-
Notifications
You must be signed in to change notification settings - Fork 966
/
GPU.lua
273 lines (241 loc) · 8.32 KB
/
GPU.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
------------------------------------------------------------------------
--[[ GPU ]]--
-- Decorates a module such that its parameters are
-- hosted on a specified GPU device.
-- The operations are also executed on that device.
-- Arguments input and gradOutput are converted to the specified device
-- before being fed to the decorated module.
-- Returned output is on the specified outdevice (defaults to device).
-- Returned gradInput is allocated on the same device as the input.
-- The unit test is located in cunn.
------------------------------------------------------------------------
local GPU, parent = torch.class("nn.GPU", "nn.Container")
function GPU:__init(module, device, outdevice)
parent.__init(self)
assert(torch.type(device) == 'number')
self.device = device
self.outdevice = outdevice or device
assert(torch.isTypeOf(module, 'nn.Module'))
self.modules[1] = module
if module:type():find('torch%.Cuda.*Tensor') then
self:type(module:type())
end
end
function GPU.recursiveModuleDevice(obj, device)
if type(obj) == 'table' and not torch.isTypeOf(obj, 'nn.GPU') and not obj.__noGPU__ then
for k,v in pairs(obj) do
obj[k] = GPU.recursiveModuleDevice(v, device)
end
elseif torch.type(obj):match('torch.Cuda.*Tensor') then
if obj:getDevice() ~= device then
obj = obj:clone() -- this will reallocate it to device
local newdevice = obj:getDevice()
-- when nElement() == 0 newdevice is 0
assert(newdevice == device or newdevice == 0)
end
end
assert(obj ~= nil)
return obj
end
-- set the device of the decorated module
function GPU:setDevice(device)
self.device = device or self.device
assert(self.modules[1])
self.modules[1] = cutorch.withDevice(self.device, function()
return self.recursiveModuleDevice(self.modules[1], self.device)
end)
return self
end
-- when proto is a device number, returns a dst that has device device for each element in src
-- otherwise, if proto is a table/tensor, makes sure dst is a identical to src, yet on the same device as proto
function GPU.recursiveSetDevice(dst, src, proto)
local device, prototable
if torch.isTensor(proto) then
device = proto:getDevice()
elseif torch.type(proto) == 'number' then
device = proto
elseif torch.type(proto) == 'table' then
prototable = true
else
error"Expecting number, table or tensor for arg 3 (proto)"
end
if torch.type(src) == 'table' then
dst = torch.type(dst) == 'table' and dst or {}
for k,v in ipairs(src) do
dst[k] = GPU.recursiveSetDevice(dst[k], v, prototable and proto[k] or device)
end
for k=#src+1,#dst do
dst[k] = nil
end
elseif torch.type(src):match('torch.Cuda.*Tensor') and src:getDevice() ~= device and src:getDevice() ~= 0 then
if not (torch.type(dst):match('torch.Cuda.*Tensor') and dst:getDevice() == device) then
dst = src.new()
end
cutorch.withDevice(device, function() dst:resizeAs(src):copy(src) end)
else
dst = src
end
return dst
end
function GPU:updateOutput(input)
if self._type:find('torch%.Cuda.*Tensor') then
self._input = self.recursiveSetDevice(self._input, input, self.device)
local output = cutorch.withDevice(self.device, function()
return self.modules[1]:updateOutput(self._input)
end)
if self.device ~= self.outdevice then
self.output = self.recursiveSetDevice(self.output, output, self.outdevice)
else
self.output = output
end
else
self.output = self.modules[1]:updateOutput(input)
end
return self.output
end
function GPU:updateGradInput(input, gradOutput)
if self._type:find('torch%.Cuda.*Tensor') then
self._gradOutput = self.recursiveSetDevice(self._gradOutput, gradOutput, self.device)
local gradInput = cutorch.withDevice(self.device, function()
return self.modules[1]:updateGradInput(self._input, self._gradOutput)
end)
self.gradInput = self.recursiveSetDevice(self.gradInput, gradInput, input)
else
self.gradInput = self.modules[1]:updateGradInput(input, gradOutput)
end
return self.gradInput
end
function GPU:accGradParameters(input, gradOutput, scale)
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function()
self.modules[1]:accGradParameters(self._input, self._gradOutput, scale)
end)
else
self.modules[1]:accGradParameters(input, gradOutput, scale)
end
end
function GPU:apply(callback)
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.apply(self, callback) end)
else
parent.apply(self, callback)
end
end
function GPU:type(type, typecache)
if type and type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.type(self, type, typecache) end)
self:setDevice()
else
self.output = nil
self.gradInput = nil
self._input = nil
self._gradOutput = nil
parent.type(self, type, typecache)
end
return self
end
function GPU:clearState()
nn.utils.clear(self, 'output', 'gradInput')
self._input = nil
self._gradOutput = nil
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.clearState(self) end)
else
parent.clearState(self)
end
end
function GPU:zeroGradParameters()
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.zeroGradParameters(self) end)
else
parent.zeroGradParameters(self)
end
end
function GPU:updateParameters(lr)
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.updateParameters(self, lr) end)
else
parent.updateParameters(self, lr)
end
end
function GPU:training()
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.training(self) end)
else
parent.training(self)
end
end
function GPU:evaluate()
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.evaluate(self) end)
else
parent.evaluate(self)
end
end
function GPU:share(mlp, ...)
local args = {...}
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.share(self, mlp, unpack(args)) end)
else
parent.share(self, mlp, unpack(args))
end
return self
end
function GPU:reset(...)
local args = {...}
if self._type:find('torch%.Cuda.*Tensor') then
cutorch.withDevice(self.device, function() parent.reset(self, unpack(args)) end)
else
parent.reset(self, unpack(args))
end
return self
end
function GPU:clone(...)
local args = {...}
if self._type:find('torch%.Cuda.*Tensor') then
return cutorch.withDevice(self.device, function() parent.clone(self, unpack(args)) end)
else
return parent.clone(self, unpack(args))
end
end
function GPU:write(file)
-- Write all values in the object as a table.
local object = {}
for k, v in pairs(self) do
object[k] = v
end
local header = {self._type, self.device}
file:writeObject(header)
file:writeObject(object)
end
function GPU:read(file)
local header = file:readObject()
local object
if header[1] and header[1]:find('torch%.Cuda.*Tensor') then
local device = header[2]
if device > cutorch.getDeviceCount() then
print"Warning : model was saved with more devices than available on current host."
print"Attempting to load module onto device 1"
device = 1
end
object = cutorch.withDevice(device, function() return file:readObject() end)
else
object = file:readObject()
end
for k, v in pairs(object) do
self[k] = v
end
end
function GPU:__tostring__()
if self.modules[1].__tostring__ then
return torch.type(self) .. '(' .. self.device ..') @ ' .. self.modules[1]:__tostring__()
else
return torch.type(self) .. '(' .. self.device ..') @ ' .. torch.type(self.modules[1])
end
end
function GPU:accUpdateGradParameters(input, gradOutput, lr)
error("Not Implemented for "..torch.type(self))
end
function GPU:sharedAccUpdateGradParameters(input, gradOutput, lr)
error("Not Implemented for "..torch.type(self))
end