-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpotential_func.py
120 lines (90 loc) · 2.92 KB
/
potential_func.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from functools import partial
import math
from point import Point
"""
This module defines potential functions that give the potential at a given
destination point (dest). There are a few variations of potential functions
that include:
- Potential w.r.t to the current point (cur_pos)
- Potential fields that ignore cur_pos
- Potential functions that are curried with argument, returning a
function that only takes dest as argument
- Potential maps that map offsets from cur_pos to potential values
Potential here is analogous to elelctro-static potential, i.e +ve potential
implies repulsion and -ve potential implies attraction.
"""
def inert_repel(cur_pos, dest):
"""
Inert potential is analogous to a wall or a bad tile, that cannot be
stepped on.
Return:
potential value
"""
if dest == cur_pos:
return math.inf
return 0
def inert_repel_with(cur_pos):
"""
Curry inert function with cur_pos.
Return:
function(dest): only requires dest argument to give potential value
"""
return partial(inert_repel, cur_pos)
def linear_cutoff(cur_pos, cutoff, dest):
"""
Potential degrades linearly from cutoff radius. Analogous to an enemy
unit with cutoff being attack range for enemy unit
Return:
potential value
"""
dist = cur_pos.dist(dest) - cutoff
if dist < 0:
return math.inf
else:
return max(4 - dist, 0)
def linear_cutoff_at(cur_pos, cutoff):
"""
Curry linear cutoff function with cur_pos and cutoff
Return:
function(dest): only requires dest argument to give potential value
"""
return partial(linear_cutoff, cur_pos, cutoff)
def decided_path_point(cur_pos, slope, index, dest):
"""
Decided points on the path have -ve potential to attract. Potential
of point on path increases the further it is down the path. Slope
indicates rate of degrading influence.
Return:
potential value
"""
dist = cur_pos.dist(dest)
return min(-index - 4 + dist * slope, 0)
def decided_path(path, slope, dest):
"""
Calculates sum of all points on path at dest. Uses decided_path_point
to do so.
Return:
potential value
"""
scores = [decided_path_point(point, slope, i, dest) for i, point in enumerate(path)]
return min(scores)
def decided_path_at(path, slope):
"""
Curries decided_path arguments
Return:
function(dest): gives potential at dest
"""
return partial(decided_path, path, slope)
if __name__ == "__main__":
from itertools import combinations
origin = Point(0, 0)
cur = Point(0, 0)
dest = Point(1, 1)
g = inert_repel_with(origin)
for a, b in combinations([origin, cur, dest], 2):
print(a, b)
print(inert_repel(a, b))
print(g(b))
path = [Point(0, 0), Point(0, 1), Point(1, 1)]
dest = Point(-1, -1)
print(decided_path(path, -2, dest))