forked from theislab/scib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
323 lines (294 loc) · 12.2 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
from scripts.snakemake_parse import *
import pathlib
#configfile: "config.yaml"
cfg = ParsedConfig(config)
wildcard_constraints:
hvg = "hvg|full_feature"
rule all:
input:
cfg.get_filename_pattern("metrics", "final"),
cfg.get_filename_pattern("embeddings", "final")
rule integration:
input:
cfg.get_all_file_patterns("integration")
message: "Integration done"
rule integration_prepare:
input:
adata = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="file"),
script = "scripts/runPP.py"
output:
join_path(cfg.get_filename_pattern("prepare", "directory_by_setting"), "adata_pre.{prep}")
message:
"""
Preparing adata
wildcards: {wildcards}
parameters: {params}
output: {output}
"""
params:
batch_key = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="batch_key"),
hvgs = lambda wildcards: cfg.get_feature_selection(wildcards.hvg),
scale = lambda wildcards: "-s" if wildcards.scaling == "scaled" else "",
rout = lambda wildcards: "-r" if wildcards.prep == "RDS" else "",
seurat = lambda wildcards: "-l" if wildcards.prep == "RDS" else "",
cmd = f"conda run -n {cfg.py_env} python"
benchmark:
join_path(cfg.get_filename_pattern("prepare", "directory_by_setting"),
"prep_{prep}.benchmark")
shell:
"""
{params.cmd} {input.script} -i {input.adata} -o {output} -b {params.batch_key} \
--hvgs {params.hvgs} {params.scale} {params.rout} {params.seurat}
"""
def get_prep_adata(wildcards):
"""
get R or python adata file depending on integration method
"""
if cfg.get_from_method(wildcards.method, "R"):
prep = "RDS"
else:
prep = "h5ad"
return expand(rules.integration_prepare.output, **wildcards, prep=prep)
# ------------------------------------------------------------------------------
# Python specific integration rule.
# TODO: decorate with some detailed information
# ------------------------------------------------------------------------------
def get_celltype_option_for_integration(wildcards):
if cfg.get_from_method(wildcards.method, "use_celltype"):
label_key = cfg.get_from_scenario(wildcards.scenario, key="label_key")
return f"-c {label_key}"
return ""
rule integration_run_python:
input:
adata = get_prep_adata,
pyscript = "scripts/runIntegration.py"
output:
cfg.get_filename_pattern("integration", "single", "h5ad")
message:
"""
Run {wildcards.method} on {wildcards.scaling} data
feature selection: {wildcards.hvg}
dataset: {wildcards.scenario}
command: {params.cmd}
hvgs: {params.hvgs}
cell type option: {params.cell_type}
"""
params:
batch_key = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="batch_key"),
cell_type = get_celltype_option_for_integration,
hvgs = lambda wildcards, input: cfg.get_hvg(wildcards, input.adata[0]),
timing = "-t" if cfg.timing else "",
cmd = f"conda run -n {cfg.py_env} python"
benchmark:
f'{cfg.get_filename_pattern("integration", "single", "h5ad")}.benchmark'
shell:
"""
{params.cmd} {input.pyscript} -i {input.adata} -o {output} \
-b {params.batch_key} --method {wildcards.method} {params.hvgs} {params.cell_type} \
{params.timing}
"""
# ------------------------------------------------------------------------------
# R specific integration rule.
# TODO: decorate with some detailed information
# ------------------------------------------------------------------------------
rule integration_run_r:
input:
adata = get_prep_adata,
rscript = "scripts/runMethods.R"
output:
cfg.get_filename_pattern("integration", "single", "rds")
message:
"""
Run {wildcards.method} on {wildcards.scaling} data
feature selection: {wildcards.hvg}
dataset: {wildcards.scenario}
command: {params.cmd}
hvgs: {params.hvgs}
"""
params:
batch_key = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="batch_key"),
hvgs = lambda wildcards, input: cfg.get_hvg(wildcards, input.adata[0]),
cmd = f"conda run -n {cfg.r_env} Rscript",
timing = "-t" if cfg.timing else ""
benchmark:
f'{cfg.get_filename_pattern("integration", "single", "rds")}.benchmark'
shell:
"""
{params.cmd} {input.rscript} -i {input.adata} -o {output} -b {params.batch_key} \
--method {wildcards.method} {params.hvgs} {params.timing}
"""
# ------------------------------------------------------------------------------
# Simply converts the RDS files created by the R scripts to h5ad files for
# further processing with the metrics rule
# ------------------------------------------------------------------------------
rule convert_RDS_h5ad:
input:
i = cfg.get_filename_pattern("integration", "single", "rds"),
script = "scripts/runPost.py"
output:
cfg.get_filename_pattern("integration", "single", "rds_to_h5ad")
message:
"""
Convert integrated data from {wildcards.method} into h5ad
"""
params:
cmd = f"conda run -n {cfg.conv_env} python"
shell:
"""
if [ {wildcards.method} == "conos" ]
then
{params.cmd} {input.script} -i {input.i} -o {output} -c
else
{params.cmd} {input.script} -i {input.i} -o {output}
fi
"""
# ------------------------------------------------------------------------------
# Compute metrics
# ------------------------------------------------------------------------------
rule metrics_unintegrated:
input: cfg.get_all_file_patterns("metrics_unintegrated")
message: "Collect all unintegrated metrics"
rule metrics_integrated:
input: cfg.get_all_file_patterns("metrics")
message: "Collect all integrated metrics"
all_metrics = rules.metrics_integrated.input
if cfg.unintegrated_m:
all_metrics.extend(rules.metrics_unintegrated.input)
rule metrics:
input:
tables = all_metrics,
script = "scripts/merge_metrics.py"
output:
cfg.get_filename_pattern("metrics", "final")
message: "Merge all metrics"
params:
cmd = f"conda run -n {cfg.py_env} python"
shell: "{params.cmd} {input.script} -i {input.tables} -o {output} --root {cfg.ROOT}"
def get_integrated_for_metrics(wildcards):
if wildcards.method == "unintegrated":
pattern = str(rules.integration_prepare.output)
file = os.path.splitext(pattern)[0]
return f"{file}.h5ad"
elif cfg.get_from_method(wildcards.method, "R"):
return cfg.get_filename_pattern("integration", "single", "rds_to_h5ad")
else:
return cfg.get_filename_pattern("integration", "single", "h5ad")
rule metrics_single:
input:
u = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="file"),
i = get_integrated_for_metrics,
script = "scripts/metrics.py"
output: cfg.get_filename_pattern("metrics", "single")
message:
"""
Metrics {wildcards}
output: {output}
"""
params:
batch_key = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="batch_key"),
label_key = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="label_key"),
organism = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="organism"),
assay = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="assay"),
hvgs = lambda wildcards: cfg.get_feature_selection(wildcards.hvg),
cmd = f"conda run -n {cfg.py_env} python"
shell:
"""
{params.cmd} {input.script} -u {input.u} -i {input.i} -o {output} -m {wildcards.method} \
-b {params.batch_key} -l {params.label_key} --type {wildcards.o_type} \
--hvgs {params.hvgs} --organism {params.organism} --assay {params.assay} -v
"""
# ------------------------------------------------------------------------------
# Save embeddings
# ------------------------------------------------------------------------------
rule embeddings_unintegrated:
input:
cfg.get_all_file_patterns("embeddings_unintegrated")
message:
"Collect all unintegrated embeddings"
rule embeddings_integrated:
input: cfg.get_all_file_patterns("embeddings")
message: "Collect all integrated embeddings"
all_embeddings = rules.embeddings_integrated.input
if cfg.unintegrated_m:
all_embeddings.extend(rules.embeddings_unintegrated.input)
rule embeddings:
input:
csvs = all_embeddings
output:
cfg.get_filename_pattern("embeddings", "final")
message:
"Completed all embeddings"
shell:
"""
echo '{input.csvs}' | tr " " "\n" > {output}
"""
rule embeddings_single:
input:
adata = get_integrated_for_metrics,
script = "scripts/save_embeddings.py"
output:
coords = cfg.get_filename_pattern("embeddings", "single"),
batch_png = cfg.get_filename_pattern("embeddings", "single").replace(".csv", "_batch.png"),
labels_png = cfg.get_filename_pattern("embeddings", "single").replace(".csv", "_labels.png")
message:
"""
SAVE EMBEDDING
Scenario: {wildcards.scenario} {wildcards.scaling} {wildcards.hvg}
Method: {wildcards.method} {wildcards.o_type}
Input: {input.adata}
Output: {output}
"""
params:
batch_key = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="batch_key"),
label_key = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="label_key"),
cmd = f"conda run -n {cfg.py_env} python"
shell:
"""
{params.cmd} {input.script} --input {input.adata} --outfile {output.coords} \
--method {wildcards.method} --batch_key {params.batch_key} \
--label_key {params.label_key} --result {wildcards.o_type}
"""
# ------------------------------------------------------------------------------
# Cell cycle score sanity check
# ------------------------------------------------------------------------------
rule cc_variation:
input:
tables = cfg.get_all_file_patterns("cc_variance", output_types=["full", "embed"]),
script = "scripts/merge_cc_variance.py"
output: cfg.get_filename_pattern("cc_variance", "final")
params:
cmd = f"conda run -n {cfg.py_env} python"
shell: "{params.cmd} {input.script} -i {input.tables} -o {output} --root {cfg.ROOT}"
rule cc_single:
input:
u = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="file"),
i = cfg.get_filename_pattern("integration", "single"),
script = "scripts/cell_cycle_variance.py"
output: cfg.get_filename_pattern("cc_variance", "single")
params:
batch_key = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="batch_key"),
organism = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="organism"),
assay = lambda wildcards: cfg.get_from_scenario(wildcards.scenario, key="assay"),
hvgs = lambda wildcards: cfg.get_feature_selection(wildcards.hvg),
cmd = f"conda run -n {cfg.py_env} python"
shell:
"""
{params.cmd} {input.script} -u {input.u} -i {input.i} -o {output} \
-b {params.batch_key} --assay {params.assay} --type {wildcards.o_type} \
--hvgs {params.hvgs} --organism {params.organism}
"""
# ------------------------------------------------------------------------------
# Merge benchmark files
#
# Run this after the main pipeline using:
# snakemake --configfile config.yaml --cores 1 benchmarks
# ------------------------------------------------------------------------------
rule benchmarks:
input:
script = "scripts/merge_benchmarks.py"
output:
cfg.get_filename_pattern("benchmarks", "final")
message: "Merge all benchmarks"
params:
cmd = f"conda run -n {cfg.py_env} python"
shell: "{params.cmd} {input.script} -o {output} --root {cfg.ROOT}"