You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I am currently trying to build a feature fusion module based on PointTransformer V3 using sparse convolutions. However, I encountered the following issue when using spconv.SparseGlobalAvgPool, which did not occur when using spconv.SubMConv3d:
-- Process 0 terminated with the following error:
Traceback (most recent call last):
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap
fn(i, *args)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/engines/launch.py", line 137, in _distributed_worker
main_func(*cfg)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/tools/train.py", line 20, in main_worker
trainer.train()
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/engines/train.py", line 168, in train
self.run_step()
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/engines/train.py", line 182, in run_step
output_dict = self.model(input_dict)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 1008, in forward
output = self._run_ddp_forward(*inputs, **kwargs)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 969, in _run_ddp_forward
return module_to_run(*inputs[0], **kwargs[0])
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/default.py", line 55, in forward
point = self.backbone(point)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/point_transformer_v3/point_transformer_v3m1_base.py", line 1087, in forward
point = self.enc(point)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/modules.py", line 62, in forward
input = module(input)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/modules.py", line 62, in forward
input = module(input)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/point_transformer_v3/point_transformer_v3m1_base.py", line 683, in forward
point=self.iaff(conv_feat,point)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/point_transformer_v3/point_transformer_v3m1_base.py", line 310, in forward
xg = self.global_att(xa2)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/modules.py", line 66, in forward
input.sparse_conv_feat = module(input.sparse_conv_feat)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/spconv/pytorch/pool.py", line 271, in forward
real_features = input.features[real_inds]
IndexError: tensors used as indices must be long, byte or bool tensors
Could you please advise me on how to resolve this issue? Thank you very much for your help.
The text was updated successfully, but these errors were encountered:
Thank you very much for your work!
I am currently trying to build a feature fusion module based on PointTransformer V3 using sparse convolutions. However, I encountered the following issue when using spconv.SparseGlobalAvgPool, which did not occur when using spconv.SubMConv3d:
-- Process 0 terminated with the following error:
Traceback (most recent call last):
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/multiprocessing/spawn.py", line 69, in _wrap
fn(i, *args)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/engines/launch.py", line 137, in _distributed_worker
main_func(*cfg)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/tools/train.py", line 20, in main_worker
trainer.train()
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/engines/train.py", line 168, in train
self.run_step()
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/engines/train.py", line 182, in run_step
output_dict = self.model(input_dict)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 1008, in forward
output = self._run_ddp_forward(*inputs, **kwargs)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 969, in _run_ddp_forward
return module_to_run(*inputs[0], **kwargs[0])
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/default.py", line 55, in forward
point = self.backbone(point)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/point_transformer_v3/point_transformer_v3m1_base.py", line 1087, in forward
point = self.enc(point)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/modules.py", line 62, in forward
input = module(input)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/modules.py", line 62, in forward
input = module(input)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/point_transformer_v3/point_transformer_v3m1_base.py", line 683, in forward
point=self.iaff(conv_feat,point)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/point_transformer_v3/point_transformer_v3m1_base.py", line 310, in forward
xg = self.global_att(xa2)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/data/xhy_code/Pointcept/exp/semantic_kitti/semantic_kitti_codataset_ptv3_ronghe_base3_batch_6_num_16_epoch_300_share_1/code/pointcept/models/modules.py", line 66, in forward
input.sparse_conv_feat = module(input.sparse_conv_feat)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1130, in _call_impl
return forward_call(*input, **kwargs)
File "/home/xhy/miniconda3/envs/pointcept/lib/python3.8/site-packages/spconv/pytorch/pool.py", line 271, in forward
real_features = input.features[real_inds]
IndexError: tensors used as indices must be long, byte or bool tensors
Could you please advise me on how to resolve this issue? Thank you very much for your help.
The text was updated successfully, but these errors were encountered: