-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathutils_imagenet.py
98 lines (76 loc) · 3.44 KB
/
utils_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import torch
import os
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import Dataset
def get_imagenet_indices(labels, min_val, max_val):
return filter_by_class(labels, min_val, max_val)
def get_indices(ix_dir, min_class, max_class, training, dataset_name):
train_labels = np.load(os.path.join(ix_dir, '{}_indices/{}_train_labels.npy'.format(dataset_name, dataset_name)))
val_labels = np.load(os.path.join(ix_dir, '{}_indices/{}_val_labels.npy'.format(dataset_name, dataset_name)))
if training:
curr_idx = get_imagenet_indices(train_labels, min_val=min_class, max_val=max_class)
curr_labels = train_labels[np.array(curr_idx)]
else:
curr_idx = get_imagenet_indices(val_labels, min_val=min_class, max_val=max_class)
curr_labels = val_labels[np.array(curr_idx)]
return curr_idx, curr_labels
def filter_by_class(labels, min_class, max_class):
"""
Return the indices for the desired classes in [min_class, max_class)
:param labels: class indices from numpy files
:param min_class: minimum class included
:param max_class: maximum class excluded
:return: list of indices
"""
ixs = list(np.where(np.logical_and(labels >= min_class, labels < max_class))[0])
return ixs
def get_imagenet_data_loader(dirname, label_dir, split, batch_size=128, shuffle=False, min_class=0, max_class=None,
sampler=None, batch_sampler=None, dataset_name='imagenet', return_item_ix=False,
num_workers=8):
# filter out only the indices for the desired class
if max_class is not None:
_labels = np.load(
os.path.join(label_dir, '{}_indices/{}_{}_labels.npy'.format(dataset_name, dataset_name, split)))
idxs = filter_by_class(_labels, min_class=min_class, max_class=max_class)
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
dataset = datasets.ImageFolder(dirname, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
if batch_sampler is None and sampler is None:
if shuffle:
sampler = torch.utils.data.sampler.SubsetRandomSampler(idxs)
else:
sampler = IndexSampler(idxs)
batch_sampler = torch.utils.data.sampler.BatchSampler(sampler, batch_size=batch_size, drop_last=False)
dataset = ImagenetDataset(dataset, idxs, return_item_ix)
loader = torch.utils.data.DataLoader(dataset, num_workers=num_workers, batch_sampler=batch_sampler)
if split == 'train':
print('\nLoading the ' + split + ' data ... ({} samples)'.format(len(idxs)))
return loader
class ImagenetDataset(Dataset):
def __init__(self, data, indices, return_item_ix):
self.data = data
self.indices = indices
self.return_item_ix = return_item_ix
def __len__(self):
return len(self.indices)
def __getitem__(self, index):
x, y = self.data[index]
if not self.return_item_ix:
return x, y
else:
return x, y, index
class IndexSampler(torch.utils.data.Sampler):
"""Samples elements sequentially, always in the same order.
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return iter(self.indices)
def __len__(self):
return len(self.indices)