# display image
cv2.imshow(window_name, frame)
cv2.imshow(window_name2, canny)
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# milliseconds). It waits for specified milliseconds for any keyboard
# event. If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response)
# wait 40ms (i.e. 1000ms / 25 fps = 40 ms)
key = cv2.waitKey(40) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
cv2.setWindowProperty(
window_name2,
cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN)
elif (key == ord('p')):
use_probablistic_hough = not (use_probablistic_hough)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################