-
Notifications
You must be signed in to change notification settings - Fork 0
/
abcd.py
executable file
·230 lines (193 loc) · 7.58 KB
/
abcd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
"""
Watch over a classifier making predictions. As each prediction (and actual)
classification becomes available, send them to a logger class that incrementally
calculates accuracy, recall, false alarm rate, precision, f, g etc.
For example:
a,b,c,d=list("abcd")
log = abcd("data","rx")
for want,got in [(a,b), (a,a), (a,c), (a,d), (b,a)]:
log(want, got)
log.report()
This prints
# db rx n a b c d acc pd pf prec f g class
----------------------------------------------------------------------------------------------------
# data rx 4 0 3 1 1 20 25 100 50 33 0 a
# data rx 1 3 1 1 0 20 0 25 0 33 0 b
# data rx 0 4 0 1 0 20 0 20 0 33 0 c
# data rx 0 4 0 1 0 20 0 20 0 33 0 d
----------------------------------------------------------------------------------------------------
# data rx 2 2 1 1 0 20 10 53 20 33 0
(The last line is the weighted sum of the column above it.)
If called from the command line, this code expects to read two words per line, for multiple lines.
- Line1 mentions the data and treatment applied.
- On all other lines, the words are first and section the actual and predicted values (respectively).
E.g.
cat <<EOF | python3 abcd.py
data rx
a b
a a
a c
a d
b a
EOF
This prints out the same report as above.
### Notes on Performance Measures
Classifiers can be assessed according to the following measures:
Example has class X
+-------+-----+
| not X | X |
+-----+-------+-----+
classifier predicts not X | no | a | b |
+-----+-------+-----+
classifier predicts X | yes | c | d |
+-----+-------+-----+
accuracy = acc = (a+d)/(a+b+c+d
prob detection = pd = recall = d/(b+d)
prob false alarm = pf = c/(a+c)
precision = prec = d/(c+d)
Ideally, detectors have high PDs, low PFs, and low
effort. This ideal state rarely happens:
- PD and effort are linked. The more modules that trigger
the detector, the higher the PD. However, effort also gets
increases
- High PD or low PF comes at the cost of high PF or low PD
(respectively). This linkage can be seen in a standard
receiver operator curve (ROC). Suppose, for example, LOC> x
is used as the detector (i.e. we assume large modules have
more errors). LOC > x represents a family of detectors. At
x=0, EVERY module is predicted to have errors. This detector
has a high PD but also a high false alarm rate. At x=0, NO
module is predicted to have errors. This detector has a low
false alarm rate but won't detect anything at all. At 0<x<1,
a set of detectors are generated as shown below:
pd
1 | x x x KEY:
| x . "." denotes the line PD=PF
| x . "x" denotes the roc curve
| x . for a set of detectors
| x .
| x .
| x .
|x .
|x
x------------------ pf
0 1
Note that:
- The only way to make no mistakes (PF=0) is to do nothing
(PD=0)
- The only way to catch more detects is to make more
mistakes (increasing PD means increasing PF).
- Our detector bends towards the "sweet spot" of
<PD=1,PF=0> but does not reach it.
- The line pf=pd on the above graph represents the "no information"
line. If pf=pd then the detector is pretty useless. The better
the detector, the more it rises above PF=PD towards the "sweet spot".
_____
## Programmer's guide
"""
import sys,re
class abcd:
def __init__(i,db="all",rx="all"):
"Initialize"
i.db = str(db); i.rx=str(rx);
i.yes = i.no = 0
i.known = {}; i.a= {}; i.b= {}; i.c= {}; i.d={}
def __call__(i,actual=None,predict=None):
"Incrementally update"
i.knowns(actual)
i.knowns(predict)
if actual == predict: i.yes += 1
else : i.no += 1
for x in i.known:
if actual == x:
if predict == actual: i.d[x] += 1
else : i.b[x] += 1
else:
if predict == x : i.c[x] += 1
else : i.a[x] += 1
def knowns(i,x):
"""
Ensure we know class `x`. If `x` is new,
then we have to back date the "a" value
(true negatives).
"""
if not x in i.known:
i.known[x]= i.a[x]= i.b[x]= i.c[x]=i.d[x]=0.0
i.known[x] += 1
if (i.known[x] == 1):
i.a[x] = i.yes + i.no
def header(i):
"Pretty print header"
print("#",
('{0:20s} {1:11s} {2:4s} {3:4s} {4:4s}'+\
'{5:4s}{6:4s} {7:3s} {8:3s} {9:3s} '+ \
'{10:3s} {11:3s}{12:3s}{13:10s}').format(
"db","rx","n","a","b","c","d","acc","pd",
"pf","prec","f","g","class"))
print('-'*100)
def scores(i):
"Computer the performance scores"
# Convenience class. Can acces fields as x.f not x["f"].
class oo:
def __init__(i, **adds): i.__dict__.update(adds)
def p(y) : return int(100*y + 0.5)
def n(y) : return int(y)
out = {}
ass=bs=cs=ds=accs=pds=pfs=precs=fs=gs=yess= 0
for x in i.known:
pd = pf = pn = prec = g = f = acc = 0
a = i.a[x]; b= i.b[x]; c= i.c[x]; d= i.d[x]
if (b+d) : pd = d / (b+d)
if (a+c) : pf = c / (a+c)
if (a+c) : pn = (b+d) / (a+c)
if (c+d) : prec = d / (c+d)
if (1-pf+pd): g = 2*(1-pf)*pd / (1-pf+pd)
if (prec+pd): f = 2*prec*pd/(prec+pd)
if (i.yes + i.no): acc= i.yes/(i.yes+i.no)
out[x] = oo(db=i.db, rx=i.rx, yes= n(b+d),
all=n(a+b+c+d), a=n(a),
b=n(b), c=n(c), d=n(d), acc=p(acc), pd=p(pd),
pf=p(pf), prec=p(prec), f=p(f), g=p(g),x=x)
# computer weighted sums
ratio = (c + d)/(i.yes + i.no)
ass += a * ratio
bs += b * ratio
cs += c * ratio
ds += d * ratio
accs += acc * ratio
pds += pd * ratio
pfs += pf * ratio
precs += prec * ratio
fs += f * ratio
gs += g * ratio
out["__all__"] = oo(
db=i.db, rx=i.rx, yes= n(yess),
all=n(ass+bs+cs+ds), a=n(ass),
b=n(bs), c=n(cs), d=n(ds), acc=p(accs), pd=p(pds),
pf=p(pfs), prec=p(precs), f=p(fs), g=p(gs),x="__all__")
return out
def report(i,brief=False):
"""
Write the performance scores for each class, then the
weighted sum of those scores across all classes.
"""
i.header()
for x,s in sorted(i.scores().items()):
if not brief:
print("#",
('{0:20s} {1:10s} {2:4d} {3:4d} {4:4d}'+\
'{5:4d} {6:4d} {7:4d} {8:3d} {9:3d} '+ \
'{10:3d} {11:3d} {12:3d} {13:10s}').format(
s.db, s.rx, s.yes, s.a, s.b, s.c, s.d,
s.acc, s.pd, s.pf, s.prec, s.f, s.g, x))
# Tool for reading in the data from standard input.
if __name__ == "__main__":
log = None
for line in sys.stdin:
words= re.sub(r"[\n\r]","",line).split(" ")
one,two= words[0],words[1]
if log:
log(one,two)
else:
log=abcd(one,two)
log.report()