-
Notifications
You must be signed in to change notification settings - Fork 722
/
all.fhd.config
302 lines (287 loc) · 8.39 KB
/
all.fhd.config
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
model: {
second: {
network_class_name: "VoxelNet"
voxel_generator {
# point_cloud_range : [0, -40, -3, 70.4, 40, 1]
point_cloud_range : [0, -32.0, -3, 52.8, 32.0, 1]
voxel_size : [0.05, 0.05, 0.1]
max_number_of_points_per_voxel : 5
}
voxel_feature_extractor: {
module_class_name: "SimpleVoxelRadius"
num_filters: [16]
with_distance: false
num_input_features: 4
}
middle_feature_extractor: {
module_class_name: "SpMiddleFHD"
# num_filters_down1: [] # protobuf don't support empty list.
# num_filters_down2: []
downsample_factor: 8
num_input_features: 3
}
rpn: {
module_class_name: "RPNV2"
layer_nums: [5, 5]
layer_strides: [1, 2]
num_filters: [64, 128]
upsample_strides: [1, 2]
num_upsample_filters: [128, 128]
use_groupnorm: false
num_groups: 32
num_input_features: 128
}
loss: {
classification_loss: {
weighted_sigmoid_focal: {
alpha: 0.25
gamma: 2.0
anchorwise_output: true
}
}
localization_loss: {
weighted_smooth_l1: {
sigma: 3.0
code_weight: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
}
}
classification_weight: 1.0
localization_weight: 2.0
}
num_point_features: 4 # model's num point feature should be independent of dataset
# Outputs
use_sigmoid_score: true
encode_background_as_zeros: true
encode_rad_error_by_sin: true
sin_error_factor: 1.0
use_direction_classifier: true # this can help for orientation benchmark
direction_loss_weight: 0.2 # enough.
num_direction_bins: 2
direction_limit_offset: 1
# Loss
pos_class_weight: 1.0
neg_class_weight: 1.0
loss_norm_type: NormByNumPositives
# Postprocess
post_center_limit_range: [0, -40, -2.2, 70.4, 40, 0.8]
nms_class_agnostic: false # only valid in multi-class nms
box_coder: {
ground_box3d_coder: {
linear_dim: false
encode_angle_vector: false
}
}
target_assigner: {
class_settings: {
anchor_generator_range: {
sizes: [1.6, 3.9, 1.56] # wlh
# anchor_ranges: [0, -40.0, -1.00, 70.4, 40.0, -1.00] # carefully set z center
anchor_ranges: [0, -32.0, -1.00, 52.8, 32.0, -1.00] # carefully set z center
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
}
matched_threshold : 0.6
unmatched_threshold : 0.45
class_name: "Car"
use_rotate_nms: true
use_multi_class_nms: false
nms_pre_max_size: 1000
nms_post_max_size: 100
nms_score_threshold: 0.3
nms_iou_threshold: 0.1
region_similarity_calculator: {
nearest_iou_similarity: {
}
}
}
class_settings: {
anchor_generator_range: {
sizes: [0.6, 1.76, 1.73] # wlh
# anchor_ranges: [0, -40.0, -1.00, 70.4, 40.0, -1.00] # carefully set z center
anchor_ranges: [0, -32.0, -0.6, 52.8, 32.0, -0.6] # carefully set z center
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
}
matched_threshold : 0.35
unmatched_threshold : 0.2
class_name: "Cyclist"
use_rotate_nms: true
use_multi_class_nms: false
nms_pre_max_size: 1000
nms_post_max_size: 100
nms_score_threshold: 0.3
nms_iou_threshold: 0.1
region_similarity_calculator: {
nearest_iou_similarity: {
}
}
}
class_settings: {
anchor_generator_range: {
sizes: [0.6, 0.8, 1.73] # wlh
# anchor_ranges: [0, -40.0, -1.00, 70.4, 40.0, -1.00] # carefully set z center
anchor_ranges: [0, -32.0, -0.6, 52.8, 32.0, -0.6] # carefully set z center
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
}
matched_threshold : 0.35
unmatched_threshold : 0.2
class_name: "Pedestrian"
use_rotate_nms: true
use_multi_class_nms: false
nms_pre_max_size: 1000
nms_post_max_size: 100
nms_score_threshold: 0.3
nms_iou_threshold: 0.1
region_similarity_calculator: {
nearest_iou_similarity: {
}
}
}
class_settings: {
anchor_generator_range: {
sizes: [1.87103749, 5.02808195, 2.20964255] # wlh
# anchor_ranges: [0, -40.0, -1.00, 70.4, 40.0, -1.00] # carefully set z center
anchor_ranges: [0, -32.0, -1.41, 52.8, 32.0, -1.41] # carefully set z center
rotations: [0, 1.57] # DON'T modify this unless you are very familiar with my code.
}
matched_threshold : 0.6
unmatched_threshold : 0.45
class_name: "Van"
use_rotate_nms: true
use_multi_class_nms: false
nms_pre_max_size: 1000
nms_post_max_size: 100
nms_score_threshold: 0.3
nms_iou_threshold: 0.1
region_similarity_calculator: {
nearest_iou_similarity: {
}
}
}
sample_positive_fraction : -1
sample_size : 512
assign_per_class: true
}
}
}
train_input_reader: {
dataset: {
dataset_class_name: "KittiDataset"
kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_train.pkl"
kitti_root_path: "/media/yy/960evo/datasets/kitti"
}
batch_size: 3
preprocess: {
num_workers: 3
shuffle_points: true
max_number_of_voxels: 30000
groundtruth_localization_noise_std: [1.0, 1.0, 0.5]
# groundtruth_rotation_uniform_noise: [-0.3141592654, 0.3141592654]
groundtruth_rotation_uniform_noise: [-0.78539816, 0.78539816]
global_rotation_uniform_noise: [-0.78539816, 0.78539816]
global_scaling_uniform_noise: [0.95, 1.05]
global_random_rotation_range_per_object: [0, 0] # pi/4 ~ 3pi/4
global_translate_noise_std: [0, 0, 0]
anchor_area_threshold: -1 # very slow if enable when using FHD map (1600x1200x40).
remove_points_after_sample: true
groundtruth_points_drop_percentage: 0.0
groundtruth_drop_max_keep_points: 15
remove_unknown_examples: false
sample_importance: 1.0
random_flip_x: false
random_flip_y: true
remove_environment: false
database_sampler {
database_info_path: "/media/yy/960evo/datasets/kitti/kitti_dbinfos_train.pkl"
sample_groups {
name_to_max_num {
key: "Car"
value: 11
}
}
sample_groups {
name_to_max_num {
key: "Pedestrian"
value: 6
}
}
sample_groups {
name_to_max_num {
key: "Cyclist"
value: 6
}
}
sample_groups {
name_to_max_num {
key: "Van"
value: 4
}
}
database_prep_steps {
filter_by_min_num_points {
min_num_point_pairs {
key: "Car"
value: 5
}
min_num_point_pairs {
key: "Pedestrian"
value: 10
}
min_num_point_pairs {
key: "Cyclist"
value: 10
}
min_num_point_pairs {
key: "Van"
value: 8
}
}
}
database_prep_steps {
filter_by_difficulty {
removed_difficulties: [-1]
}
}
global_random_rotation_range_per_object: [0, 0]
rate: 1.0
}
}
}
train_config: {
optimizer: {
adam_optimizer: {
learning_rate: {
one_cycle: {
lr_max: 3e-3
moms: [0.95, 0.85]
div_factor: 10.0
pct_start: 0.4
}
}
weight_decay: 0.001
}
fixed_weight_decay: true
use_moving_average: false
}
steps: 99040 # 928 * 80
steps_per_eval: 6190 # 1238 * 5
save_checkpoints_secs : 1800 # half hour
save_summary_steps : 10
enable_mixed_precision: false
loss_scale_factor: -1
clear_metrics_every_epoch: true
}
eval_input_reader: {
dataset: {
dataset_class_name: "KittiDataset"
kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_val.pkl"
# kitti_info_path: "/media/yy/960evo/datasets/kitti/kitti_infos_test.pkl"
kitti_root_path: "/media/yy/960evo/datasets/kitti"
}
batch_size: 3
preprocess: {
max_number_of_voxels: 60000
shuffle_points: false
num_workers: 3
anchor_area_threshold: -1
remove_environment: false
}
}