-
Notifications
You must be signed in to change notification settings - Fork 7
/
catalog.py
executable file
·282 lines (235 loc) · 10.9 KB
/
catalog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python
import argparse
import json
import logging
import math
import os
import shelve
import simplejson as json
from cStringIO import StringIO
from decimal import Decimal, InvalidOperation
import numpy as np
from astropy.io import fits
from astropy.wcs import WCS
from astropy.wcs.utils import pixel_to_skycoord
from astroquery.vizier import Vizier
from rtree import index as rTreeIndex
import stellar_color
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
cache_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'cache/catalog.db')
cache = shelve.open(cache_path)
# Maximum distance, in pixels, to accept a match for an object between our
# point source extraction and astrometry.net's.
MAX_RTREE_DISTANCE = 2.0
def urat1_lookup(ra, dec):
# TODO(ian): Clean all this up and remove duplicate code and field names.
vizier = Vizier(columns=['URAT1', '_RAJ2000', '_DEJ2000', 'Jmag', 'Hmag', 'Kmag', 'Bmag', 'Vmag', 'gmag', 'rmag', 'imag'])
catalog = 'I/329'
searchstr = '%f %f' % (ra, dec)
cachekey = '%s__%s' % (catalog, searchstr)
results = cache.get(cachekey)
if not results:
results = vizier.query_region(searchstr, radius='1s', catalog=catalog)
if len(results) > 0:
cache[cachekey] = results
return results
def urat1_postprocess(obj):
if 'Bmag' in obj and 'Vmag' in obj:
obj['delta_BV'] = obj['Bmag'] - obj['Vmag']
if 'gmag' in obj and 'rmag' in obj:
obj['delta_gr'] = obj['gmag'] - obj['rmag']
return obj
def choose_reference_stars_from_file(image_fits_path, corr_fits_path, point_source_json_path):
image_fits_data = open(image_fits_path, 'rb').read()
corr_fits_data = open(corr_fits_path, 'rb').read()
point_source_json = open(point_source_json_path, 'r').read()
return choose_reference_stars(image_fits_data, corr_fits_data, point_source_json)
def choose_reference_stars(image_fits_data, corr_fits_data, point_source_json):
'''
Joins stars found in point source extraction/flux computation step with
stars from the astrometry step with known J2000 ra, dec.
Returns: a list of possible reference star objects.
'''
logger.info('Matching reference stars with StarFind output...')
# TODO(ian): Is this whole step even necessary? Why not just use our PSE
# coords rather than relying on astrometry's?
# First, load extracted point sources.
pse_points = json.loads(point_source_json, use_decimal=True)
# Then corr file.
# corr.fits from astrometry.net. See https://groups.google.com/forum/#!topic/astrometry/Lk1LuhwBBNU
# See also: https://groups.google.com/forum/#!topic/astrometry/UtpBHvjBXbM
im = fits.open(StringIO(image_fits_data))
corr = fits.open(StringIO(corr_fits_data))
wcs = WCS(im[0].header)
data = corr[1].data
# And build a lookup tree out of the astrometry corr data.
tree = rTreeIndex.Index()
num_rows = 0
for count, row in np.ndenumerate(data):
rowdata = dict(zip(data.names, row))
coords = (rowdata['field_x'], rowdata['field_y'])
tree.insert(count[0], coords, obj=rowdata)
num_rows += 1
logger.info('Coords rtree loaded %d objects' % num_rows)
# Now, for each extracted point source, try to find its (ra, dec). If so,
# include it as a possible reference star.
# Keep track of distance between nearest match.
distances = []
reference_objects = []
unknown_objects = []
for point in pse_points:
# Point source coordinates. These are Decimal typed.
pse_x = point['field_x']
pse_y = point['field_y']
mag_instrumental = point['mag_instrumental']
# Pick the nearest reference star to this point.
nearest = list(tree.nearest((pse_x, pse_y), num_results=1, objects=True))[0].object
dist = math.sqrt((pse_x - Decimal(nearest['field_x']))**2 + (pse_y - Decimal(nearest['field_y']))**2)
if dist > MAX_RTREE_DISTANCE:
#logger.error('Rejecting a point source because its distance to nearest corr object is %f, greater than %f' % \
# (dist, MAX_RTREE_DISTANCE))
# TODO(ian): Must determine RA/DEC of this object using transformation.
# See http://www1.phys.vt.edu/~jhs/SIP/astrometry.html for technique
# See http://docs.astropy.org/en/stable/wcs/ and pixel_to_skycoord/wcs_pix2world for library
radec = pixel_to_skycoord(float(pse_x), float(pse_y), wcs)
unknown_objects.append({
'id': point['id'],
'field_x': pse_x,
'field_y': pse_y,
'index_ra': radec.ra.deg,
'index_dec': radec.dec.deg,
'mag_instrumental': point['mag_instrumental'],
'mag_instrumental_unc': point['mag_instrumental_unc'],
})
continue
distances.append(dist)
reference_objects.append({
'id': point['id'],
'field_x': pse_x,
'field_y': pse_y,
'index_ra': nearest['index_ra'],
'index_dec': nearest['index_dec'],
'mag_instrumental': point['mag_instrumental'],
'mag_instrumental_unc': point['mag_instrumental_unc'],
'snr': point['snr'],
})
logger.info('distance count: %d' % len(distances))
logger.info('distance avg (px): %f' % np.mean(distances))
logger.info('distance std: %f' % np.std(distances))
try:
logger.info('distance min: %f' % min(distances))
logger.info('distance max: %f' % max(distances))
except ValueError:
# Empty list.
pass
return reference_objects, unknown_objects
def get_standard_magnitudes_urat1(reference_objects):
return get_standard_magnitudes(reference_objects,
'URAT1',
['Jmag', 'Hmag', 'Kmag', 'Bmag', 'Vmag', 'gmag', 'rmag', 'imag'],
urat1_lookup,
urat1_postprocess)
def get_standard_magnitudes(reference_objects, desig_field, fields, lookup_fn, postprocess_fn):
'''
Given a list of reference star objects {index_ra, index_dec}, look them up
using provided function.
Returns: a list of {designation, rmag, and optionally
mag_instrumental, field_x, field_y} objects.
'''
logger.info('Running catalog lookups %s...' % desig_field)
ret = []
for comparison_star in reference_objects:
ra = comparison_star['index_ra']
dec = comparison_star['index_dec']
results = lookup_fn(ra, dec)
if len(results) < 1:
continue
if len(results) > 1:
logger.warn('Warning: multiple matches for a single point coordinate.')
result = results[0]
desig = result[desig_field].data[0]
obj = {
'id': comparison_star['id'],
'designation': desig,
'index_ra': ra,
'index_dec': dec,
}
for field in fields:
strvalue = str(result[field].data[0])
try:
obj[field] = Decimal(strvalue)
except InvalidOperation:
logger.warn('Encountered bad field for %s: %s = %s' % (json.dumps(obj), field, strvalue))
temp_k = stellar_color.estimate_temperature(obj)
if temp_k:
obj['temperature'] = temp_k
mag_i = comparison_star.get('mag_instrumental')
if mag_i:
obj['mag_instrumental'] = mag_i
obj['mag_instrumental_unc'] = comparison_star.get('mag_instrumental_unc')
obj['snr'] = comparison_star.get('snr')
obj['field_x'] = comparison_star['field_x'],
obj['field_y'] = comparison_star['field_y'],
if postprocess_fn:
obj = postprocess_fn(obj)
ret.append(obj)
return ret
def merge_known_with_unknown(known, unknown):
return sorted(known + unknown, key=lambda x: x['id'])
def compute_apparent_magnitudes(reference_objects):
comparison_objs = get_standard_magnitudes_urat1(reference_objects)
logger.info('Running comparisons...')
percent_errors = []
for i in range(len(comparison_objs)):
comparisons = comparison_objs[:]
target = comparisons[i]
del comparisons[i]
comparison_diffs = 0
target_mags = []
for comparison in comparisons:
#instrumental_target_mag = -2.5 * math.log10(target['observed_flux'])
#instrumental_comparison_mag = -2.5 * math.log10(comparison['observed_flux'])
instrumental_target_mag = float(target['mag_instrumental'])
instrumental_comparison_mag = float(comparison['mag_instrumental'])
# Compute basic standard magnitude formula from Brian Warner.
target_mag = (instrumental_target_mag - instrumental_comparison_mag) + comparison['rmag']
target_mags.append(target_mag)
# logger.info('computed', target_mag, 'vs actual', target['rmag'])
comparison_diffs += instrumental_target_mag - instrumental_comparison_mag
# Compute differential magnitude.
comparison_mean = np.mean(comparison_diffs)
comparison_std = np.std(comparison_diffs)
# logger.info('comparison magnitude diff average:', comparison_mean)
# logger.info('comparison magnitude diff std:', comparison_std)
target_mag_avg = np.mean(target_mags)
target_mag_std = np.std(target_mags)
# logger.info('mag target average:', target_mag_avg, 'vs actual', target['rmag'])
# logger.info('mag target std:', target_mag_std)
percent_error = abs(target['rmag'] - target_mag_avg) / target['rmag'] * 100.0
percent_errors.append(percent_error)
# logger.info(' --> difference:', (target_mag_avg - target['rmag']))
# logger.info(' --> % error:', percent_error)
logger.info('=' * 80)
logger.info('num comparison objs submitted: %d' % len(reference_objects))
logger.info('num comparison objs used: %d' % len(comparison_objs))
logger.info('percent error avg (MAPE): %f' % np.mean(percent_errors))
logger.info('percent error max: %f' % max(percent_errors))
logger.info('percent error min: %f' % min(percent_errors))
def get_args():
parser = argparse.ArgumentParser('Extract point sources from image.')
parser.add_argument('--fits',
help='Image fits file.',
required=True)
parser.add_argument('--corr_fits',
help='fits astrometry output with J2000 ra and dec.',
required=True)
parser.add_argument('--point_source_json',
help='point source json output, annotated with flux and instrumental magnitude',
required=True)
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
reference_objects, unknown_objects = \
choose_reference_stars_from_file(args.fits, args.corr_fits, args.point_source_json)
compute_apparent_magnitudes(reference_objects)