-
Notifications
You must be signed in to change notification settings - Fork 70
/
pyramid.py
187 lines (133 loc) · 5.51 KB
/
pyramid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
##########################################################################
# Example : perform Gaussian/Laplacian pyramid live display from a video file
# specified on the command line (e.g. python FILE.py video_file) or from an
# attached web camera
# Author : Toby Breckon, toby.breckon@durham.ac.uk
# Copyright (c) 2021 Toby Breckon, Engineering & Computing Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
# Acknowledgements: based in part from tutorial at:
# https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_pyramids/py_pyramids.html
##########################################################################
import cv2
import argparse
import sys
import math
import numpy as np
##########################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# define display window name
window_name = "Live Camera Input" # window name
##########################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
# set initial number of pyramid levels
nlevels = 5
# print user key commands
print()
print("'-' - reduce pyramid levels")
print("'+' - increase pyramid levels (max 6 levels)")
print()
while (keep_processing):
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# if camera /video file successfully open then read frame
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# generate Gaussian pyramid for image frame
g_level = frame.copy()
g_pyramid = [g_level]
for layer in range(nlevels):
g_level = cv2.pyrDown(g_level)
cv2.namedWindow("Gaussian Level: " + str(layer),
cv2.WINDOW_AUTOSIZE)
cv2.imshow("Gaussian Level: " + str(layer), g_level)
g_pyramid.append(g_level.copy())
# generate Laplacian pyramid image frame
lp_pyramid = [g_pyramid[nlevels - 1]]
for layer in range(nlevels, 0, -1):
g_level_enlarged = cv2.pyrUp(g_pyramid[layer])
# catch this rounding error occurence in image sizes
if (g_pyramid[layer-1].shape != g_level_enlarged.shape):
g_level_enlarged = cv2.resize(
g_level_enlarged,
tuple(reversed(g_pyramid[layer-1].shape[:2])),
interpolation=cv2.INTER_LINEAR)
l_level = cv2.subtract(g_pyramid[layer-1], g_level_enlarged)
cv2.normalize(l_level, l_level, 0, 255, cv2.NORM_MINMAX)
cv2.namedWindow("Laplacian Level: " + str(layer),
cv2.WINDOW_AUTOSIZE)
cv2.imshow("Laplacian Level: " + str(layer), l_level)
lp_pyramid.append(l_level.copy())
# display image
cv2.imshow(window_name, frame)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# start the event loop - essential
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
if (key == ord('x')):
keep_processing = False
elif (key == ord('+')):
cv2.destroyAllWindows()
nlevels = np.min([6, nlevels + 1])
elif (key == ord('-')):
cv2.destroyAllWindows()
nlevels = np.max([0, nlevels - 1])
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
##########################################################################