-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfills.c
1013 lines (843 loc) · 23.6 KB
/
fills.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#define IMAGER_NO_CONTEXT
#include "imager.h"
#include "imageri.h"
#include <assert.h>
/*
=head1 NAME
fills.c - implements the basic general fills
=head1 SYNOPSIS
i_fill_t *fill;
i_color c1, c2;
i_fcolor fc1, fc2;
int combine;
fill = i_new_fill_solidf(&fc1, combine);
fill = i_new_fill_solid(&c1, combine);
fill = i_new_fill_hatchf(&fc1, &fc2, combine, hatch, cust_hash, dx, dy);
fill = i_new_fill_hatch(&c1, &c2, combine, hatch, cust_hash, dx, dy);
fill = i_new_fill_image(im, matrix, xoff, yoff, combine);
fill = i_new_fill_opacity(fill, alpha_mult);
i_fill_destroy(fill);
=head1 DESCRIPTION
Implements the basic general fills, which can be used for filling some
shapes and for flood fills.
Each fill can implement up to 3 functions:
=over
=item fill_with_color
called for fills on 8-bit images. This can be NULL in which case the
fill_with_colorf function is called.
=item fill_with_fcolor
called for fills on non-8-bit images or when fill_with_color is NULL.
=item destroy
called by i_fill_destroy() if non-NULL, to release any extra resources
that the fill may need.
=back
fill_with_color and fill_with_fcolor are basically the same function
except that the first works with lines of i_color and the second with
lines of i_fcolor.
If the combines member if non-zero the line data is populated from the
target image before calling fill_with_*color.
fill_with_color needs to fill the I<data> parameter with the fill
pixels. If combines is non-zero it the fill pixels should be combined
with the existing data.
The current fills are:
=over
=item *
solid fill
=item *
hatched fill
=item *
fountain fill
=back
Fountain fill is implemented by L<filters.c>.
Other fills that could be implemented include:
=over
=item *
image - an image tiled over the fill area, with an offset either
horizontally or vertically.
=item *
checkerboard - combine 2 fills in a checkerboard
=item *
combine - combine the levels of 2 other fills based in the levels of
an image
=item *
regmach - use the register machine to generate colors
=back
=over
=cut
*/
static i_color fcolor_to_color(const i_fcolor *c) {
int ch;
i_color out;
for (ch = 0; ch < MAXCHANNELS; ++ch)
out.channel[ch] = SampleFTo8(c->channel[ch]);
return out;
}
static i_fcolor color_to_fcolor(const i_color *c) {
int ch;
i_fcolor out;
for (ch = 0; ch < MAXCHANNELS; ++ch)
out.channel[ch] = Sample8ToF(c->channel[ch]);
return out;
}
/* alpha combine in with out */
#define COMBINE(out, in, channels) \
{ \
int ch; \
for (ch = 0; ch < (channels); ++ch) { \
(out).channel[ch] = ((out).channel[ch] * (255 - (in).channel[3]) \
+ (in).channel[ch] * (in).channel[3]) / 255; \
} \
}
/* alpha combine in with out, in this case in is a simple array of
samples, potentially not integers - the mult combiner uses doubles
for accuracy */
#define COMBINEA(out, in, channels) \
{ \
int ch; \
for (ch = 0; ch < (channels); ++ch) { \
(out).channel[ch] = ((out).channel[ch] * (255 - (in)[3]) \
+ (in)[ch] * (in)[3]) / 255; \
} \
}
#define COMBINEF(out, in, channels) \
{ \
int ch; \
for (ch = 0; ch < (channels); ++ch) { \
(out).channel[ch] = (out).channel[ch] * (1.0 - (in).channel[3]) \
+ (in).channel[ch] * (in).channel[3]; \
} \
}
typedef struct
{
i_fill_t base;
i_color c;
i_fcolor fc;
} i_fill_solid_t;
static void fill_solid(i_fill_t *, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_color *);
static void fill_solidf(i_fill_t *, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_fcolor *);
static i_fill_solid_t base_solid_fill =
{
{
fill_solid,
fill_solidf,
NULL,
NULL,
NULL,
},
};
/*
=item i_fill_destroy(fill)
=order 90
=category Fills
=synopsis i_fill_destroy(fill);
Call to destroy any fill object.
=cut
*/
void
i_fill_destroy(i_fill_t *fill) {
if (fill->destroy)
(fill->destroy)(fill);
myfree(fill);
}
/*
=item i_new_fill_solidf(color, combine)
=category Fills
=synopsis i_fill_t *fill = i_new_fill_solidf(&fcolor, combine);
Create a solid fill based on a float color.
If combine is non-zero then alpha values will be combined.
=cut
*/
i_fill_t *
i_new_fill_solidf(const i_fcolor *c, int combine) {
int ch;
i_fill_solid_t *fill = mymalloc(sizeof(i_fill_solid_t)); /* checked 14jul05 tonyc */
*fill = base_solid_fill;
if (combine) {
i_get_combine(combine, &fill->base.combine, &fill->base.combinef);
}
fill->fc = *c;
for (ch = 0; ch < MAXCHANNELS; ++ch) {
fill->c.channel[ch] = SampleFTo8(c->channel[ch]);
}
return &fill->base;
}
/*
=item i_new_fill_solid(color, combine)
=category Fills
=synopsis i_fill_t *fill = i_new_fill_solid(&color, combine);
Create a solid fill based on an 8-bit color.
If combine is non-zero then alpha values will be combined.
=cut
*/
i_fill_t *
i_new_fill_solid(const i_color *c, int combine) {
int ch;
i_fill_solid_t *fill = mymalloc(sizeof(i_fill_solid_t)); /* checked 14jul05 tonyc */
*fill = base_solid_fill;
if (combine) {
i_get_combine(combine, &fill->base.combine, &fill->base.combinef);
}
fill->c = *c;
for (ch = 0; ch < MAXCHANNELS; ++ch) {
fill->fc.channel[ch] = Sample8ToF(c->channel[ch]);
}
return &fill->base;
}
static unsigned char
builtin_hatches[][8] =
{
{
/* 1x1 checkerboard */
0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55, 0xAA, 0x55,
},
{
/* 2x2 checkerboard */
0xCC, 0xCC, 0x33, 0x33, 0xCC, 0xCC, 0x33, 0x33,
},
{
/* 4 x 4 checkerboard */
0xF0, 0xF0, 0xF0, 0xF0, 0x0F, 0x0F, 0x0F, 0x0F,
},
{
/* single vertical lines */
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
},
{
/* double vertical lines */
0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
},
{
/* quad vertical lines */
0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
},
{
/* single hlines */
0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{
/* double hlines */
0xFF, 0x00, 0x00, 0x00, 0xFF, 0x00, 0x00, 0x00,
},
{
/* quad hlines */
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00,
},
{
/* single / */
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
},
{
/* single \ */
0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01,
},
{
/* double / */
0x11, 0x22, 0x44, 0x88, 0x11, 0x22, 0x44, 0x88,
},
{
/* double \ */
0x88, 0x44, 0x22, 0x11, 0x88, 0x44, 0x22, 0x11,
},
{
/* single grid */
0xFF, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
},
{
/* double grid */
0xFF, 0x88, 0x88, 0x88, 0xFF, 0x88, 0x88, 0x88,
},
{
/* quad grid */
0xFF, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA, 0xFF, 0xAA,
},
{
/* single dots */
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
},
{
/* 4 dots */
0x88, 0x00, 0x00, 0x00, 0x88, 0x00, 0x00, 0x00,
},
{
/* 16 dots */
0xAA, 0x00, 0xAA, 0x00, 0xAA, 0x00, 0xAA, 0x00,
},
{
/* simple stipple */
0x48, 0x84, 0x00, 0x00, 0x84, 0x48, 0x00, 0x00,
},
{
/* weave */
0x55, 0xFD, 0x05, 0xFD, 0x55, 0xDF, 0x50, 0xDF,
},
{
/* single cross hatch */
0x82, 0x44, 0x28, 0x10, 0x28, 0x44, 0x82, 0x01,
},
{
/* double cross hatch */
0xAA, 0x44, 0xAA, 0x11, 0xAA, 0x44, 0xAA, 0x11,
},
{
/* vertical lozenge */
0x11, 0x11, 0x11, 0xAA, 0x44, 0x44, 0x44, 0xAA,
},
{
/* horizontal lozenge */
0x88, 0x70, 0x88, 0x07, 0x88, 0x70, 0x88, 0x07,
},
{
/* scales overlapping downwards */
0x80, 0x80, 0x41, 0x3E, 0x08, 0x08, 0x14, 0xE3,
},
{
/* scales overlapping upwards */
0xC7, 0x28, 0x10, 0x10, 0x7C, 0x82, 0x01, 0x01,
},
{
/* scales overlapping leftwards */
0x83, 0x84, 0x88, 0x48, 0x38, 0x48, 0x88, 0x84,
},
{
/* scales overlapping rightwards */
0x21, 0x11, 0x12, 0x1C, 0x12, 0x11, 0x21, 0xC1,
},
{
/* denser stipple */
0x44, 0x88, 0x22, 0x11, 0x44, 0x88, 0x22, 0x11,
},
{
/* L-shaped tiles */
0xFF, 0x84, 0x84, 0x9C, 0x94, 0x9C, 0x90, 0x90,
},
{
/* wider stipple */
0x80, 0x40, 0x20, 0x00, 0x02, 0x04, 0x08, 0x00,
},
};
typedef struct
{
i_fill_t base;
i_color fg, bg;
i_fcolor ffg, fbg;
unsigned char hatch[8];
i_img_dim dx, dy;
} i_fill_hatch_t;
static void fill_hatch(i_fill_t *fill, i_img_dim x, i_img_dim y,
i_img_dim width, int channels, i_color *data);
static void fill_hatchf(i_fill_t *fill, i_img_dim x, i_img_dim y,
i_img_dim width, int channels, i_fcolor *data);
static
i_fill_t *
i_new_hatch_low(const i_color *fg, const i_color *bg, const i_fcolor *ffg, const i_fcolor *fbg,
int combine, int hatch, const unsigned char *cust_hatch,
i_img_dim dx, i_img_dim dy);
/*
=item i_new_fill_hatch(C<fg>, C<bg>, C<combine>, C<hatch>, C<cust_hatch>, C<dx>, C<dy>)
=category Fills
=synopsis i_fill_t *fill = i_new_fill_hatch(&fg_color, &bg_color, combine, hatch, custom_hatch, dx, dy);
Creates a new hatched fill with the C<fg> color used for the 1 bits in
the hatch and C<bg> for the 0 bits. If C<combine> is non-zero alpha
values will be combined.
If C<cust_hatch> is non-NULL it should be a pointer to 8 bytes of the
hash definition, with the high-bits to the left.
If C<cust_hatch> is NULL then one of the standard hatches is used.
(C<dx>, C<dy>) are an offset into the hatch which can be used to hatch
adjoining areas out of alignment, or to align the origin of a hatch
with the side of a filled area.
=cut
*/
i_fill_t *
i_new_fill_hatch(const i_color *fg, const i_color *bg, int combine, int hatch,
const unsigned char *cust_hatch, i_img_dim dx, i_img_dim dy) {
assert(fg);
assert(bg);
return i_new_hatch_low(fg, bg, NULL, NULL, combine, hatch, cust_hatch,
dx, dy);
}
/*
=item i_new_fill_hatchf(C<fg>, C<bg>, C<combine>, C<hatch>, C<cust_hatch>, C<dx>, C<dy>)
=category Fills
=synopsis i_fill_t *fill = i_new_fill_hatchf(&fg_fcolor, &bg_fcolor, combine, hatch, custom_hatch, dx, dy);
Creates a new hatched fill with the C<fg> color used for the 1 bits in
the hatch and C<bg> for the 0 bits. If C<combine> is non-zero alpha
values will be combined.
If C<cust_hatch> is non-NULL it should be a pointer to 8 bytes of the
hash definition, with the high-bits to the left.
If C<cust_hatch> is NULL then one of the standard hatches is used.
(C<dx>, C<dy>) are an offset into the hatch which can be used to hatch
adjoining areas out of alignment, or to align the origin of a hatch
with the side of a filled area.
=cut
*/
i_fill_t *
i_new_fill_hatchf(const i_fcolor *fg, const i_fcolor *bg, int combine, int hatch,
const unsigned char *cust_hatch, i_img_dim dx, i_img_dim dy) {
assert(fg);
assert(bg);
return i_new_hatch_low(NULL, NULL, fg, bg, combine, hatch, cust_hatch,
dx, dy);
}
static void fill_image(i_fill_t *fill, i_img_dim x, i_img_dim y,
i_img_dim width, int channels, i_color *data);
static void fill_imagef(i_fill_t *fill, i_img_dim x, i_img_dim y,
i_img_dim width, int channels, i_fcolor *data);
struct i_fill_image_t {
i_fill_t base;
i_img *src;
i_img_dim xoff, yoff;
int has_matrix;
double matrix[9];
};
static struct i_fill_image_t
image_fill_proto =
{
{
fill_image,
fill_imagef,
NULL
}
};
/*
=item i_new_fill_image(C<im>, C<matrix>, C<xoff>, C<yoff>, C<combine>)
=category Fills
=synopsis i_fill_t *fill = i_new_fill_image(src_img, matrix, x_offset, y_offset, combine);
Create an image based fill.
matrix is an array of 9 doubles representing a transformation matrix.
C<xoff> and C<yoff> are the offset into the image to start filling from.
=cut
*/
i_fill_t *
i_new_fill_image(i_img *im, const double *matrix, i_img_dim xoff, i_img_dim yoff, int combine) {
struct i_fill_image_t *fill = mymalloc(sizeof(*fill)); /* checked 14jul05 tonyc */
*fill = image_fill_proto;
if (combine) {
i_get_combine(combine, &fill->base.combine, &fill->base.combinef);
}
else {
fill->base.combine = NULL;
fill->base.combinef = NULL;
}
fill->src = im;
if (xoff < 0)
xoff += im->xsize;
fill->xoff = xoff;
if (yoff < 0)
yoff += im->ysize;
fill->yoff = yoff;
if (matrix) {
fill->has_matrix = 1;
memcpy(fill->matrix, matrix, sizeof(fill->matrix));
}
else
fill->has_matrix = 0;
return &fill->base;
}
static void fill_opacity(i_fill_t *fill, i_img_dim x, i_img_dim y,
i_img_dim width, int channels, i_color *data);
static void fill_opacityf(i_fill_t *fill, i_img_dim x, i_img_dim y,
i_img_dim width, int channels, i_fcolor *data);
struct i_fill_opacity_t {
i_fill_t base;
i_fill_t *other_fill;
double alpha_mult;
};
static struct i_fill_opacity_t
opacity_fill_proto =
{
{
fill_opacity,
fill_opacityf,
NULL
}
};
i_fill_t *
i_new_fill_opacity(i_fill_t *base_fill, double alpha_mult) {
struct i_fill_opacity_t *fill = mymalloc(sizeof(*fill));
*fill = opacity_fill_proto;
fill->base.combine = base_fill->combine;
fill->base.combinef = base_fill->combinef;
fill->other_fill = base_fill;
fill->alpha_mult = alpha_mult;
if (!base_fill->f_fill_with_color) {
/* base fill only does floating, so we only do that too */
fill->base.f_fill_with_color = NULL;
}
return &fill->base;
}
#define T_SOLID_FILL(fill) ((i_fill_solid_t *)(fill))
/*
=back
=head1 INTERNAL FUNCTIONS
=over
=item fill_solid(fill, x, y, width, channels, data)
The 8-bit sample fill function for non-combining solid fills.
=cut
*/
static void
fill_solid(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_color *data) {
i_color c = T_SOLID_FILL(fill)->c;
i_adapt_colors(channels > 2 ? 4 : 2, 4, &c, 1);
while (width-- > 0) {
*data++ = c;
}
}
/*
=item fill_solid(fill, x, y, width, channels, data)
The floating sample fill function for non-combining solid fills.
=cut
*/
static void
fill_solidf(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_fcolor *data) {
i_fcolor c = T_SOLID_FILL(fill)->fc;
i_adapt_fcolors(channels > 2 ? 4 : 2, 4, &c, 1);
while (width-- > 0) {
*data++ = c;
}
}
static i_fill_hatch_t
hatch_fill_proto =
{
{
fill_hatch,
fill_hatchf,
NULL
}
};
/*
=item i_new_hatch_low(fg, bg, ffg, fbg, combine, hatch, cust_hatch, dx, dy)
Implements creation of hatch fill objects.
=cut
*/
static
i_fill_t *
i_new_hatch_low(const i_color *fg, const i_color *bg,
const i_fcolor *ffg, const i_fcolor *fbg,
int combine, int hatch, const unsigned char *cust_hatch,
i_img_dim dx, i_img_dim dy) {
i_fill_hatch_t *fill = mymalloc(sizeof(i_fill_hatch_t)); /* checked 14jul05 tonyc */
*fill = hatch_fill_proto;
if (fg && bg) {
fill->fg = *fg;
fill->bg = *bg;
fill->ffg = color_to_fcolor(fg);
fill->fbg = color_to_fcolor(bg);
}
else if (ffg && fbg) {
fill->fg = fcolor_to_color(ffg);
fill->bg = fcolor_to_color(fbg);
fill->ffg = *ffg;
fill->fbg = *fbg;
}
else {
assert(0);
/* NOTREACHED */
}
if (combine) {
i_get_combine(combine, &fill->base.combine, &fill->base.combinef);
}
else {
fill->base.combine = NULL;
fill->base.combinef = NULL;
}
if (cust_hatch) {
memcpy(fill->hatch, cust_hatch, 8);
}
else {
if (hatch >= sizeof(builtin_hatches)/sizeof(*builtin_hatches)
|| hatch < 0) {
hatch = 0;
}
memcpy(fill->hatch, builtin_hatches[hatch], 8);
}
fill->dx = dx & 7;
fill->dy = dy & 7;
return &fill->base;
}
/*
=item fill_hatch(fill, x, y, width, channels, data)
The 8-bit sample fill function for hatched fills.
=cut
*/
static void
fill_hatch(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_color *data) {
i_fill_hatch_t *f = (i_fill_hatch_t *)fill;
int byte = f->hatch[(y + f->dy) & 7];
int xpos = (x + f->dx) & 7;
int mask = 128 >> xpos;
i_color fg = f->fg;
i_color bg = f->bg;
if (channels < 3) {
i_adapt_colors(2, 4, &fg, 1);
i_adapt_colors(2, 4, &bg, 1);
}
while (width-- > 0) {
if (byte & mask)
*data++ = fg;
else
*data++ = bg;
if ((mask >>= 1) == 0)
mask = 128;
}
}
/*
=item fill_hatchf(fill, x, y, width, channels, data)
The floating sample fill function for hatched fills.
=cut
*/
static void
fill_hatchf(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_fcolor *data) {
i_fill_hatch_t *f = (i_fill_hatch_t *)fill;
int byte = f->hatch[(y + f->dy) & 7];
int xpos = (x + f->dx) & 7;
int mask = 128 >> xpos;
i_fcolor fg = f->ffg;
i_fcolor bg = f->fbg;
if (channels < 3) {
i_adapt_fcolors(2, 4, &fg, 1);
i_adapt_fcolors(2, 4, &bg, 1);
}
while (width-- > 0) {
if (byte & mask)
*data++ = fg;
else
*data++ = bg;
if ((mask >>= 1) == 0)
mask = 128;
}
}
/* hopefully this will be inlined (it is with -O3 with gcc 2.95.4) */
/* linear interpolation */
static i_color interp_i_color(i_color before, i_color after, double pos,
int channels) {
i_color out;
int ch;
pos -= floor(pos);
for (ch = 0; ch < channels; ++ch)
out.channel[ch] = (1-pos) * before.channel[ch] + pos * after.channel[ch];
if (channels > 3 && out.channel[3]) {
for (ch = 0; ch < channels; ++ch) {
if (ch != 3) {
int temp = out.channel[ch] * 255 / out.channel[3];
if (temp > 255)
temp = 255;
out.channel[ch] = temp;
}
}
}
return out;
}
/* hopefully this will be inlined (it is with -O3 with gcc 2.95.4) */
/* linear interpolation */
static i_fcolor interp_i_fcolor(i_fcolor before, i_fcolor after, double pos,
int channels) {
i_fcolor out;
int ch;
pos -= floor(pos);
for (ch = 0; ch < channels; ++ch)
out.channel[ch] = (1-pos) * before.channel[ch] + pos * after.channel[ch];
if (out.channel[3]) {
for (ch = 0; ch < channels; ++ch) {
if (ch != 3) {
int temp = out.channel[ch] / out.channel[3];
if (temp > 1.0)
temp = 1.0;
out.channel[ch] = temp;
}
}
}
return out;
}
/*
=item fill_image(fill, x, y, width, channels, data, work)
=cut
*/
static void
fill_image(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_color *data) {
struct i_fill_image_t *f = (struct i_fill_image_t *)fill;
i_img_dim i = 0;
i_color *out = data;
int want_channels = channels > 2 ? 4 : 2;
if (f->has_matrix) {
/* the hard way */
while (i < width) {
double rx = f->matrix[0] * (x+i) + f->matrix[1] * y + f->matrix[2];
double ry = f->matrix[3] * (x+i) + f->matrix[4] * y + f->matrix[5];
double ix = floor(rx / f->src->xsize);
double iy = floor(ry / f->src->ysize);
i_color c[2][2];
i_color c2[2];
i_img_dim dy;
if (f->xoff) {
rx += iy * f->xoff;
ix = floor(rx / f->src->xsize);
}
else if (f->yoff) {
ry += ix * f->yoff;
iy = floor(ry / f->src->ysize);
}
rx -= ix * f->src->xsize;
ry -= iy * f->src->ysize;
for (dy = 0; dy < 2; ++dy) {
if ((i_img_dim)rx == f->src->xsize-1) {
i_gpix(f->src, f->src->xsize-1, ((i_img_dim)ry+dy) % f->src->ysize, &c[dy][0]);
i_gpix(f->src, 0, ((i_img_dim)ry+dy) % f->src->xsize, &c[dy][1]);
}
else {
i_glin(f->src, (i_img_dim)rx, (i_img_dim)rx+2, ((i_img_dim)ry+dy) % f->src->ysize,
c[dy]);
}
c2[dy] = interp_i_color(c[dy][0], c[dy][1], rx, f->src->channels);
}
*out++ = interp_i_color(c2[0], c2[1], ry, f->src->channels);
++i;
}
}
else {
/* the easy way */
/* this should be possible to optimize to use i_glin() */
while (i < width) {
i_img_dim rx = x+i;
i_img_dim ry = y;
i_img_dim ix = rx / f->src->xsize;
i_img_dim iy = ry / f->src->ysize;
if (f->xoff) {
rx += iy * f->xoff;
ix = rx / f->src->xsize;
}
else if (f->yoff) {
ry += ix * f->yoff;
iy = ry / f->src->ysize;
}
rx -= ix * f->src->xsize;
ry -= iy * f->src->ysize;
i_gpix(f->src, rx, ry, out);
++out;
++i;
}
}
if (f->src->channels != want_channels)
i_adapt_colors(want_channels, f->src->channels, data, width);
}
/*
=item fill_imagef(fill, x, y, width, channels, data, work)
=cut
*/
static void
fill_imagef(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_fcolor *data) {
struct i_fill_image_t *f = (struct i_fill_image_t *)fill;
i_img_dim i = 0;
int want_channels = channels > 2 ? 4 : 2;
if (f->has_matrix) {
i_fcolor *work_data = data;
/* the hard way */
while (i < width) {
double rx = f->matrix[0] * (x+i) + f->matrix[1] * y + f->matrix[2];
double ry = f->matrix[3] * (x+i) + f->matrix[4] * y + f->matrix[5];
double ix = floor(rx / f->src->xsize);
double iy = floor(ry / f->src->ysize);
i_fcolor c[2][2];
i_fcolor c2[2];
i_img_dim dy;
if (f->xoff) {
rx += iy * f->xoff;
ix = floor(rx / f->src->xsize);
}
else if (f->yoff) {
ry += ix * f->yoff;
iy = floor(ry / f->src->ysize);
}
rx -= ix * f->src->xsize;
ry -= iy * f->src->ysize;
for (dy = 0; dy < 2; ++dy) {
if ((i_img_dim)rx == f->src->xsize-1) {
i_gpixf(f->src, f->src->xsize-1, ((i_img_dim)ry+dy) % f->src->ysize, &c[dy][0]);
i_gpixf(f->src, 0, ((i_img_dim)ry+dy) % f->src->xsize, &c[dy][1]);
}
else {
i_glinf(f->src, (i_img_dim)rx, (i_img_dim)rx+2, ((i_img_dim)ry+dy) % f->src->ysize,
c[dy]);
}
c2[dy] = interp_i_fcolor(c[dy][0], c[dy][1], rx, f->src->channels);
}
*work_data++ = interp_i_fcolor(c2[0], c2[1], ry, f->src->channels);
++i;
}
}
else {
i_fcolor *work_data = data;
/* the easy way */
/* this should be possible to optimize to use i_glin() */
while (i < width) {
i_img_dim rx = x+i;
i_img_dim ry = y;
i_img_dim ix = rx / f->src->xsize;
i_img_dim iy = ry / f->src->ysize;
if (f->xoff) {
rx += iy * f->xoff;
ix = rx / f->src->xsize;
}
else if (f->yoff) {
ry += ix * f->yoff;
iy = ry / f->src->xsize;
}
rx -= ix * f->src->xsize;
ry -= iy * f->src->ysize;
i_gpixf(f->src, rx, ry, work_data);
++work_data;
++i;
}
}
if (f->src->channels != want_channels)
i_adapt_fcolors(want_channels, f->src->channels, data, width);
}
static void
fill_opacity(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_color *data) {
struct i_fill_opacity_t *f = (struct i_fill_opacity_t *)fill;
int alpha_chan = channels > 2 ? 3 : 1;
i_color *datap = data;
(f->other_fill->f_fill_with_color)(f->other_fill, x, y, width, channels, data);
while (width--) {
double new_alpha = datap->channel[alpha_chan] * f->alpha_mult;
if (new_alpha < 0)
datap->channel[alpha_chan] = 0;
else if (new_alpha > 255)
datap->channel[alpha_chan] = 255;
else datap->channel[alpha_chan] = (int)(new_alpha + 0.5);
++datap;
}
}
static void
fill_opacityf(i_fill_t *fill, i_img_dim x, i_img_dim y, i_img_dim width,
int channels, i_fcolor *data) {
struct i_fill_opacity_t *f = (struct i_fill_opacity_t *)fill;
int alpha_chan = channels > 2 ? 3 : 1;
i_fcolor *datap = data;
(f->other_fill->f_fill_with_fcolor)(f->other_fill, x, y, width, channels, data);
while (width--) {
double new_alpha = datap->channel[alpha_chan] * f->alpha_mult;
if (new_alpha < 0)
datap->channel[alpha_chan] = 0;
else if (new_alpha > 1.0)
datap->channel[alpha_chan] = 1.0;
else datap->channel[alpha_chan] = new_alpha;
++datap;
}
}