forked from hunkim/word-rnn-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
155 lines (137 loc) · 6.76 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.contrib import legacy_seq2seq
import random
import numpy as np
from beam import BeamSearch
class Model():
def __init__(self, args, infer=False):
self.args = args
if infer:
args.batch_size = 1
args.seq_length = 1
if args.model == 'rnn':
cell_fn = rnn.BasicRNNCell
elif args.model == 'gru':
cell_fn = rnn.GRUCell
elif args.model == 'lstm':
cell_fn = rnn.BasicLSTMCell
else:
raise Exception("model type not supported: {}".format(args.model))
cells = []
for _ in range(args.num_layers):
cell = cell_fn(args.rnn_size)
cells.append(cell)
self.cell = cell = rnn.MultiRNNCell(cells)
self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.initial_state = cell.zero_state(args.batch_size, tf.float32)
self.batch_pointer = tf.Variable(0, name="batch_pointer", trainable=False, dtype=tf.int32)
self.inc_batch_pointer_op = tf.assign(self.batch_pointer, self.batch_pointer + 1)
self.epoch_pointer = tf.Variable(0, name="epoch_pointer", trainable=False)
self.batch_time = tf.Variable(0.0, name="batch_time", trainable=False)
tf.summary.scalar("time_batch", self.batch_time)
def variable_summaries(var):
"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
#with tf.name_scope('stddev'):
# stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
#tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
#tf.summary.histogram('histogram', var)
with tf.variable_scope('rnnlm'):
softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
variable_summaries(softmax_w)
softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
variable_summaries(softmax_b)
with tf.device("/cpu:0"):
embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
inputs = tf.split(tf.nn.embedding_lookup(embedding, self.input_data), args.seq_length, 1)
inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
def loop(prev, _):
prev = tf.matmul(prev, softmax_w) + softmax_b
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.embedding_lookup(embedding, prev_symbol)
outputs, last_state = legacy_seq2seq.rnn_decoder(inputs, self.initial_state, cell, loop_function=loop if infer else None, scope='rnnlm')
output = tf.reshape(tf.concat(outputs, 1), [-1, args.rnn_size])
self.logits = tf.matmul(output, softmax_w) + softmax_b
self.probs = tf.nn.softmax(self.logits)
loss = legacy_seq2seq.sequence_loss_by_example([self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])],
args.vocab_size)
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
tf.summary.scalar("cost", self.cost)
self.final_state = last_state
self.lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
args.grad_clip)
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
def sample(self, sess, words, vocab, num=200, prime='first all', sampling_type=1, pick=0, width=4):
def weighted_pick(weights):
t = np.cumsum(weights)
s = np.sum(weights)
return(int(np.searchsorted(t, np.random.rand(1)*s)))
def beam_search_predict(sample, state):
"""Returns the updated probability distribution (`probs`) and
`state` for a given `sample`. `sample` should be a sequence of
vocabulary labels, with the last word to be tested against the RNN.
"""
x = np.zeros((1, 1))
x[0, 0] = sample[-1]
feed = {self.input_data: x, self.initial_state: state}
[probs, final_state] = sess.run([self.probs, self.final_state],
feed)
return probs, final_state
def beam_search_pick(prime, width):
"""Returns the beam search pick."""
if not len(prime) or prime == ' ':
prime = random.choice(list(vocab.keys()))
prime_labels = [vocab.get(word, 0) for word in prime.split()]
bs = BeamSearch(beam_search_predict,
sess.run(self.cell.zero_state(1, tf.float32)),
prime_labels)
samples, scores = bs.search(None, None, k=width, maxsample=num)
return samples[np.argmin(scores)]
ret = ''
if pick == 1:
state = sess.run(self.cell.zero_state(1, tf.float32))
if not len(prime) or prime == ' ':
prime = random.choice(list(vocab.keys()))
print (prime)
for word in prime.split()[:-1]:
print (word)
x = np.zeros((1, 1))
x[0, 0] = vocab.get(word,0)
feed = {self.input_data: x, self.initial_state:state}
[state] = sess.run([self.final_state], feed)
ret = prime
word = prime.split()[-1]
for n in range(num):
x = np.zeros((1, 1))
x[0, 0] = vocab.get(word, 0)
feed = {self.input_data: x, self.initial_state:state}
[probs, state] = sess.run([self.probs, self.final_state], feed)
p = probs[0]
if sampling_type == 0:
sample = np.argmax(p)
elif sampling_type == 2:
if word == '\n':
sample = weighted_pick(p)
else:
sample = np.argmax(p)
else: # sampling_type == 1 default:
sample = weighted_pick(p)
pred = words[sample]
ret += ' ' + pred
word = pred
elif pick == 2:
pred = beam_search_pick(prime, width)
for i, label in enumerate(pred):
ret += ' ' + words[label] if i > 0 else words[label]
return ret