-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathECMWF_plot.py
50 lines (41 loc) · 1.99 KB
/
ECMWF_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import netCDF4
class ECMWF_plot:
def plot_test_case(self):
# This plotting is run interactively in pycharm
df = xr.open_dataset("results/era5_msdwswrf_year_1980_roms.nc")
swrad = df["swrad"]
swrad.mean({"lat", "lon"}).plot(c="blue",alpha=0.5)
swrad.mean({"lat", "lon"}).resample(swrad_time="7D").mean().plot(c="orange", linewidth=3)
swrad.mean({"lat", "lon"}).resample(swrad_time="1M").mean().plot(c="red", linewidth=3)
df = xr.open_dataset("results/era5_t2m_year_1980_roms.nc")
swrad = df["Tair"]
swrad.mean({"lat", "lon"}).plot(c="blue", alpha=0.5)
swrad.mean({"lat", "lon"}).resample(Tair_time="7D").mean().plot(c="orange", linewidth=3)
swrad.mean({"lat", "lon"}).resample(Tair_time="1M").mean().plot(c="red", linewidth=3)
df = xr.open_dataset("results/era5_q_year_1980_roms.nc")
swrad = df["Qair"]
swrad.mean({"lat", "lon"}).plot(c="blue", alpha=0.5)
swrad.mean({"lat", "lon"}).resample(qair_time="7D").mean().plot(c="orange", linewidth=3)
swrad.mean({"lat", "lon"}).resample(qair_time="1M").mean().plot(c="red", linewidth=3)
df = xr.open_dataset("results/era5_msl_year_1980_roms.nc")
swrad = df["Pair"]
swrad.mean({"lat", "lon"}).plot(c="blue", alpha=0.5)
swrad.mean({"lat", "lon"}).resample(pair_time="7D").mean().plot(c="orange", linewidth=3)
swrad.mean({"lat", "lon"}).resample(pair_time="1M").mean().plot(c="red", linewidth=3)
def plot_data(self, longitude, latitude, masked_array, time, parameter):
proj = ccrs.PlateCarree()
for i in range(3):
dd = xr.DataArray(masked_array[i, :, :],
name=parameter,
dims=('latitude', 'longitude'),
coords={'latitude': latitude,
'longitude': longitude})
fig, ax1 = plt.subplots(ncols=1, subplot_kw={'projection': proj})
dd.plot(transform=proj, ax=ax1)
ax1.coastlines()
plt.title(netCDF4.num2date(time[i], units='hours since 1900-01-01 00:00:00.0', calendar='standard'))
plt.show()