
Minishell
As beautiful as a shell

Summary: The objective of this project is for you to create a simple shell. Yes, your
little bash or zsh. You will learn a lot about processes and file descriptors.

Version: 6

Contents
I Introduction 2

II Common Instructions 3

III Mandatory part 4

IV Bonus part 6

1

Chapter I

Introduction

The existence of shells is linked to the very existence of IT. At the time, all coders agreed
that communicating with a computer using aligned 1/0 switches was seriously
irritating. It was only logical that they came up with the idea to communicate with
a computer using interactive lines of commands in a language somewhat close
to english.

With Minishell, you’ll be able to travel through time and come back to problems
people faced when Windows didn’t exist.

2

Chapter II

Common Instructions

• Your project must be written in accordance with the Norm. If you have bonus
files/functions, they are included in the norm check and you will receive a 0 if there
is a norm error inside.

• Your functions should not quit unexpectedly (segmentation fault, bus error, double
free, etc) apart from undefined behaviors. If this happens, your project will be
considered non functional and will receive a 0 during the evaluation.

• All heap allocated memory space must be properly freed when necessary. No leaks
will be tolerated.

• If the subject requires it, you must submit a Makefile which will compile your
source files to the required output with the flags -Wall, -Wextra and -Werror, use
cc, and your Makefile must not relink.

• Your Makefile must at least contain the rules $(NAME), all, clean, fclean and
re.

• To turn in bonuses to your project, you must include a rule bonus to your Makefile,
which will add all the various headers, librairies or functions that are forbidden on
the main part of the project. Bonuses must be in a different file _bonus.{c/h}.
Mandatory and bonus part evaluation is done separately.

• If your project allows you to use your libft, you must copy its sources and its
associated Makefile in a libft folder with its associated Makefile. Your project’s
Makefile must compile the library by using its Makefile, then compile the project.

• We encourage you to create test programs for your project even though this work
won’t have to be submitted and won’t be graded. It will give you a chance
to easily test your work and your peers’ work. You will find those tests especially
useful during your defence. Indeed, during defence, you are free to use your tests
and/or the tests of the peer you are evaluating.

• Submit your work to your assigned git repository. Only the work in the git reposi-
tory will be graded. If Deepthought is assigned to grade your work, it will be done
after your peer-evaluations. If an error happens in any section of your work during
Deepthought’s grading, the evaluation will stop.

3

Chapter III

Mandatory part

Program name minishell
Turn in files
Makefile Yes
Arguments
External functs. readline, rl_clear_history, rl_on_new_line,

rl_replace_line, rl_redisplay, add_history,
printf, malloc, free, write, access, open, read,
close, fork, wait, waitpid, wait3, wait4, signal,
sigaction, kill, exit, getcwd, chdir, stat,
lstat, fstat, unlink, execve, dup, dup2, pipe,
opendir, readdir, closedir, strerror, perror,
isatty, ttyname, ttyslot, ioctl, getenv, tcsetattr,
tcgetattr, tgetent, tgetflag, tgetnum, tgetstr,
tgoto, tputs

Libft authorized Yes
Description Write a shell

Your shell should:

• Not interpret unclosed quotes or unspecified special characters like \ or ;.

• Not use more than one global variable, think about it and be ready to explain why
you do it.

• Show a prompt when waiting for a new command.

• Have a working History.

• Search and launch the right executable (based on the PATH variable or by using
relative or absolute path)

• It must implement the builtins:

◦ echo with option -n

◦ cd with only a relative or absolute path

◦ pwd with no options

4

tom

Minishell As beautiful as a shell

◦ export with no options

◦ unset with no options

◦ env with no options or arguments

◦ exit with no options

• ’ inhibit all interpretation of a sequence of characters.

• " inhibit all interpretation of a sequence of characters except for $.

• Redirections:

◦ < should redirect input.

◦ > should redirect output.

◦ “<<” read input from the current source until a line containing only the de-
limiter is seen. it doesn’t need to update history!

◦ “>>” should redirect output with append mode.

• Pipes | The output of each command in the pipeline is connected via a pipe to the
input of the next command.

• Environment variables ($ followed by characters) should expand to their values.

• $? should expand to the exit status of the most recently executed foreground
pipeline.

• ctrl-C ctrl-D ctrl-\ should work like in bash.

• When interactive:

◦ ctrl-C print a new prompt on a newline.

◦ ctrl-D exit the shell.

◦ ctrl-\ do nothing.

readline function can produce some leak you don’t need to fix this.
But beware your own code should not produce leaks.
You should limit yourself to the subject description.
Anything not asked is not required.
For every point, if you have any doubt take bash as a reference.

5

https://www.gnu.org/savannah-checkouts/gnu/bash/manual/

Chapter IV

Bonus part

• If the Mandatory part is not perfect don’t even think about bonuses

• &&, || with parenthesis for priorities.

• the wildcard * should work for the current working directory.

6

	Introduction
	Common Instructions
	Mandatory part
	Bonus part

