-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinferno.py
296 lines (242 loc) · 10.7 KB
/
inferno.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import argparse
import os
import time
import cv2
import numpy as np
import tensorflow as tf
import ipdb
from config import config
from logger import Logger
from models import Simple, NASNET, Inception, GAP, YOLO
from utils import annotator, change_channel, gray_normalizer
def load_model(session, m_type, m_name, logger):
# load the weights based on best loss
best_dir = "best_loss"
# check model dir
model_path = "models/" + m_name
path = os.path.join(model_path, best_dir)
if not os.path.exists(path):
raise FileNotFoundError
if m_type == "simple":
model = Simple(m_name, config, logger)
elif m_type == "YOLO":
model = YOLO(m_name, config, logger)
elif m_type == "GAP":
model = GAP(m_name, config, logger)
elif m_type == "NAS":
model = NASNET(m_name, config, logger)
elif m_type == "INC":
model = Inception(m_name, config, logger)
else:
raise ValueError
# load the best saved weights
ckpt = tf.train.get_checkpoint_state(path)
if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path):
logger.log('Reloading model parameters..')
model.restore(session, ckpt.model_checkpoint_path)
else:
raise ValueError('There is no best model with given model')
return model
def rescale(image):
"""
If the input video is other than network size, it will resize the input video
:param image: a frame form input video
:return: scaled down frame
"""
scale_side = max(image.shape)
# image width and height are equal to 192
scale_value = config["input_width"] / scale_side
# scale down or up the input image
scaled_image = cv2.resize(image, dsize=None, fx=scale_value, fy=scale_value)
# convert to numpy array
scaled_image = np.asarray(scaled_image, dtype=np.uint8)
# one of pad should be zero
w_pad = int((config["input_width"] - scaled_image.shape[1]) / 2)
h_pad = int((config["input_width"] - scaled_image.shape[0]) / 2)
# create a new image with size of: (config["image_width"], config["image_height"])
new_image = np.ones((config["input_width"], config["input_height"]), dtype=np.uint8) * 250
# put the scaled image in the middle of new image
new_image[h_pad:h_pad + scaled_image.shape[0], w_pad:w_pad + scaled_image.shape[1]] = scaled_image
return new_image
def upscale_preds(_preds, _shapes):
"""
Get the predictions and upscale them to original size of video
:param preds:
:param shapes:
:return: upscales x and y
"""
# we need to calculate the pads to remove them from predicted labels
pad_side = np.max(_shapes)
# image width and height are equal to 384
downscale_value = config["input_width"] / pad_side
scaled_height = _shapes[0] * downscale_value
scaled_width = _shapes[1] * downscale_value
# one of pad should be zero
w_pad = (config["input_width"] - scaled_width) / 2
h_pad = (config["input_width"] - scaled_height) / 2
# remove the pas from predicted label
x = _preds[0] - w_pad
y = _preds[1] - h_pad
w = _preds[2]
# calculate the upscale value
upscale_value = pad_side / config["input_height"]
# upscale preds
x = x * upscale_value
y = y * upscale_value
w = w * upscale_value
return x, y, w
# load a the model with the best saved state from file and predict the pupil location
# on the input video. finaly save the video with the predicted pupil on disk
def main(m_type, m_name, logger, video_path=None, write_output=True):
with tf.Session() as sess:
# load best model
model = load_model(sess, m_type, m_name, logger)
# check input source is a file or camera
if video_path == None:
video_path = 0
# load the video or camera
cap = cv2.VideoCapture(video_path)
ret = True
counter = 0
tic = time.time()
frames = []
preds = []
while ret:
ret, frame = cap.read()
if ret:
# Our operations on the frame come here
frames.append(frame)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
f_shape = frame.shape
if frame.shape[0] != 192:
frame = rescale(frame)
image = gray_normalizer(frame)
image = change_channel(image, config["input_channel"])
[p] = model.predict(sess, [image])
x, y, w = upscale_preds(p, f_shape)
preds.append([x, y, w])
counter += 1
#test
'''
img = annotator((0, 250, 0), frame, *preds[counter-1])
if (w<14):
img = cv2.putText(img,'Eye closed',(10,20),cv2.FONT_HERSHEY_SIMPLEX,.5,(0, 250, 0),1)
cv2.imshow('Img',img)
cv2.waitKey(20)
'''
toc = time.time()
print("{0:0.2f} FPS".format(counter / (toc - tic)))
# get the video size
video_size = frames[0].shape[0:2]
if write_output:
# prepare a video write to show the result
video = cv2.VideoWriter("predicted_video.avi", cv2.VideoWriter_fourcc(*"XVID"), 30, (video_size[1], video_size[0]))
#video = cv2.VideoWriter("predicted_video.avi", cv2.VideoWriter_fourcc('M','J','P','G'), 30, (video_size[1], video_size[0]))
n = len(preds)
x = np.array(preds)[:,1]
y = np.array(preds)[:,0]
r = np.array(preds)[:,2]
#init A to the first value of gaze x
counter1 = 2; counter2 = 2;
down = 0; up = 0; right = 0; left = 0;
A = x[0]; B = 0; C = 0
v_down = 0; v_up = 0; SPV = 0
count_up = 0; count_down = 0;
cum_SPV = [];
for i, img in enumerate(frames):
labeled_img = annotator((0, 250, 0), img, *preds[i])
###
if (preds[i][2]<14):
labeled_img = cv2.putText(labeled_img,'Eye closed. Frame[{}]'.format(i+1),(3,10),cv2.FONT_HERSHEY_SIMPLEX,.3,(0, 250, 0),1)
else:
labeled_img = cv2.putText(labeled_img,'Eye opened. Frame[{}]'.format(i+1),(3,10),cv2.FONT_HERSHEY_SIMPLEX,.3,(0, 250, 0),1)
# start detecting the nystagmus down-beating, up-beating
if i>=2:
if r[i-2]>14 and r[i-1]>14 and r[i]>14:
print('Frame[{}], eye opened!'.format(i+1))
flag1 = np.sign(x[i-1] - x[i-2])
flag2 = np.sign(x[i] - x[i-1])
if flag1 > 0 and flag2 > 0:
counter1 += 1
elif flag1 < 0 and flag2 < 0:
counter2 += 1
elif flag1 > 0 and flag2 < 0:
B = x[i-1]
counter2 = 2
v_down = (B-A)/counter1
if counter1 < 4 and v_down > 0.8: # show text in frames
count_up += 1
print('Down-beating, v_down = {:0.2f}, SPV = {:0.2f}'.format(v_down,SPV))
#labeled_img = cv2.putText(labeled_img,'Down-beating: {}'.format(count_up),(3,25),cv2.FONT_HERSHEY_SIMPLEX,.3,(0, 250, 0),1)
elif flag1 < 0 and flag2 > 0:
A = x[i-1]
counter1 = 2
v_up = (B-A)/counter2
if count_up > 0:
SPV = np.maximum(v_down, v_up)
cum_SPV.append(SPV)
if counter2 < 4 and v_up> 0.8: # show text in frames
count_down += 1
print('Up-beating, v_up = {:0.2f}, SPV = {:0.2f}'.format(v_up,SPV))
#labeled_img = cv2.putText(labeled_img,'Up-beating: {}'.format(count_down),(3,40),cv2.FONT_HERSHEY_SIMPLEX,.3,(0, 250, 0),1)
else:
print('3 sucessive frames have eye closed')
#ipdb.set_trace()
labeled_img = cv2.putText(labeled_img,'Down-beating: {}'.format(count_up),(3,25),cv2.FONT_HERSHEY_SIMPLEX,.3,(0, 250, 0),1)
labeled_img = cv2.putText(labeled_img,'Up-beating: {}'.format(count_down),(3,40),cv2.FONT_HERSHEY_SIMPLEX,.3,(0, 250, 0),1)
# visualize
#cv2.imshow('Img',labeled_img)
#cv2.waitKey(20)
###
video.write(labeled_img)
# close the video
cv2.destroyAllWindows()
video.release()
print("Done...")
print('Down-beating: {} times, Up-beating: {} times'.format(count_down,count_up))
#ipdb.set_trace()
'''
# get the video size
video_size = frames[0].shape[0:2]
if write_output:
# prepare a video write to show the result
video = cv2.VideoWriter("predicted_video.avi", cv2.VideoWriter_fourcc(*"XVID"), 30, (video_size[1], video_size[0]))
#video = cv2.VideoWriter("predicted_video.avi", cv2.VideoWriter_fourcc('M','J','P','G'), 30, (video_size[1], video_size[0]))
for i, img in enumerate(frames):
labeled_img = annotator((0, 250, 0), img, *preds[i])
###
if (preds[i][2]<14):
labeled_img = cv2.putText(labeled_img,'Eye closed. Frame[{}]'.format(i+1),(3,10),cv2.FONT_HERSHEY_SIMPLEX,.3,(0, 250, 0),1)
else:
labeled_img = cv2.putText(labeled_img,'Eye opened. Frame[{}]'.format(i+1),(3,10),cv2.FONT_HERSHEY_SIMPLEX,.3,(0, 250, 0),1)
cv2.imshow('Img',labeled_img)
cv2.waitKey(20)
###
video.write(labeled_img)
# close the video
cv2.destroyAllWindows()
video.release()
print("Done...")
#ipdb.set_trace()
'''
if __name__ == "__main__":
class_ = argparse.ArgumentDefaultsHelpFormatter
parser = argparse.ArgumentParser(description=__doc__,
formatter_class=class_)
parser.add_argument('--model_type',
help="INC, YOLO, simple",
default="INC")
parser.add_argument('--model_name',
help="name of saved model (3A4Bh-Ref25)",
default="3A4Bh-Ref25")
parser.add_argument('video_path',
help="path to video file, empty for camera")
args = parser.parse_args()
# model_name = args.model_name
model_name = args.model_name
model_type = args.model_type
video_path = args.video_path
# initial a logger
logger = Logger(model_type, model_name, "", config, dir="models/")
logger.log("Start inferring model...")
main(model_type, model_name, logger, video_path)