
The Norm
Version 3

Summary: This document describes the applicable standard (Norm) at 42. A
programming standard defines a set of rules to follow when writing code. The Norm

applies to all C projects within the Inner Circle by default, and to any project where it’s
specified.

Contents
I Foreword 2

II The Norm 3
II.1 Denomination . 3
II.2 Formatting . 4
II.3 Functions . 6
II.4 Typedef, struct, enum and union . 7
II.5 Headers . 8
II.6 Macros and Pre-processors . 9
II.7 Forbidden stuff! . 10
II.8 Comments . 11
II.9 Files . 12
II.10 Makefile . 13
II.11 Why ? . 14

1

Chapter I

Foreword

The Norm is in python and open source.
Its repository is available at https://github.com/42School/norminette.
Pull requests, suggestions and issues are welcome!

2

Chapter II

The Norm

II.1 Denomination
• A structure’s name must start by s_.

• A typedef’s name must start by t_.

• A union’s name must start by u_.

• An enum’s name must start by e_.

• A global’s name must start by g_.

• Variables and functions names can only contain lowercases, digits and ’_’ (Unix
Case).

• Files and directories names can only contain lowercases, digits and ’_’ (Unix Case).

• Characters that aren’t part of the standard ASCII table are forbidden.

• Variables, functions, and any other identifier must use snake case. No capital letters,
and each word separated by an underscore.

• All identifiers (functions, macros, types, variables, etc.) must be in English.

• Objects (variables, functions, macros, types, files or directories) must have the most
explicit or most mnemonic names as possible.

• Using global variables that are not marked const and static is forbidden and is
considered a norm error, unless the project explicitly allows them.

• The file must compile. A file that doesn’t compile isn’t expected to pass the Norm.

3

The Norm Version 3

II.2 Formatting
• You must indent your code with 4-space tabulations. This is not the same as 4

average spaces, we’re talking about real tabulations here.

• Each function must be maximum 25 lines, not counting the function’s own curly
brackets.

• Each line must be at most 80 columns wide, comments included. Warning: a
tabulation doesn’t count as a column, but as the number of spaces it represents.

• Each function must be separated by a newline. Any comment or preprocessor
instruction can be right above the function. The newline is after the previous
function.

• One instruction per line.

• An empty line must be empty: no spaces or tabulations.

• A line can never end with spaces or tabulations.

• You can never have two consecutive spaces.

• You need to start a new line after each curly bracket or end of control structure.

• Unless it’s the end of a line, each comma or semi-colon must be followed by a space.

• Each operator or operand must be separated by one - and only one - space.

• Each C keyword must be followed by a space, except for keywords for types (such
as int, char, float, etc.), as well as sizeof.

• Each variable declaration must be indented on the same column for its scope.

• The asterisks that go with pointers must be stuck to variable names.

• One single variable declaration per line.

• Declaration and an initialisation cannot be on the same line, except for global
variables (when allowed), static variables, and constants.

• Declarations must be at the beginning of a function.

• In a function, you must place an empty line between variable declarations and the
remaining of the function. No other empty lines are allowed in a function.

• Multiple assignments are strictly forbidden.

• You may add a new line after an instruction or control structure, but you’ll have
to add an indentation with brackets or assignment operator. Operators must be at
the beginning of a line.

• Control structures (if, while..) must have braces, unless they contain a single line
or a single condition.

4

The Norm Version 3

General example:

int g_global;
typedef struct s_struct
{

char *my_string;
int i;

} t_struct;
struct s_other_struct;

int main(void)
{

int i;
char c;

return (i);
}

5

The Norm Version 3

II.3 Functions
• A function can take 4 named parameters maximum.

• A function that doesn’t take arguments must be explicitly prototyped with the
word "void" as the argument.

• Parameters in functions’ prototypes must be named.

• Each function must be separated from the next by an empty line.

• You can’t declare more than 5 variables per function.

• Return of a function has to be between parenthesis.

• Each function must have a single tabulation between its return type and its name.

int my_func(int arg1, char arg2, char *arg3)
{

return (my_val);
}

int func2(void)
{

return ;
}

6

The Norm Version 3

II.4 Typedef, struct, enum and union
• Add a tabulation when declaring a struct, enum or union.

• When declaring a variable of type struct, enum or union, add a single space in the
type.

• When declaring a struct, union or enum with a typedef, all indentation rules apply.
You must align the typedef’s name with the struct/union/enum’s name.

• You must indent all structures’ names on the same column for their scope.

• You cannot declare a structure in a .c file.

7

The Norm Version 3

II.5 Headers
• The things allowed in header files are: header inclusions (system or not), declara-

tions, defines, prototypes and macros.

• All includes must be at the beginning of the file.

• You cannot include a C file.

• Header files must be protected from double inclusions. If the file is ft_foo.h, its
bystander macro is FT_FOO_H.

• Unused header inclusions (.h) are forbidden.

• All header inclusions must be justified in a .c file as well as in a .h file.

#ifndef FT_HEADER_H
define FT_HEADER_H
include <stdlib.h>
include <stdio.h>
define FOO "bar"

int g_variable;
struct s_struct;

#endif

8

The Norm Version 3

II.6 Macros and Pre-processors
• Preprocessor constants (or #define) you create must be used only for literal and

constant values.

• All #define created to bypass the norm and/or obfuscate code are forbidden. This
part must be checked by a human.

• You can use macros available in standard libraries, only if those ones are allowed
in the scope of the given project.

• Multiline macros are forbidden.

• Macro names must be all uppercase.

• You must indent characters following #if, #ifdef or #ifndef.

9

The Norm Version 3

II.7 Forbidden stuff!
• You’re not allowed to use:

◦ for

◦ do...while

◦ switch

◦ case

◦ goto

• Ternary operators such as ‘?’.

• VLAs - Variable Length Arrays.

• Implicit type in variable declarations

int main(int argc, char **argv)
{

int i;
char string[argc]; // This is a VLA

i = argc > 5 ? 0 : 1 // Ternary
}

10

The Norm Version 3

II.8 Comments
• Comments cannot be inside functions’ bodies. Comments must be at the end of a

line, or on their own line

• Your comments must be in English. And they must be useful.

• A comment cannot justify a "bastard" function.

11

The Norm Version 3

II.9 Files
• You cannot include a .c file.

• You cannot have more than 5 function-definitions in a .c file.

12

The Norm Version 3

II.10 Makefile
Makefiles aren’t checked by the Norm, and must be checked during evaluation by the
student.

• The $(NAME), clean, fclean, re and all rules are mandatory.

• If the makefile relinks, the project will be considered non-functional.

• In the case of a multibinary project, in addition to the above rules, you must have a
rule that compiles both binaries as well as a specific rule for each binary compiled.

• In the case of a project that calls a function from a non-system library (e.g.: libft),
your makefile must compile this library automatically.

• All source files you need to compile your project must be explicitly named in your
Makefile.

13

The Norm Version 3

II.11 Why ?
The Norm has been carefully crafted to fulfill many pedagogical needs. Here are the most
important reasons for all the choices above:

• Sequencing: coding implies splitting a big and complex task in a long series of
elementary instructions. All these instructions will be executed in sequence: one
after another. A beginner that starts creating software needs a simple and clear
architecture for their project, with a full understanding of all individual instructions
and the precise order of execution. Cryptic language syntaxes that do multiple
instructions apparently at the same time are confusing, functions that try to address
multiple tasks mixed in the same portion of code are source of errors.
The Norm asks you to create simple pieces of code, where the unique task of each
piece can be clearly understood and verified, and where the sequence of all the
executed instructions leaves no doubt. That’s why we ask for 25 lines maximum in
functions, also why for, do .. while, or ternaries are forbidden.

• Look and Feel: while exchanging with your friends and workmates during the nor-
mal peer-learning process, and also during the peer-evaluations, you do not want
to spend time to decrypt their code, but directly talk about the logic of the piece
of code.
The Norm asks you to use a specific look and feel, providing instructions for the
naming of the functions and variables, indentation, brace rules, tab and spaces at
many places... . This will allow you to smoothly have a look at other’s codes that
will look familiar, and get directly to the point instead of spending time to read the
code before understanding it. The Norm also comes as a trademark. As part of the
42 community, you will be able to recognize code written by another 42 student or
alumni when you’ll be in the labor market.

• Long-term vision: making the effort to write understandable code is the best way
to maintain it. Each time that someone else, including you, has to fix a bug or
add a new feature they won’t have to lose their precious time trying to figure out
what it does if previously you did things in the right way. This will avoid situations
where pieces of code stop being maintained just because it is time-consuming, and
that can make the difference when we talk about having a successful product in the
market. The sooner you learn to do so, the better.

• References: you may think that some, or all, the rules included on the Norm are
arbitrary, but we actually thought and read about what to do and how to do it.
We highly encourage you to Google why the functions should be short and just do
one thing, why the name of the variables should make sense, why lines shouldn’t
be longer than 80 columns wide, why a function should not take many parameters,
why comments should be useful, etc, etc, etc...

14

	Foreword
	The Norm
	Denomination
	Formatting
	Functions
	Typedef, struct, enum and union
	Headers
	Macros and Pre-processors
	Forbidden stuff!
	Comments
	Files
	Makefile
	Why ?

