-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmoon_orbit.py
615 lines (546 loc) · 24.4 KB
/
moon_orbit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# Copyright 2022 Tom Eulenfeld, MIT license
"""
Relationship between number of days per month and Moon-Earth distance and related plots
Main function in this module is func:a2ly
a ratio of lunar orbital radius to todays value
ly2 semidiuanal tides: lunar days per synodical month (Tl / tl)
ly1 diurnal tides: sidereal days per sideaial month (T / t)
diurnal: True -> diurnal tides, False -> semidiurnal tides
"""
from functools import partial
from math import pi
import matplotlib.pyplot as plt
from matplotlib.ticker import MultipleLocator
from matplotlib.legend_handler import HandlerLine2D
import numpy as np
from scipy.optimize import root_scalar
t0 = 86164 # s, todays sidereal day
ts0 = 86400 # s, todays solar day
T0 = 27.322 * ts0 # s, todays sidereal month (orbital period)
Y = 365.24 * ts0 # s, length of year (assumed constant)
beta0 = 0.211 # todays ratio of solar tide-raising torque and lunar tide-raising torque (msun/rsun**3/m*r0**3)**2
alpha0 = 0.203 # todays ratio of Earths angular momentum and lunar orbital angular momentum Le0/Lm0
# used for correction due to higher Earth's bulge
Ie = 8.034e37 # kg∗m**2, Earth's moment of ineartia, Lambeck, 1980
k2f = 0.93 # Earth's fluid Love number around rotation axis
rearth = 6.371e6 # m, radius of Earth
G = 6.6743e-11 # m**3/kg/s**2, gravitational constant
gamma = 8*pi**2*k2f*rearth**5 / (9*G*Ie) / t0 ** 2
# The following constants are only used in non-essential functions
# e.g. a2ly_Coughenour2013, plot_other_parameters
m = 7.342e22 # kg, mass of Moon
msun = 1.989e30 # kg, mass of Sun
r0 = 3.844e8 # m, todays mean lunar distance (semi-major axis)
rsun = 1.496e11 # m, todays Earth-Sun distance
Lm0 = 2*pi*m*r0**2/T0 # kg∗m**2/s, todays lunar orbital angular momentum
Le0 = 2 * pi * Ie / t0 # kg∗m**2/s, todays angular momentum of Earth's rotation
Ltot0 = Lm0 + Le0 # kg∗m**2/s, todays total angular momentum
mearth = 5.972e24 # kg, mass of Earth
beta0check = ((msun / m) * r0**3 / rsun**3)**2
alpha1 = 2*pi*mearth*rsun**2/Y/ Lm0 # todays ratio of Earths *orbital* angular momentum and lunar orbital angular momentum
print(f'beta0 is set to {beta0}, exact theoretical value is {beta0check:.5f}')
assert abs(1/ts0 - 1/t0 - 1/Y) < 1e-6
print(f'gamma={gamma:.6f}')
ALIM = (0.48, 1.02)
WILLIAMS2000 = {
'a': np.array([51.9, 54.6, 54.7, #57.1,
58.34, 60.27]) / 60.27,
'Tl/tl': [31.7, 31.1, 31.4, #30.3,
29.5, 28.53],
'Y/T': np.array([16.7, 15.5, 15.3, #14.5,
14.1, 13.37]),
'ts': [17.1, 18.8, 18.9, #20.8,
21.9, 24.00],
'Y/t': np.array([515, 467, 465, #423,
401, 366.24]),
'age': [2.45, 2.45, 0.90, 0.62, 0],
'reference': [
'Walker and Zahnle 1986, Trendall 1973, Western Australia',
'Williams 1989c, 1999, Western Australia',
'Sonett and Chan, 1998, Big Cottonwood Formation, Utah',
'Sonett et al., 1996b, Big Cottonwood Formation, Utah',
'Williams, 1989a, b, c, 1990, 1991, 1994, 1997, Elatina Formation and Reynella Siltstone, South Australia', # a from Deubner
'modern'
],
'plot':
[]
}
WILLIAMS2000['T/t'] = WILLIAMS2000['Y/t'] / WILLIAMS2000['Y/T']
ORBIT_TIME_DATA = [
(2.45, 0.861, 'd', 1, 'Weeli Wolli, Walker & Zahnle 1986'),
(2.45, 0.906, 'd', 0.5, 'Weeli Wolli, Williams 2000'),
(0.90, 0.908, 's', 1, 'Cottonwood, Sonnet & Chan 1998'),
(0.62, 0.968, '^', 1, 'Elatina, Reynella, Williams 2000'),
(1.40, 0.886, 'o', 1, 'Xiamaling, Meyers & Malinverno 2018'),
(2.465, 51.65*rearth/r0, '.', 1, 'Dales Gorge, OCR2019'),
(0.259, 3.7611e8/r0, 'x', 1, 'Dales Gorge & others, Zhou et al. 2022'),
(0.455, 3.7064e8/r0, 'x', 1, None),
(0.655, 3.5731e8/r0, 'x', 1, None),
(2.465, 3.2432e8/r0, 'x', 1, None),
(2.460, 321.8e6/r0, 'D', 1, 'Joffre, Lantink et al. 2022')
]
PMODS = ('Webb 1982 curve d',
'Daher et al. 2021 PD',
'Daher et al. 2021 55Ma',
'Daher et al. 2021 116Ma',
'Daher et al. 2021 252Ma',
'Tyler 2021 T=50',
'Tyler 2021 T=40',
'Tyler 2021 T=30',
'Farhat et al. 2022')
def a2ly_Runcorn1979(a, diurnal=False, beta0=beta0):
"""
Runcorn 1979, equation 12, solved for ly, assuming constant moment of inertia
Equals a2ly_simple when applying the substitions.
13.4 = Y/T0
4.82 = 1 / alpha0
27.3 = T0/t0
"""
assert not diurnal
bracket_term = 1 + (1 + beta0/13 - a**0.5 - beta0/13*a**6.5) * 4.82 #/ alpha0
rhs = bracket_term * a** 1.5 * 27.3 #T0 / t0
lhs = (1-a**1.5 /13.4)#* T0 / Y)
return (rhs - 1) / lhs
def a2ly_Coughenour2013(a, diurnal=False):
"""
Coughenour et al. 2013, equation 13, solved for ly, added Ie at appropriate place
"""
rhs = Ltot0 + beta0*(Lm0-2*pi*m*a**2*r0**2/T(a))*a**6
t1 = 2*pi/T(a)
t2 = (rhs / t1 - m*a**2*r0**2) / Ie
if diurnal:
return t2
else:
return (t2 - 1) / T(a) * Tl(a)
def X(a, beta0=beta0, a0=1):
return a0**0.5 + beta0/13*a0**6.5 - a**0.5 - beta0/13*a**6.5
def a2ly_simple(a, diurnal=False, alpha0=alpha0, beta0=beta0, mu=1):
"""Equation 16 and 17"""
rhs = X(a, beta0=beta0)/alpha0 + 1
if diurnal:
return rhs/t0/mu * T(a)
else:
return (rhs/t0/mu - 1/T(a)) * Tl(a)
def cardanos_formula(p, q):
t = (q**2/4 + p**3/27)**0.5
return np.cbrt(-q/2 + t) + np.cbrt(-q/2 - t)
def a2ly(a, diurnal=False, alpha0=alpha0, beta0=beta0, mu=1, gamma=gamma,
t01=t0, a0=1):
"""
Equation 22 and 23
For a0=1, t01=t0, gamma=0 this equals a2ly_simple.
:param diurnal: True -> diurnal tides, False -> semidiurnal tides
:param alpha0:
"""
LedivLe0 = X(a, beta0=beta0, a0=a0) / alpha0 + t0/t01
if gamma == 0:
t0divt = LedivLe0 / mu
else:
p = (1 - gamma) / gamma
q = -LedivLe0 / gamma / mu
t0divt = cardanos_formula(p, q)
if diurnal:
return t0divt / t0 * T(a)
else:
return (t0divt/t0 - 1/T(a)) * Tl(a)
def a2ly_resonance(a, diurnal=False):
ts_ = 21 * 3600
t_ = 1 / (1/ts_+1/Y)
if diurnal:
ly = T(a) / t_
else:
ly = (1 / t_ - 1 / T(a)) / (1 / T(a) - 1 / Y)
return ly
def T(a):
"""Sidereal month (Keppler's 3rd law, equation 5)"""
return T0 * a ** 1.5
def Tl(a):
"""Synodic month"""
return 1 / (1 / T(a) - 1 / Y)
def t(a, ly, diurnal=False):
"""Sidereal day (equations 13 and 14)"""
if diurnal:
return T(a) / ly # K1, beat of O1 and K1
else:
return 1 / (1 / T(a) + ly / Tl(a)) # M2, beat of S2 and M2, ly = Tl / tl
def ts(a, ly, diurnal=False):
"""Solar day"""
return 1 / (1 / t(a, ly, diurnal=diurnal) - 1 / Y)
def _a2ly_solve(a, ly, **kwargs):
return ly - a2ly(a, **kwargs)
def solve(lys, bracket=None, **kwargs):
func = partial(_a2ly_solve, **kwargs)
aa = [root_scalar(func, (ly,), bracket=bracket).root for ly in lys]
return np.array(aa)
def format_err(vs, d=1):
vmin, v, vmax = sorted(vs)
return f'{v:.{d}f} +{vmax-v:.{d}f} -{v-vmin:.{d}f}'
def format_err_ltx(vs, d=1):
vmin, v, vmax = sorted(vs)
return f'${v:.{d}f}^{{+{vmax-v:.{d}f}}}_{{-{v-vmin:.{d}f}}}$'
def format_array(vs, d=1):
return ' '.join(f'{v:.{d}f}' for v in vs)
def print_moon_orbit(lys, abracket=(0.4, 0.8), fmt=format_array,
diurnal=False, **kwargs):
try:
a = solve(lys, bracket=abracket, diurnal=diurnal, **kwargs)
except ValueError as ex:
print(ex)
else:
ts_ = ts(a, lys, diurnal=diurnal)
t_ = t(a, lys, diurnal=diurnal)
tl_ = 1 / (1 / t_ - 1 / T(a))
print('assuming ' + 'semi' * (not diurnal) + 'diurnal tides')
print(' ly', fmt(lys))
print(' ly1', fmt(T(a) / t_))
print(' ly2', fmt(Tl(a) / tl_))
print(' a', fmt(a, d=3))
print(' Y/T', fmt(Y / T(a)))
# print(' T/ts', fmt(T(a) / ts_))
print(' Tl/ts', fmt(Tl(a) / ts_))
print(' ts (h)', fmt(ts_ / 3600))
print(' Y/ts', fmt(Y / ts_, d=0))
print()
def print_moon_orbit_today(fmt=format_array):
a = np.ones(1)
ts_ = ts0
t_ = t0
tl_ = 1 / (1 / t_ - 1 / T0)
print('today')
print(' ly1', round(T0 / t_, 3))
print(' ly2', fmt(Tl(a) / tl_))
print(' a', fmt(a, d=2))
print(' Y/T', fmt(Y / T(a), d=2))
# print(' T/ts', fmt(T(a) / ts_, d=3))
print(' Tl/ts', fmt(Tl(a) / ts_, d=3))
print(' Y/ts', round(Y / ts_))
print()
def print_moon_orbit_21_hours(lys, fmt=format_array, diurnal=False):
lys = np.array(lys)
ts_ = 21 * 3600
t_ = 1 / (1 / Y + 1 / ts_)
if diurnal:
T_ = lys * t_
else:
T_ = (1 + lys) / (1 / t_ + lys / Y )
tl_ = 1 / (1 / t_ - 1 / T_)
a = (T_ / T0) ** (2 / 3)
print('21-hour resonance assuming ' + 'semi' * (not diurnal) + 'diurnal tides')
print(' ly', fmt(lys))
print(' ly1', fmt(T_ / t_, 3))
print(' ly2', fmt(Tl(a) / tl_))
print(' a', fmt(a, d=3))
print(' Y/T', fmt(Y / T_))
print(' Tl/ts', fmt(Tl(a) / ts_))
# print(' T/ts', fmt( T / ts_))
print(' Y/ts', round(Y / ts_))
print()
def plot_moon_orbit_different_params(alim=ALIM):
a = np.linspace(*alim, 1001)
fig, axes = plt.subplots(2, 3, figsize=(12, 6), sharex=True, sharey=True)
bs = (0.24, beta0, 0.18, 0.15, 0.12)
colors = ('0.8', 'k', '0.3', '0.5', '0.7')
for ax, diurnal in [[axes[0, 0], False], [axes[1, 0], True]]:
for b0, c in zip(bs, colors):
lys = a2ly(a, diurnal=diurnal, beta0=b0)
ax.plot(a, lys, color=c, label=r'$\beta_0$={}'.format(b0))
ax.axhline(30, ls='--', zorder=-50)
mus = (0.99, 1.00, 1.01, 1.02)
colors = ('0.8', 'k', '0.5', '0.7')
for ax, diurnal in [[axes[0, 1], False], [axes[1, 1], True]]:
for mu, c in zip(mus, colors):
lys = a2ly(a, diurnal=diurnal, mu=mu)
ax.plot(a, lys, color=c, label=r'$\mu$={}'.format(mu))
ax.axhline(30, ls='--', zorder=-50)
ts_ = 21 * 3600
t_ = 1 / (1 / Y + 1 / ts_)
aa = (0.9, 0.91, 0.92, 0.93, 0.94)
for ax, diurnal in [[axes[0, 2], False], [axes[1, 2], True]]:
lys = a2ly(a, diurnal=diurnal)
ax.plot(a, lys, color='k')
lyr = a2ly_resonance(a, diurnal=diurnal)
ind = np.logical_and(0.9 <= a, a <0.951)
ax.plot(a[ind], lyr[ind], 'k--')#, color='gray')
for a0 in aa:
lyr2 = a2ly(a, a0=a0, t01=t_, diurnal=diurnal)
ax.plot(a[a<a0], lyr2[a<a0], '--', color='0.5')
ax.axhline(30, ls='--', zorder=-50)
ax.set_xlim(alim)
ax.set_ylim(25.8, 33.2)
lkw = dict(bbox_to_anchor=(0.7, 0.01), loc='lower center', fontsize='small', frameon=False)
axes[0, 0].legend(**lkw)
axes[1, 0].legend(**lkw)
axes[0, 1].legend(**lkw)
axes[1, 1].legend(**lkw)
axes[0, 0].xaxis.set_minor_locator(MultipleLocator(0.02))
axes[1, 0].set_xlabel('orbital radius a')
axes[1, 1].set_xlabel('orbital radius a')
axes[1, 2].set_xlabel('orbital radius a')
Tltl = r'$T_{\rm l}/t_{\rm l}$'
axes[0, 0].set_ylabel(f'lunar days per synodic month\nly$_2$={Tltl}')
axes[1, 0].set_ylabel('sidereal days per sidereal month\nly$_1$=$T/t$')
ankw = dict(xy=(0, 1), xytext=(8, -8), xycoords='axes fraction',
textcoords='offset points', va='top', size='large')
axes[0, 0].annotate('a) ratio of torques\n semidiurnal', **ankw)
axes[1, 0].annotate('b) ratio of torques\n diurnal', **ankw)
axes[0, 1].annotate('c) change in moment of inertia\n semidiurnal', **ankw)
axes[1, 1].annotate('d) change in moment of inertia\n diurnal', **ankw)
axes[0, 2].annotate('e) atmospheric resonance\n semidiurnal', **ankw)
axes[1, 2].annotate('f) atmospheric resonance\n diurnal', **ankw)
axes[0, 2].annotate('21-hour resonance', (0.90, 26.6), rotation=71, fontsize='small')
axes[1, 2].annotate('21-hour resonance', (0.902, 26.1), rotation=68, fontsize='small')
fig.tight_layout()
fig.savefig('figs/moon_orbit_params.pdf')
def plot_moon_orbit_different_params2(alim=ALIM):
a = np.linspace(*alim, 1001)
fig, axes = plt.subplots(2, 1, figsize=(5, 6), sharex=True, sharey=True)
alphas = (0.201, alpha0, 0.205, 0.2075)
colors = ('0.8', 'k', '0.5', '0.7')
for ax, diurnal in [[axes[0], False], [axes[1], True]]:
for a0, c in zip(alphas, colors):
lys = a2ly(a, diurnal=diurnal, alpha0=a0)
ax.plot(a, lys, color=c, label=r'$\alpha_0$={}'.format(a0) + ' (Runcorn 1979)' * (a0 == 0.2075))
ax.axhline(30, ls='--', zorder=-50)
ax.set_xlim(alim)
ax.set_ylim(25.8, 33.2)
lkw = dict(bbox_to_anchor=(0.7, 0.01), loc='lower center', fontsize='small', frameon=False)
axes[0].legend(**lkw)
axes[1].legend(**lkw)
axes[0].xaxis.set_minor_locator(MultipleLocator(0.02))
axes[1].set_xlabel('orbital radius a')
Tltl = r'$T_{\rm l}/t_{\rm l}$'
axes[0].set_ylabel(f'lunar days per synodic month\nly$_2$={Tltl}')
axes[1].set_ylabel('sidereal days per sidereal month\nly$_1$=$T/t$')
ankw = dict(xy=(0, 1), xytext=(8, -8), xycoords='axes fraction',
textcoords='offset points', va='top', size='large')
axes[0].annotate('a) ratio of angular momenta\n semidiurnal', **ankw)
axes[1].annotate('b) ratio of angular momenta\n diurnal', **ankw)
fig.tight_layout()
fig.savefig('figs/moon_orbit_params2.pdf')
def plot_moon_orbit(lys=None, ly_range=None, ly_print_error=None,
ly_annotate=None, pos_annotate=0.3,
alim=ALIM, abracket=(0.4, 0.8),
abracket2=None,
orbit_data=WILLIAMS2000,
check_goldreich1966=False):
a = np.linspace(*alim, 101)
ar = np.linspace(alim[0], 0.951, 101)
ly = a2ly(a, diurnal=False)
ly2 = a2ly(a, diurnal=True)
ly3 = a2ly(a, diurnal=False, gamma=0)
ly4 = a2ly_Coughenour2013(a, diurnal=False)
lyr = a2ly_resonance(ar, diurnal=False)
Tltl = r'$T_{\rm l}/t_{\rm l}$'
Yts = r'$Y/t_{\rm s}$'
tsl = r'$t_{\rm s}$'
fig, mosaic = plt.subplot_mosaic('1\n1\n1\n1\n2\n2\n3\n3', figsize=(10, 9), sharex=True)
ax1 = mosaic['1']
ax2 = mosaic['2']
ax3 = mosaic['3']
ax1.plot(a, ly, 'k', label=f'lunar days per synodic month {Tltl}, semidiurnal tide, equation (23)')
ax1.plot(a, ly2, '0.5', zorder=0, label='sidereal days per sidereal month $T/t$, diurnal tide, equation (22)')
ax1.plot(a, ly3, 'k--', dashes=(1, 2, 4, 2), label=f'{Tltl} without correction, $\gamma$=0, semidiurnal tide, equation (17)')
ax1.plot(a, ly4, 'k:', dashes=(1, 5), label=f'{Tltl} Coughenour et al. 2013, semidiurnal tide')
#ax1.plot(a, ly4, 'r:', label=f'{Tltl} Runcorn 1979, semidiurnal tide')
ax1.plot(ar, lyr, 'k--', label='21-hour resonance, semidiurnal tide')
# Tldivts = Tl(a) / ts(a, ly)
# ax1.plot(a, Tldivts, 'C3', label='Tl/ts')
ax2.plot(a, Y / T(a), 'k')
ax3.plot(a, ts(a, ly) / 3600, 'k')
ax3.plot(ar, np.ones(len(ar))*21, 'k--')
if lys is not None:
label = 'observed number of layers\nper two neap-spring-neap cycles '
ax1.axhline(lys[0], ls='--', zorder=-50, label=label)
ax1.set_ylabel('number of "days"\nper two neap-spring-neap cycles ly')
ax2.set_ylabel('sidereal months\nper year $Y/T$')
ax3.set_ylabel('solar day ts (hours)')
ax3.set_xlabel('orbital radius a')
ax1.set_yticks(np.arange(10, 36, 2))
ax1.yaxis.set_minor_locator(MultipleLocator(1))
ax2.yaxis.set_minor_locator(MultipleLocator(5))
ax3.set_yticks(np.arange(8, 25, 4))
ax3.yaxis.set_minor_locator(MultipleLocator(1))
ax3.xaxis.set_minor_locator(MultipleLocator(0.02))
ax3.set_xlim(alim[0]-0.01, alim[1]+0.01)
def _inverse_factor(v):
return Y / (v * 3600)
ax5 = ax3.secondary_yaxis(-0.08, functions=(_inverse_factor, _inverse_factor))
ax5.set_yticks([400, 500, 600, 700, 800, 1000])
ax5.yaxis.set_minor_locator(MultipleLocator(50))
ax5.set_ylabel(f'solar days per year {Yts}')
if orbit_data is not None:
adata = orbit_data['a']
ax1.plot(adata, orbit_data['Tl/tl'], 'kx')
ax1.plot(adata, orbit_data['T/t'], 'x', color='0.5')
ax2.plot(adata, orbit_data['Y/T'], 'kx')
ax3.plot(adata, orbit_data['ts'], 'kx')
if lys is not None:
a = solve(lys, diurnal=True, bracket=abracket)
for ax in (ax1, ax2, ax3):
for a_ in a:
vline1 = ax.axvline(a_, color='C0')
a = solve(lys, diurnal=False, bracket=abracket)
for ax in (ax1, ax2, ax3):
a_ = a[0]
vline2 = ax.axvline(a_, color='C1', ls='--', alpha=0.3)
if abracket2:
a = solve(lys, diurnal=True, bracket=abracket2)
for ax in (ax1, ax2, ax3):
for a_ in a:
ax.axvline(a_, color='C0', alpha=0.6)
a = solve(lys, diurnal=False, bracket=abracket2)
for ax in (ax1, ax2, ax3):
a_ = a[0]
ax.axvline(a_, color='C1', ls='--', alpha=0.2)
if ly_range is not None:
a = sorted(solve(ly_range, diurnal=True, bracket=abracket))
for ax in (ax1, ax2, ax3):
spanplot = ax.axvspan(*a, color='C0', alpha=0.2, zorder=-30)
if abracket2 is not None:
a = sorted(solve(ly_range, diurnal=True, bracket=abracket2))
for ax in (ax1, ax2, ax3):
ax.axvspan(*a, color='C0', alpha=0.15, zorder=-30)
if ly_annotate is not None:
ly = ly_annotate
a = solve([ly], diurnal=True, bracket=abracket)[0]
ts_ = ts(a, ly, diurnal=True)
ax1.annotate(f'$ly_1$ = {ly:.1f}\na = {a:.3f}', (pos_annotate, 0.75), xycoords='axes fraction', va='bottom')
ax2.annotate(f'$Y/T$ = {Y / T(a):.1f}', (pos_annotate, 0.05), xycoords='axes fraction', va='bottom')
label = f'{tsl} = {ts_/3600:.1f}h\n{Yts} = {Y/ts_:.0f}'
ax3.annotate(label, (pos_annotate, 0.75), xycoords='axes fraction')
for ax, label in zip((ax1, ax2, ax3), 'abc'):
ax.annotate(label + ')', (0, 1), (8, -15), 'axes fraction', 'offset points', va='top', size='large')
ax1.set_xlim(alim)
ax1.set_ylim(22, 33)
if check_goldreich1966:
def ts2ly(a, ts_):
t_ = 1 / (1/ts_ + 1/Y)
ly1 = T(a) / t_
tl = 1 / (1/t_ - 1/T(a))
ly2 = Tl(a)/tl
return ly1, ly2
with open('data/goldreich1966.txt') as f:
data = f.read()
line1, line2 = data.splitlines()
a = np.array(list(map(float, line1.split()[1:]))) / 60.2
ts_ = np.array(list(map(float, line2.split()[1:]))) * 3600
ly1, ly2 = ts2ly(a, ts_)
ax1.plot(a, ly1, 'C1', alpha=0.3)
ax1.plot(a, ly2, 'C1', label='Goldreich 1966')
ax3.plot(a, ts_ / 3600, 'C1')
def update_prop(handle, orig):
handle.update_from(orig)
x,y = handle.get_data()
handle.set_data([np.mean(x)]*2, [-y[0], 2*y[0]])
ax1.legend(loc='lower center', ncol=2, fontsize=8.8)
ax2.legend([(spanplot, vline1), vline2],
['result and bounds for diurnal tides',
'result for semidiurnal tides'],
handler_map={plt.Line2D:HandlerLine2D(update_func=update_prop)},
handleheight=2)
fig.tight_layout()
fig.savefig('figs/moon_orbit.pdf')
def plot_other_parameters(alim=ALIM):
a = np.linspace(*alim, 101)
ly = a2ly(a)
IedivIe0 = 1 + gamma * (t0**2/t(a, ly)**2 - 1)
ratio_LeLm = alpha0 * IedivIe0 * t0 / t(a, ly) /a ** 0.5
ratio_Ltotal = (Le0*t0/t(a, ly)*IedivIe0 + Lm0*a**0.5) / (Le0 + Lm0)
ratio_dLm_dLsun = 1 / (beta0 * a ** 6)
fig = plt.figure(figsize=(8, 8))
ax1 = fig.add_subplot(511)
ax2 = fig.add_subplot(512, sharex=ax1)
ax3 = fig.add_subplot(513, sharex=ax1)
ax4 = fig.add_subplot(514, sharex=ax1)
ax5 = fig.add_subplot(515, sharex=ax1)
ax1.plot(a, ratio_LeLm, 'k')
ax2.plot(a, ratio_Ltotal, 'k')
ax3.semilogy(a, ratio_dLm_dLsun, 'k')
ratioY = ((1/13 * beta0 * a ** 6.5 - 1 / 13 * beta0) / alpha1 + 1) ** 3
ax4.plot(a, (ratioY-1), 'k')
ax5.plot(a, IedivIe0, 'k') # simplified solution without solving Cardanos formula
from matplotlib.ticker import FormatStrFormatter
ax4.yaxis.set_major_formatter(FormatStrFormatter('%.2e'))
ankw = dict(xy=(0, 1), xytext=(1, -1), xycoords='axes fraction',
textcoords='offset points', va='top', size='small')
ax1.set_ylabel('Le / Lm')
ax1.annotate('a) ratio of Earths angular momentum to lunar orbital angular momentum', **ankw)
ax2.set_ylabel('(Le+Lm) / (Le0+Lm0)')
ax2.annotate('b) ratio of total momentum in Earth-Moon system (including moments lost later) to todays value', **ankw)
ax3.set_ylabel('dLm / dLsun')
ax3.annotate('c) ratio of momenta transferred from rotation of Earth to orbit of Moon and orbit of Earth around sun', **ankw)
ax4.set_ylabel('Y / Y0 - 1')
ax4.annotate('d) change of length of the year due to larger Earth-Sun distance due to (c)', **ankw)
ax5.set_ylabel('Ie / Ie0')
ax5.annotate("e) change in Earth's moment of inertia, due to faster rotation and flattening", **ankw)
ax5.set_xlabel('orbital radius a')
fig.tight_layout()
fig.savefig('figs/moon_orbit_params3.pdf')
def plot_moon_orbit_time(layers=None, abracket=(0.4, 0.8),
orbit_data=ORBIT_TIME_DATA,
abracket2=None,
plot_models=PMODS):
fig = plt.figure(figsize=(7, 4))
ax = fig.add_subplot(111)
if plot_models is not None:
models = np.load('data/orbit_models.npz')
m1handle, = ax.plot(*models[PMODS[0]], '0.8', linestyle='-.', label=PMODS[0])
for i in range(1, 5):
m2handle, = ax.plot(*models[PMODS[i]], '0.8', linestyle='--', label='Daher et al. 2021')
for i in range(5, 8):
m3handle, = ax.plot(*models[PMODS[i]], '0.8', linestyle=':', label='Tyler 2021')
m4handle, = ax.plot(*models[PMODS[8]], '0.8', label=PMODS[8])
m5handle = ax.fill_between(*models[PMODS[8]+' 2sigma'], color='0.87')
if orbit_data is not None:
orbit_data_handles = [ax.plot(age, a_, marker, mec='k', mfc='None', label=label, alpha=alpha)[0]
for (age, a_, marker, alpha, label) in orbit_data]
if layers is not None:
lys = layers[:3]
a = solve(lys, diurnal=True, bracket=abracket)
amin, a_, amax = sorted(a)
yerr = [[a_-amin], [amax-a_]]
this_study_handle = ax.errorbar(layers[-1], a_, yerr=yerr, fmt='x', zorder=10, color='C0', label='Moodies, this study')
if abracket2 is not None:
a = solve(lys, diurnal=True, bracket=abracket2)
amin, a_, amax = sorted(a)
yerr = [[a_-amin], [amax-a_]]
ax.errorbar(layers[-1], a_, yerr=yerr, fmt='x', zorder=10, color='C0', alpha=0.7)
ax.invert_xaxis()
ax.xaxis.set_minor_locator(MultipleLocator(0.25))
ax.set_ylim(0.465, None)
ax.set_ylabel('orbital radius a')
ax.set_xlabel('time in billion years before present')
handles = [m1handle, m2handle, (m5handle, m4handle), m3handle]
labels = [PMODS[0], 'Daher et al. 2021', PMODS[8], 'Tyler 2021']
legend1 = ax.legend(handles, labels, loc='upper left', frameon=False)
ax.add_artist(legend1)
ax.legend(handles=[this_study_handle] + orbit_data_handles[::-1], loc='lower right', frameon=False, fontsize='small')
fig.savefig('figs/moon_orbit_time.pdf')
_atest = np.linspace(0.2, 1.2, 101)
np.testing.assert_allclose(a2ly_simple(_atest), a2ly(_atest, gamma=0))
if __name__ == '__main__':
lys = (30.0, 28.4, 30.6)
lys2 = (30.0,)
print_moon_orbit(lys, diurnal=True, abracket=(0.4, 0.8))
print('gamma=0')
print_moon_orbit(lys2, diurnal=True, abracket=(0.4, 0.8), gamma=0)
print('1% higher moment of inertia')
print_moon_orbit(lys2, diurnal=True, abracket=(0.4, 0.8), mu=1.01)
print('high orbit')
print_moon_orbit(lys2, diurnal=True, abracket=(0.85, 1.1))
print_moon_orbit(lys2, diurnal=False, abracket=(0.4, 0.8))
print_moon_orbit_21_hours((15.0,), diurnal=False)
print_moon_orbit_today()
print('Observation from Eriksson & Simpson is 18.6, here we use 20')
print_moon_orbit([20], diurnal=False, abracket=(0.3, 0.8))
plot_moon_orbit_time(layers=lys+ (3.20,))
plot_moon_orbit(lys=(30.0,),
ly_range=(28.4, 30.6),
ly_annotate=30.0,
pos_annotate=0.15,
orbit_data=None
)
plot_moon_orbit_different_params()
plot_moon_orbit_different_params2()
plot_other_parameters(alim=(0.2, 1.01))
plt.show()