This repository has been archived by the owner on Aug 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
340 lines (287 loc) · 14 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
import sys
import crds_calc
from pandas import read_csv, DataFrame
from PyQt5 import QtGui, QtWidgets, QtCore
from db import mem
from mainwin import Ui_MainWindow
from widgets import BaseGraph
import pathlib
from re import search as re_search
from varname.core import nameof
from hashlib import md5
from sqlitedict import SqliteDict
from pprint import PrettyPrinter
from numpy import average as np_average, arange, std as np_std
from pyperclip import copy as pycopy
from os import getcwd
class AppWindow(QtWidgets.QMainWindow, Ui_MainWindow):
def __init__(self):
super(AppWindow, self).__init__()
self.setupUi(self)
# Define syncables
synced_value_widgets = []
synced_check_widgets = []
for wname in vars(self):
w = vars(self).get(wname)
if re_search(r"^spin\_(.*)$", wname) != None:
synced_value_widgets.append(w)
elif re_search(r"^check\_(.*)$", wname) != None:
synced_check_widgets.append(w)
# Helpers
def display_warning(message: str):
msg = QtWidgets.QMessageBox()
msg.setIcon(QtWidgets.QMessageBox.Warning)
msg.setText("Warning")
msg.setInformativeText(message)
msg.setWindowTitle("Warning")
msg.exec_()
def display_error(message: str):
msg = QtWidgets.QMessageBox()
msg.setIcon(QtWidgets.QMessageBox.Critical)
msg.setText("Error")
msg.setInformativeText(message)
msg.setWindowTitle("Error")
msg.exec_()
def select_csv():
filename, _ = QtWidgets.QFileDialog.getOpenFileName(self)
data = None
try:
data = read_csv(filename, comment="%", delimiter=";").to_numpy()
except:
return
mem['x_data'] = data.transpose()[0]
mem['y_data'] = data.transpose()[1]
# timestep = mem['x_data'][1] - mem['x_data'][0]
timestep = (mem['x_data'][-1] - mem['x_data'][0]) / len(mem['x_data'])
mem['timestep'] = timestep
self.spin_timestep.setValue(timestep)
def set_timestep(x):
mem['timestep'] = x
self.spin_timestep.valueChanged.connect(lambda v: set_timestep(v))
self.raw_data_graph.plot() # Graph new stuff
# self.groups_graph.clear() # Clear old stuff
self.voltage_graph.clear()
self.added_peaks_graph.clear()
# self.tau_graph.clear()
mem['ymin'], mem['ymax'] = crds_calc.minmax(mem['y_data'])
try:
mem['v_data'] = data.transpose()[2]
self.voltage_graph.plot()
self.graph_tabs.setCurrentIndex(1)
except IndexError:
display_warning('No voltage column detected. VThreshold algo will not work.')
self.voltage.setVisible(False)
self.graph_tabs.setCurrentIndex(0)
# Load from persistent storage & bind write actions
# NOTE: This is incomplete, but can very easily finished if someone can figure out what's wrong.
# Currently using https://github.com/RaRe-Technologies/sqlitedict for local db handling.
# path_hash = md5(filename.encode('utf-8')).hexdigest()
# def set_value(name, val):
# with SqliteDict(f"{getcwd()}/db/{path_hash}.sqlite", autocommit=True) as storage:
# print(f"Change {name} to {val}.")
# storage[name] = val
# storage.commit()
# print(f"Check: {storage[name]}")
# with SqliteDict(f"{getcwd()}/db/{path_hash}.sqlite", autocommit=True) as storage:
# print(f"Check: {storage[name]}")
# with SqliteDict(f"{getcwd()}/db/{path_hash}.sqlite", autocommit=True) as storage:
# for w in synced_value_widgets:
# name = w.objectName()
# try:
# w.setValue(storage[name])
# print(f"Loaded {name}.")
# except KeyError:
# print(f"Failed to load object {name}.")
# pass
# w.valueChanged.connect(lambda x: set_value(name, x))
# for w in synced_check_widgets:
# name = w.objectName()
# try:
# w.setChecked(bool(storage[name]))
# print(f"Loaded {name} as {storage[name]}.")
# except KeyError:
# print(f"Failed to load object {name}.")
# pass
# w.stateChanged.connect(lambda: set_value(name, w.isChecked()))
# Universal Actions stuff
self.actionOpen_CSV_File.triggered.connect(select_csv)
self.actionGithub_Repository.triggered.connect(lambda: QtGui.QDesktopServices.openUrl(QtCore.QUrl('https://github.com/turtlebasket/crds_analyze')))
# NOTE: Do later, use QDialog
# def check_if_quit():
# <stuff here>
self.actionQuit_2.triggered.connect(sys.exit)
# Inputs
def switch_grouping_algo():
algo = self.combo_grouping_algo.currentIndex()
self.grouping_config_area.setCurrentIndex(algo)
self.combo_grouping_algo.currentIndexChanged.connect(switch_grouping_algo)
def set_start_time():
if self.check_custom_start.isChecked():
self.spin_start_time.setDisabled(False)
else:
self.spin_start_time.setDisabled(True)
self.check_custom_start.stateChanged.connect(set_start_time)
def set_end_time():
if self.check_custom_end.isChecked():
self.spin_end_time.setDisabled(False)
else:
self.spin_end_time.setDisabled(True)
self.check_custom_end.stateChanged.connect(set_end_time)
# Sync up peak detection settings between input locations
self.spin_min_peakheight.valueChanged.connect(lambda x: self.spin_min_peakheight_2.setValue(x))
self.spin_min_peakheight_2.valueChanged.connect(lambda x: self.spin_min_peakheight.setValue(x))
self.spin_min_peakprominence.valueChanged.connect(lambda x: self.spin_min_peakprominence_2.setValue(x))
self.spin_min_peakprominence_2.valueChanged.connect(lambda x: self.spin_min_peakprominence.setValue(x))
self.spin_moving_average_denom.valueChanged.connect(lambda x: self.spin_moving_average_denom_2.setValue(x))
self.spin_moving_average_denom_2.valueChanged.connect(lambda x: self.spin_moving_average_denom.setValue(x))
# Make advanced peak detection optional
def update_advanced_peak_detection_setting():
enabled = self.check_advanced_peak_detection.isChecked()
self.spin_min_peakheight_2.setEnabled(enabled)
self.spin_min_peakprominence_2.setEnabled(enabled)
self.spin_moving_average_denom_2.setEnabled(enabled)
self.check_advanced_peak_detection.stateChanged.connect(update_advanced_peak_detection_setting)
def init_correlate():
groups_raw = None
algo = self.combo_grouping_algo.currentIndex()
try:
if algo == 0:
groups_raw = crds_calc.vthreshold(
mem['x_data'],
mem['y_data'],
mem['v_data'],
self.spin_min_voltage.value(),
self.spin_max_voltage.value(),
mirrored=False if self.check_skip_groups.checkState() == 0 else True,
start=self.spin_start_time.value() if self.check_custom_start.isChecked() else None,
end=self.spin_end_time.value() if self.check_custom_end.isChecked() else None
)
# display_error('VThreshold not yet implemented.')
# return
elif algo == 1:
groups_raw = crds_calc.spaced_groups(
mem['x_data'],
mem['y_data'],
self.spin_group_len.value(),
self.spin_min_peakheight.value(),
self.spin_min_peakprominence.value(),
self.spin_moving_average_denom.value(),
mirrored=False if self.check_skip_groups.checkState() == 0 else True,
start=self.spin_start_time.value() if self.check_custom_start.isChecked() else None,
end=self.spin_end_time.value() if self.check_custom_end.isChecked() else None
)
if groups_raw == None or len(groups_raw) < 1:
display_error("No groups were detected. Try adjusting grouping parameters.")
mem['groups_correlated'] = crds_calc.correlate_groups(groups_raw)
# Graphing action
self.groups_graph.plot()
self.graph_tabs.setCurrentIndex(2)
except KeyError:
display_error('Failed to correlate. Did you import a data file & set parameters?')
self.correlate_button.pressed.connect(init_correlate)
def init_add_simple():
try:
mem['added_peaks'] = crds_calc.add_peaks_only(mem['groups_correlated'])
self.added_peaks_graph.set_params(None, shift_over=None)
self.added_peaks_graph.plot()
self.graph_tabs.setCurrentIndex(3)
except KeyError:
display_error("Correlated groups not found. Group peaks first.")
self.peak_add_button.pressed.connect(init_add_simple)
def init_add():
try:
mem['added_peaks'], mem['peak_indices'], mem['isolated_peaks'] = crds_calc.isolate_peaks(
mem['groups_correlated'],
self.spin_peak_overlap.value(),
self.spin_moving_average_denom.value(),
peak_prominence=self.spin_min_peak_height_added.value(),
peak_minheight=self.spin_peak_prominence_added.value(),
shift_over=self.spin_shift_over.value()
)
self.added_peaks_graph.set_params(self.spin_peak_overlap.value(), shift_over=self.spin_shift_over.value())
self.added_peaks_graph.plot()
self.graph_tabs.setCurrentIndex(3)
except KeyError:
display_error("Correlated groups not found. Group peaks first.")
self.isolate_button.pressed.connect(init_add)
def init_fit():
if not 'isolated_peaks' in mem:
display_error('Peaks not yet isolated.')
return
mem['fit_equations'] = crds_calc.fit_peaks(
mem['isolated_peaks'],
mem['peak_indices'],
self.spin_min_peakheight_2.value(),
self.spin_min_peakprominence_2.value(),
self.spin_moving_average_denom_2.value(),
self.spin_var_a.value(),
self.spin_var_tau.value(),
self.spin_var_y0.value(),
self.spin_shift_over_fit.value(),
self.check_advanced_peak_detection.isChecked()
)
mem['shift_over_fit'] = self.spin_shift_over_fit.value()
# print(mem['fit_equations'])
self.peak_fit_viewer.plot()
mem['time_constants'] = crds_calc.get_time_constants(mem['fit_equations'])
self.tau_viewer.plot()
tau_out = ""
for p_i in range(len(mem['time_constants'][0])):
tau_avg = np_average(mem['time_constants'][0:len(mem['time_constants'])][p_i])
tau_std = np_std(mem['time_constants'][0:len(mem['time_constants'])][p_i])
pp = PrettyPrinter(indent=2)
tau_out += f"""
Tooth: {p_i+1}
Tau Average: {tau_avg}
Tau StD: {tau_std}
"""
# NOTE: Insert above inside fstring to see raw data;
# no one should really want to see that standalone?
# Raw Tau Data:\n{pp.pformat(mem['time_constants'])}
self.tau_output.setText(tau_out)
self.graph_tabs.setCurrentIndex(5)
self.fit_button.pressed.connect(init_fit)
# Show equation
pix = QtGui.QPixmap(f"{pathlib.Path(__file__).parent.resolve()}/assets/eq3.png")
item = QtWidgets.QGraphicsPixmapItem(pix)
item.setScale(0.38)
scene = QtWidgets.QGraphicsScene()
scene.addItem(item)
self.equation_view.setScene(scene)
# Tau output actions
self.copy_results_button.pressed.connect(lambda: pycopy(self.tau_output.toPlainText()))
def export_csv():
try:
mem['time_constants']
except KeyError:
display_error("No tau data to export.")
return
filename, _ = QtWidgets.QFileDialog.getSaveFileName(self, "Export CSV", "file.csv")
df = DataFrame(mem['time_constants'])
# df.index = arange(1, len(df)+1)
try:
df.to_csv(filename, index=False)
except:
pass
self.export_csv_button.pressed.connect(export_csv)
def export_csv_residuals():
try:
mem['residuals']
except KeyError:
display_error("No residual data to export.")
return
filename, _ = QtWidgets.QFileDialog.getSaveFileName(self, "Export Residuals CSV", "residuals.csv")
df = DataFrame(mem['residuals'])
# df.index = arange(1, len(df)+1)
try:
df.to_csv(filename, index=False)
except:
pass
self.export_csv_button_resid.pressed.connect(export_csv_residuals)
# Show self
self.show()
if __name__ == '__main__':
app = QtWidgets.QApplication(sys.argv)
window = AppWindow()
window.show()
sys.exit(app.exec_())