From 8ca5051b9afb6f8d2b3ae1b71d45d84e5d1c6f57 Mon Sep 17 00:00:00 2001 From: Alex Brooks Date: Sun, 22 Sep 2024 06:56:20 -0600 Subject: [PATCH] [Misc] Use NamedTuple in Multi-image example (#8705) Signed-off-by: Alex-Brooks --- ...e_inference_vision_language_multi_image.py | 74 +++++++++++++------ 1 file changed, 52 insertions(+), 22 deletions(-) diff --git a/examples/offline_inference_vision_language_multi_image.py b/examples/offline_inference_vision_language_multi_image.py index 454872c628373..92ab4f42baa80 100644 --- a/examples/offline_inference_vision_language_multi_image.py +++ b/examples/offline_inference_vision_language_multi_image.py @@ -4,8 +4,9 @@ by the model. """ from argparse import Namespace -from typing import List +from typing import List, NamedTuple, Optional +from PIL.Image import Image from transformers import AutoProcessor, AutoTokenizer from vllm import LLM, SamplingParams @@ -19,7 +20,15 @@ ] -def load_qwenvl_chat(question: str, image_urls: List[str]): +class ModelRequestData(NamedTuple): + llm: LLM + prompt: str + stop_token_ids: Optional[List[str]] + image_data: List[Image] + chat_template: Optional[str] + + +def load_qwenvl_chat(question: str, image_urls: List[str]) -> ModelRequestData: model_name = "Qwen/Qwen-VL-Chat" llm = LLM( model=model_name, @@ -48,10 +57,16 @@ def load_qwenvl_chat(question: str, image_urls: List[str]): stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>"] stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] - return llm, prompt, stop_token_ids, None, chat_template + return ModelRequestData( + llm=llm, + prompt=prompt, + stop_token_ids=stop_token_ids, + image_data=[fetch_image(url) for url in image_urls], + chat_template=chat_template, + ) -def load_phi3v(question: str, image_urls: List[str]): +def load_phi3v(question: str, image_urls: List[str]) -> ModelRequestData: llm = LLM( model="microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, @@ -62,10 +77,17 @@ def load_phi3v(question: str, image_urls: List[str]): for i, _ in enumerate(image_urls, start=1)) prompt = f"<|user|>\n{placeholders}\n{question}<|end|>\n<|assistant|>\n" stop_token_ids = None - return llm, prompt, stop_token_ids, None, None + + return ModelRequestData( + llm=llm, + prompt=prompt, + stop_token_ids=stop_token_ids, + image_data=[fetch_image(url) for url in image_urls], + chat_template=None, + ) -def load_internvl(question: str, image_urls: List[str]): +def load_internvl(question: str, image_urls: List[str]) -> ModelRequestData: model_name = "OpenGVLab/InternVL2-2B" llm = LLM( @@ -93,10 +115,16 @@ def load_internvl(question: str, image_urls: List[str]): stop_tokens = ["<|endoftext|>", "<|im_start|>", "<|im_end|>", "<|end|>"] stop_token_ids = [tokenizer.convert_tokens_to_ids(i) for i in stop_tokens] - return llm, prompt, stop_token_ids, None, None + return ModelRequestData( + llm=llm, + prompt=prompt, + stop_token_ids=stop_token_ids, + image_data=[fetch_image(url) for url in image_urls], + chat_template=None, + ) -def load_qwen2_vl(question, image_urls: List[str]): +def load_qwen2_vl(question, image_urls: List[str]) -> ModelRequestData: try: from qwen_vl_utils import process_vision_info except ModuleNotFoundError: @@ -143,7 +171,13 @@ def load_qwen2_vl(question, image_urls: List[str]): else: image_data, _ = process_vision_info(messages) - return llm, prompt, stop_token_ids, image_data, None + return ModelRequestData( + llm=llm, + prompt=prompt, + stop_token_ids=stop_token_ids, + image_data=image_data, + chat_template=None, + ) model_example_map = { @@ -155,20 +189,17 @@ def load_qwen2_vl(question, image_urls: List[str]): def run_generate(model, question: str, image_urls: List[str]): - llm, prompt, stop_token_ids, image_data, _ = model_example_map[model]( - question, image_urls) - if image_data is None: - image_data = [fetch_image(url) for url in image_urls] + req_data = model_example_map[model](question, image_urls) sampling_params = SamplingParams(temperature=0.0, max_tokens=128, - stop_token_ids=stop_token_ids) + stop_token_ids=req_data.stop_token_ids) - outputs = llm.generate( + outputs = req_data.llm.generate( { - "prompt": prompt, + "prompt": req_data.prompt, "multi_modal_data": { - "image": image_data + "image": req_data.image_data }, }, sampling_params=sampling_params) @@ -179,13 +210,12 @@ def run_generate(model, question: str, image_urls: List[str]): def run_chat(model: str, question: str, image_urls: List[str]): - llm, _, stop_token_ids, _, chat_template = model_example_map[model]( - question, image_urls) + req_data = model_example_map[model](question, image_urls) sampling_params = SamplingParams(temperature=0.0, max_tokens=128, - stop_token_ids=stop_token_ids) - outputs = llm.chat( + stop_token_ids=req_data.stop_token_ids) + outputs = req_data.llm.chat( [{ "role": "user", @@ -203,7 +233,7 @@ def run_chat(model: str, question: str, image_urls: List[str]): ], }], sampling_params=sampling_params, - chat_template=chat_template, + chat_template=req_data.chat_template, ) for o in outputs: