-
Notifications
You must be signed in to change notification settings - Fork 0
/
all_output.txt
150 lines (123 loc) · 5.05 KB
/
all_output.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
First, let's outline the core classes, functions, and methods that will be necessary:
1. SitemapLoader: This class will be responsible for loading all pages from a provided sitemap link.
2. DocumentChunker: This class will be responsible for chunking the documents and embedding them into vectors using the OpenAI library.
3. PineconeDatabase: This class will be responsible for storing vectors in a Pinecone vector database with a vector dimension size of 1024.
4. WebBaseLoader: This class will be responsible for loading documents from a provided GitHub repo.
5. BM25Encoder: This class will be responsible for creating a PineconeHybridSearchRetriever.
6. RetreivalQA: This class will be responsible for creating a langchain retrievalqachain for each retriever type.
7. ConversationAgent: This class will be responsible for providing relevant information based on the user's query.
8. CustomResponseSchema: This class will be responsible for defining the custom schema for the agent's responses.
9. StreamlitApp: This class will be responsible for creating a Streamlit conversational app frontend for user interaction.
Now, let's create the code for each of these classes and functions. We'll start with the "entrypoint" file, which will be the main.py file.
main.py
```python
from sitemap_loader import SitemapLoader
from document_chunker import DocumentChunker
from pinecone_database import PineconeDatabase
from web_base_loader import WebBaseLoader
from bm25_encoder import BM25Encoder
from retreival_qa import RetreivalQA
from conversation_agent import ConversationAgent
from custom_response_schema import CustomResponseSchema
from streamlit_app import StreamlitApp
def main():
# Load all pages from a provided sitemap link
sitemap_loader = SitemapLoader("sitemap_link")
pages = sitemap_loader.load_sitemap()
# Chunk the documents and embed them into vectors
document_chunker = DocumentChunker()
vectors = document_chunker.chunk_and_embed(pages)
# Store vectors in a Pinecone vector database
pinecone_database = PineconeDatabase()
pinecone_database.store_vectors(vectors)
# Load documents from a provided GitHub repo
web_base_loader = WebBaseLoader("repo_url")
documents = web_base_loader.load_documents()
# Create a PineconeHybridSearchRetriever
bm25_encoder = BM25Encoder()
retriever = bm25_encoder.create_retriever()
# Create a langchain retrievalqachain for each retriever type
retreival_qa = RetreivalQA()
qa_chain = retreival_qa.create_chain(retriever)
# Provide relevant information based on the user's query
conversation_agent = ConversationAgent()
response = conversation_agent.get_response("user_query")
# Define the custom schema for the agent's responses
custom_response_schema = CustomResponseSchema()
schema = custom_response_schema.define_schema()
# Create a Streamlit conversational app frontend for user interaction
streamlit_app = StreamlitApp()
streamlit_app.run()
if __name__ == "__main__":
main()
```
Now, let's create the code for each of the classes that are imported by the main.py file. We'll start with the SitemapLoader class.
sitemap_loader.py
```python
class SitemapLoader:
def __init__(self, sitemap_link):
self.sitemap_link = sitemap_link
def load_sitemap(self):
# Code to load all pages from the provided sitemap link
pass
```
document_chunker.py
```python
class DocumentChunker:
def chunk_and_embed(self, pages):
# Code to chunk the documents and embed them into vectors
pass
```
pinecone_database.py
```python
class PineconeDatabase:
def store_vectors(self, vectors):
# Code to store vectors in a Pinecone vector database
pass
```
web_base_loader.py
```python
class WebBaseLoader:
def __init__(self, repo_url):
self.repo_url = repo_url
def load_documents(self):
# Code to load documents from the provided GitHub repo
pass
```
bm25_encoder.py
```python
class BM25Encoder:
def create_retriever(self):
# Code to create a PineconeHybridSearchRetriever
pass
```
retreival_qa.py
```python
class RetreivalQA:
def create_chain(self, retriever):
# Code to create a langchain retrievalqachain for each retriever type
pass
```
conversation_agent.py
```python
class ConversationAgent:
def get_response(self, user_query):
# Code to provide relevant information based on the user's query
pass
```
custom_response_schema.py
```python
from pydantic import BaseModel, Field
class CustomResponseSchema(BaseModel):
def define_schema(self):
# Code to define the custom schema for the agent's responses
pass
```
streamlit_app.py
```python
class StreamlitApp:
def run(self):
# Code to create a Streamlit conversational app frontend for user interaction
pass
```
Please note that the actual implementation of these classes and functions will depend on the specific requirements and constraints of your project. The code provided here is just a skeleton to give you an idea of how to structure your project.