-
Notifications
You must be signed in to change notification settings - Fork 18
/
vae.py
executable file
·457 lines (382 loc) · 18.3 KB
/
vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright 2017 Max Planck Society
# Distributed under the BSD-3 Software license,
# (See accompanying file ./LICENSE.txt or copy at
# https://opensource.org/licenses/BSD-3-Clause)
"""This class implements VAE training.
"""
import os
import logging
import tensorflow as tf
import utils
from utils import ProgressBar
from utils import TQDM
import numpy as np
import ops
from metrics import Metrics
class Vae(object):
"""A base class for running individual VAEs.
"""
def __init__(self, opts, data, weights):
# Create a new session with session.graph = default graph
self._session = tf.Session()
self._trained = False
self._data = data
self._data_weights = np.copy(weights)
# Latent noise sampled ones to apply decoder while training
self._noise_for_plots = utils.generate_noise(opts, 500)
# Placeholders
self._real_points_ph = None
self._noise_ph = None
# Main operations
# FIX
self._loss = None
self._loss_reconstruct = None
self._loss_kl = None
self._generated = None
self._reconstruct_x = None
# Optimizers
self.optim = None
with self._session.as_default(), self._session.graph.as_default():
logging.error('Building the graph...')
self._build_model_internal(opts)
# Make sure AdamOptimizer, if used in the Graph, is defined before
# calling global_variables_initializer().
init = tf.global_variables_initializer()
self._session.run(init)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
# Cleaning the whole default Graph
logging.error('Cleaning the graph...')
tf.reset_default_graph()
logging.error('Closing the session...')
# Finishing the session
self._session.close()
def train(self, opts):
"""Train a VAE model.
"""
with self._session.as_default(), self._session.graph.as_default():
self._train_internal(opts)
self._trained = True
def sample(self, opts, num=100):
"""Sample points from the trained VAE model.
"""
assert self._trained, 'Can not sample from the un-trained VAE'
with self._session.as_default(), self._session.graph.as_default():
return self._sample_internal(opts, num)
def train_mixture_discriminator(self, opts, fake_images):
"""Train classifier separating true data from points in fake_images.
Return:
prob_real: probabilities of the points from training data being the
real points according to the trained mixture classifier.
Numpy vector of shape (self._data.num_points,)
prob_fake: probabilities of the points from fake_images being the
real points according to the trained mixture classifier.
Numpy vector of shape (len(fake_images),)
"""
with self._session.as_default(), self._session.graph.as_default():
return self._train_mixture_discriminator_internal(opts, fake_images)
def _run_batch(self, opts, operation, placeholder, feed,
placeholder2=None, feed2=None):
"""Wrapper around session.run to process huge data.
It is asumed that (a) first dimension of placeholder enumerates
separate points, and (b) that operation is independently applied
to every point, i.e. we can split it point-wisely and then merge
the results. The second placeholder is meant either for is_train
flag for batch-norm or probabilities of dropout.
TODO: write util function which will be called both from this method
and MNIST classification evaluation as well.
"""
assert len(feed.shape) > 0, 'Empry feed.'
num_points = feed.shape[0]
batch_size = opts['tf_run_batch_size']
batches_num = int(np.ceil((num_points + 0.) / batch_size))
result = []
for idx in xrange(batches_num):
if idx == batches_num - 1:
if feed2 is None:
res = self._session.run(
operation,
feed_dict={placeholder: feed[idx * batch_size:]})
else:
res = self._session.run(
operation,
feed_dict={placeholder: feed[idx * batch_size:],
placeholder2: feed2})
else:
if feed2 is None:
res = self._session.run(
operation,
feed_dict={placeholder: feed[idx * batch_size:
(idx + 1) * batch_size]})
else:
res = self._session.run(
operation,
feed_dict={placeholder: feed[idx * batch_size:
(idx + 1) * batch_size],
placeholder2: feed2})
if len(res.shape) == 1:
# convert (n,) vector to (n,1) array
res = np.reshape(res, [-1, 1])
result.append(res)
result = np.vstack(result)
assert len(result) == num_points
return result
def _build_model_internal(self, opts):
"""Build a TensorFlow graph with all the necessary ops.
"""
assert False, 'VAE base class has no build_model method defined.'
def _train_internal(self, opts):
assert False, 'VAE base class has no train method defined.'
def _sample_internal(self, opts, num):
assert False, 'VAE base class has no sample method defined.'
def _train_mixture_discriminator_internal(self, opts, fake_images):
assert False, 'VAE base class has no mixture discriminator method defined.'
class ImageVae(Vae):
"""A simple VAE implementation, suitable for pictures.
"""
def __init__(self, opts, data, weights):
# One more placeholder for batch norm
self._is_training_ph = None
Vae.__init__(self, opts, data, weights)
def generator(self, opts, noise, is_training, reuse=False, return_logits=False):
"""Generator function, suitable for simple picture experiments.
Args:
noise: [num_points, dim] array, where dim is dimensionality of the
latent noise space.
is_training: bool, defines whether to use batch_norm in the train
or test mode.
return_logits: bool, if true returns the "logits" instead of being
normalized (by tanh or sigmoid depending on "input_normalize_sym".
Returns:
[num_points, dim1, dim2, dim3] array, where the first coordinate
indexes the points, which all are of the shape (dim1, dim2, dim3).
"""
output_shape = self._data.data_shape # (dim1, dim2, dim3)
# Computing the number of noise vectors on-the-go
dim1 = tf.shape(noise)[0]
num_filters = opts['g_num_filters']
num_layers = opts['g_num_layers']
with tf.variable_scope("GENERATOR", reuse=reuse):
height = output_shape[0] / 2**(num_layers - 1)
width = output_shape[1] / 2**(num_layers - 1)
h0 = ops.linear(opts, noise, num_filters * height * width,
scope='h0_lin')
h0 = tf.reshape(h0, [-1, height, width, num_filters])
h0 = tf.nn.relu(h0)
layer_x = h0
for i in xrange(num_layers-1):
scale = 2**(i+1)
_out_shape = [dim1, height * scale, width * scale, num_filters / scale]
layer_x = ops.deconv2d(opts, layer_x, _out_shape, scope='h%d_deconv' % i)
if opts['batch_norm']:
layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i)
layer_x = tf.nn.relu(layer_x)
if opts['dropout']:
_keep_prob = tf.minimum(
1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1))
layer_x = tf.nn.dropout(layer_x, _keep_prob)
# # h0 = ops.lrelu(h0)
# _out_shape = [dim1, height * 2, width * 2, num_filters / 2]
# # for 28 x 28 does 7 x 7 --> 14 x 14
# h1 = ops.deconv2d(opts, h0, _out_shape, scope='h1_deconv')
# h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
# h1 = tf.nn.relu(h1)
# # h1 = ops.lrelu(h1)
# _out_shape = [dim1, height * 4, width * 4, num_filters / 4]
# # for 28 x 28 does 14 x 14 --> 28 x 28
# h2 = ops.deconv2d(opts, h1, _out_shape, scope='h2_deconv')
# h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
# h2 = tf.nn.relu(h2)
# # h2 = ops.lrelu(h2)
_out_shape = [dim1] + list(output_shape)
# data_shape[0] x data_shape[1] x ? -> data_shape
h3 = ops.deconv2d(opts, layer_x, _out_shape,
d_h=1, d_w=1, scope='hlast_deconv')
# h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4')
if return_logits:
return h3
if opts['input_normalize_sym']:
return tf.nn.tanh(h3)
else:
return tf.nn.sigmoid(h3)
def discriminator(self, opts, input_, is_training,
prefix='DISCRIMINATOR', reuse=False):
"""Encoder function, suitable for simple toy experiments.
"""
num_filters = opts['d_num_filters']
with tf.variable_scope(prefix, reuse=reuse):
h0 = ops.conv2d(opts, input_, num_filters / 8, scope='h0_conv')
h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
h0 = tf.nn.relu(h0)
h1 = ops.conv2d(opts, h0, num_filters / 4, scope='h1_conv')
h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
h1 = tf.nn.relu(h1)
h2 = ops.conv2d(opts, h1, num_filters / 2, scope='h2_conv')
h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
h2 = tf.nn.relu(h2)
h3 = ops.conv2d(opts, h2, num_filters, scope='h3_conv')
h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4')
h3 = tf.nn.relu(h3)
# Already has NaNs!!
latent_mean = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin')
log_latent_sigmas = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin_sigma')
return latent_mean, log_latent_sigmas
def _build_model_internal(self, opts):
"""Build the Graph corresponding to VAE implementation.
"""
data_shape = self._data.data_shape
# Placeholders
real_points_ph = tf.placeholder(
tf.float32, [None] + list(data_shape), name='real_points_ph')
noise_ph = tf.placeholder(
tf.float32, [None] + [opts['latent_space_dim']], name='noise_ph')
is_training_ph = tf.placeholder(tf.bool, name='is_train_ph')
lr_decay_ph = tf.placeholder(tf.float32)
# Operations
latent_x_mean, log_latent_sigmas = self.discriminator(
opts, real_points_ph, is_training_ph)
scaled_noise = tf.multiply(
tf.sqrt(1e-6 + tf.exp(log_latent_sigmas)), noise_ph)
loss_kl = 0.5 * tf.reduce_sum(
tf.exp(log_latent_sigmas) +
tf.square(latent_x_mean) -
log_latent_sigmas, axis=1)
if opts['recon_loss'] == 'l2sq':
reconstruct_x = self.generator(opts, latent_x_mean + scaled_noise,
is_training_ph)
loss_reconstruct = tf.reduce_sum(
tf.square(real_points_ph - reconstruct_x), axis=[1,2,3])
loss_reconstruct = loss_reconstruct / 2. / opts['vae_sigma']
elif opts['recon_loss'] == 'cross_entropy':
if opts['input_normalize_sym']:
expected = (real_points_ph + 1.0) / 2.0
else:
expected = real_points_ph
reconstruct_x_logits = self.generator(
opts, latent_x_mean + scaled_noise,
is_training_ph, return_logits=True)
loss_reconstruct = tf.reduce_sum(
tf.nn.sigmoid_cross_entropy_with_logits(
labels=expected, logits=reconstruct_x_logits),
axis=[1,2,3])
else:
raise ValueError("Unknown recon loss value %s" % opts['recon_loss'])
dec_enc_x = self.generator(opts, latent_x_mean,
is_training=False, reuse=True)
loss_reconstruct = tf.reduce_mean(loss_reconstruct)
loss_kl = tf.reduce_mean(loss_kl)
loss = loss_kl + loss_reconstruct
# loss = tf.Print(loss, [loss, loss_kl, loss_reconstruct], 'Loss, KL, reconstruct')
optim = ops.optimizer(opts, decay=lr_decay_ph).minimize(loss)
generated_images = self.generator(opts, noise_ph,
is_training_ph, reuse=True)
self._real_points_ph = real_points_ph
self._noise_ph = noise_ph
self._is_training_ph = is_training_ph
self._optim = optim
self._loss = loss
self._loss_reconstruct = loss_reconstruct
self._lr_decay_ph = lr_decay_ph
self._loss_kl = loss_kl
self._generated = generated_images
self._reconstruct_x = dec_enc_x
self._enc_mean = latent_x_mean
self._enc_log_var = log_latent_sigmas
saver = tf.train.Saver(max_to_keep=10)
tf.add_to_collection('real_points_ph', self._real_points_ph)
tf.add_to_collection('noise_ph', self._noise_ph)
tf.add_to_collection('is_training_ph', self._is_training_ph)
tf.add_to_collection('encoder_mean', self._enc_mean)
tf.add_to_collection('encoder_log_sigma', self._enc_log_var)
tf.add_to_collection('decoder', self._generated)
self._saver = saver
logging.error("Building Graph Done.")
def _train_internal(self, opts):
"""Train a VAE model.
"""
batches_num = self._data.num_points / opts['batch_size']
train_size = self._data.num_points
num_plot = 320
sample_prev = np.zeros([num_plot] + list(self._data.data_shape))
l2s = []
counter = 0
decay = 1.
logging.error('Training VAE')
for _epoch in xrange(opts["gan_epoch_num"]):
if opts['decay_schedule'] == "manual":
if _epoch == 30:
decay = decay / 2.
if _epoch == 50:
decay = decay / 5.
if _epoch == 100:
decay = decay / 10.
if _epoch > 0 and _epoch % opts['save_every_epoch'] == 0:
os.path.join(opts['work_dir'], opts['ckpt_dir'])
self._saver.save(self._session,
os.path.join(opts['work_dir'],
opts['ckpt_dir'],
'trained-pot'),
global_step=counter)
for _idx in xrange(batches_num):
# logging.error('Step %d of %d' % (_idx, batches_num ) )
data_ids = np.random.choice(train_size, opts['batch_size'],
replace=False, p=self._data_weights)
batch_images = self._data.data[data_ids].astype(np.float)
batch_noise = utils.generate_noise(opts, opts['batch_size'])
_, loss, loss_kl, loss_reconstruct = self._session.run(
[self._optim, self._loss, self._loss_kl,
self._loss_reconstruct],
feed_dict={self._real_points_ph: batch_images,
self._noise_ph: batch_noise,
self._lr_decay_ph: decay,
self._is_training_ph: True})
counter += 1
if opts['verbose'] and counter % opts['plot_every'] == 0:
debug_str = 'Epoch: %d/%d, batch:%d/%d' % (
_epoch+1, opts['gan_epoch_num'], _idx+1, batches_num)
debug_str += ' [L=%.2g, Recon=%.2g, KLQ=%.2g]' % (
loss, loss_reconstruct, loss_kl)
logging.error(debug_str)
if opts['verbose'] and counter % opts['plot_every'] == 0:
metrics = Metrics()
points_to_plot = self._run_batch(
opts, self._generated, self._noise_ph,
self._noise_for_plots[0:num_plot],
self._is_training_ph, False)
l2s.append(np.sum((points_to_plot - sample_prev)**2))
metrics.l2s = l2s[:]
metrics.make_plots(
opts,
counter,
None,
points_to_plot,
prefix='sample_e%04d_mb%05d_' % (_epoch, _idx))
reconstructed = self._session.run(
self._reconstruct_x,
feed_dict={self._real_points_ph: batch_images,
self._is_training_ph: False})
metrics.l2s = None
metrics.make_plots(
opts,
counter,
None,
reconstructed,
prefix='reconstr_e%04d_mb%05d_' % (_epoch, _idx))
if opts['early_stop'] > 0 and counter > opts['early_stop']:
break
if _epoch > 0:
os.path.join(opts['work_dir'], opts['ckpt_dir'])
self._saver.save(self._session,
os.path.join(opts['work_dir'],
opts['ckpt_dir'],
'trained-pot-final'),
global_step=counter)
def _sample_internal(self, opts, num):
"""Sample from the trained GAN model.
"""
noise = utils.generate_noise(opts, num)
sample = self._run_batch(
opts, self._generated, self._noise_ph, noise,
self._is_training_ph, False)
return sample