diff --git a/docs/bestpractice.rst b/docs/bestpractice.rst index fa21d85..240c673 100644 --- a/docs/bestpractice.rst +++ b/docs/bestpractice.rst @@ -6,7 +6,7 @@ We recommend seeking guidance from a statistician when using :py:mod:`tableone` Data visualization ------------------ -Plotting the distribution of each variable by group level via histograms, kernel density estimates and boxplots is a crucial component to data analysis pipelines. Vizualisation is often is the only way to detect problematic variables in many real-life scenarios. Some example plots are provided in the `tableone notebook `_. +Plotting the distribution of each variable by group level via histograms, kernel density estimates and boxplots is a crucial component to data analysis pipelines. Visualisation is often is the only way to detect problematic variables in many real-life scenarios. Some example plots are provided in the `tableone notebook `_. Normally distributed variables ------------------------------ @@ -91,4 +91,4 @@ It should be noted that while we have tried to use best practices, automation of .. [12] Šidák, Z. K. (1967). "Rectangular Confidence Regions for the Means of Multivariate Normal Distributions". Journal of the American Statistical - Association. 62 (318): 626–633. \ No newline at end of file + Association. 62 (318): 626–633. diff --git a/docs/contributing.rst b/docs/contributing.rst index 6a8fe2d..95ddc45 100644 --- a/docs/contributing.rst +++ b/docs/contributing.rst @@ -46,7 +46,7 @@ reStructuredText `__. The documentation follows the `NumPy Docstring Standard `__, which are parsed using the -`napolean extension for sphinx `. +`napoleon extension for sphinx `. How to build the documentation ------------------------------ diff --git a/tableone/modality.py b/tableone/modality.py index 4de4e9b..945782c 100644 --- a/tableone/modality.py +++ b/tableone/modality.py @@ -769,7 +769,7 @@ def dip_and_closest_unimodal_from_cdf(xF, yF, plotting=False, verbose=False, eps iH = np.arange(L, U+1)[iHH] # Interpolate. First and last point are in both and does not need - # interpolation. Might cause trouble if included due to possiblity + # interpolation. Might cause trouble if included due to possibility # of infinity slope at beginning or end of interval. if iG[0] != iH[0] or iG[-1] != iH[-1]: raise ValueError('Convex minorant and concave majorant should start and end at same points.')