-
Notifications
You must be signed in to change notification settings - Fork 780
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
pytest failures and Lint Errors #502
Comments
Hi @zhenyuz0500, this error message is from python setup.py build_ext --inplace
pytest -sv tests --cov causalml |
noticed the recent lint errors too, we'll need to take a look. Take the latest master for example https://github.com/uber/causalml/runs/6236927941?check_suite_focus=true |
It seems the errors are the same: (base) zhenyuzhao-zz@MB0 causalml % pip install Cython Requirement already satisfied: Cython in /Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages (0.29.23) (base) zhenyuzhao-zz@MB0 causalml % python setup.py build_ext --inplace (base) zhenyuzhao-zz@MB0 causalml % pytest -sv tests --cov causalml tests/test_cevae.py::test_CEVAE PASSED ================================================================================================================================== FAILURES ================================================================================================================================== The above exception was the direct cause of the following exception: generate_classification_data = <function generate_classification_data.._generate_data at 0x7fa34a1ba430>, backend = 'loky', joblib_prefer = 'threads'
tests/test_uplift_trees.py:37: causalml/inference/tree/uplift.pyx:1331: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.fit self = <Future at 0x7fa34a12a040 state=finished raised PicklingError>
E _pickle.PicklingError: Could not pickle the task to send it to the workers. ../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:388: PicklingError The above exception was the direct cause of the following exception: generate_classification_data = <function generate_classification_data.._generate_data at 0x7fa34a1ba430>, backend = 'threading', joblib_prefer = 'threads'
tests/test_uplift_trees.py:46: ../../../../opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/_testing.py:308: in wrapper self = <Future at 0x7fa34c09beb0 state=finished raised PicklingError>
E _pickle.PicklingError: Could not pickle the task to send it to the workers. ../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:388: PicklingError generate_classification_data = <function generate_classification_data.._generate_data at 0x7fa34a1ba430>, backend = 'multiprocessing', joblib_prefer = 'threads'
tests/test_uplift_trees.py:37: causalml/inference/tree/uplift.pyx:1331: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.fit obj = (140, 0, <joblib._parallel_backends.SafeFunction object at 0x7fa34debefd0>, (), {})
E _pickle.PicklingError: Can't pickle <cyfunction UpliftRandomForestClassifier.bootstrap at 0x7fa378fb05f0>: attribute lookup bootstrap on causalml.inference.tree.uplift failed ../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/pool.py:156: PicklingError The above exception was the direct cause of the following exception: generate_classification_data = <function generate_classification_data.._generate_data at 0x7fa34a1ba430>, backend = 'loky', joblib_prefer = 'processes'
tests/test_uplift_trees.py:37: causalml/inference/tree/uplift.pyx:1331: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.fit self = <Future at 0x7fa34a0ed3a0 state=finished raised PicklingError>
E _pickle.PicklingError: Could not pickle the task to send it to the workers. ../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:388: PicklingError The above exception was the direct cause of the following exception: generate_classification_data = <function generate_classification_data.._generate_data at 0x7fa34a1ba430>, backend = 'threading', joblib_prefer = 'processes'
tests/test_uplift_trees.py:46: ../../../../opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/_testing.py:308: in wrapper self = <Future at 0x7fa34a091b50 state=finished raised PicklingError>
E _pickle.PicklingError: Could not pickle the task to send it to the workers. ../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:388: PicklingError generate_classification_data = <function generate_classification_data.._generate_data at 0x7fa34a1ba430>, backend = 'multiprocessing', joblib_prefer = 'processes'
tests/test_uplift_trees.py:37: causalml/inference/tree/uplift.pyx:1331: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.fit obj = (170, 0, <joblib._parallel_backends.SafeFunction object at 0x7fa34f7ad7f0>, (), {})
E _pickle.PicklingError: Can't pickle <cyfunction UpliftRandomForestClassifier.bootstrap at 0x7fa378fb05f0>: attribute lookup bootstrap on causalml.inference.tree.uplift failed ../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/pool.py:156: PicklingError ../../../../opt/anaconda3/lib/python3.8/site-packages/scipy/special/orthogonal.py:81: 2 warnings ../../../../opt/anaconda3/lib/python3.8/site-packages/scipy/io/matlab/mio5.py:98 ../../../../opt/anaconda3/lib/python3.8/site-packages/patsy/constraint.py:13 tests/test_cevae.py::test_CEVAE tests/test_counterfactual_unit_selection.py: 1032 warnings tests/test_datasets.py::test_get_synthetic_preds[simulate_hidden_confounder] tests/test_features.py::test_load_data tests/test_features.py::test_LabelEncoder A value is trying to be set on a copy of a slice from a DataFrame. See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy tests/test_meta_learners.py::test_BaseSClassifier tests/test_meta_learners.py::test_BaseRClassifier -- Docs: https://docs.pytest.org/en/stable/warnings.html ---------- coverage: platform darwin, python 3.8.8-final-0 -----------
|
Seems like similar to #461 that I ran into in my previous Macbook, but for some reasons it doesn't happen for me at the moment |
Describe the bug
Recent builds create pytest failures and lint errors that need diagnosis.
Lint errors occurred in PR #492 and #496
To Reproduce
pytest -vs tests/ --cov causalml/
Screenshots
Error logs:
_% pytest -vs tests/ --cov causalml/
==================================================================================================== test session starts =====================================================================================================
platform darwin -- Python 3.8.8, pytest-6.2.3, py-1.10.0, pluggy-0.13.1 -- /Users/zhenyuzhao-zz/opt/anaconda3/bin/python
cachedir: .pytest_cache
rootdir: /Users/zhenyuzhao-zz/Documents/Programming/git_repo/causalml
plugins: anyio-2.2.0, cov-3.0.0
collected 64 items
tests/test_cevae.py::test_CEVAE
PASSED
tests/test_counterfactual_unit_selection.py::test_counterfactual_unit_selection PASSED
tests/test_datasets.py::test_get_synthetic_preds[simulate_nuisance_and_easy_treatment] PASSED
tests/test_datasets.py::test_get_synthetic_preds[simulate_hidden_confounder] PASSED
tests/test_datasets.py::test_get_synthetic_preds[simulate_randomized_trial] PASSED
tests/test_datasets.py::test_get_synthetic_summary Abs % Error of ATE MSE KL Divergence
Actuals 0.000000 0.000000 0.000000
S Learner (LR) 0.581879 0.125334 3.828739
T Learner (XGB) 0.323199 1.186263 1.424861
PASSED
tests/test_datasets.py::test_get_synthetic_preds_holdout PASSED
tests/test_datasets.py::test_get_synthetic_summary_holdout ( Abs % Error of ATE MSE KL Divergence
Actuals 0.000000 0.000000 0.000000
S Learner (LR) 0.359446 0.072330 4.033648
S Learner (XGB) 0.041486 0.319411 0.824989
T Learner (LR) 0.358963 0.037750 0.440597
T Learner (XGB) 0.085843 1.257743 1.500363
X Learner (LR) 0.358963 0.037750 0.440597
X Learner (XGB) 0.081450 0.504336 1.116033
R Learner (LR) 0.327808 0.044548 0.408275
R Learner (XGB) 0.112043 4.740827 2.079625, Abs % Error of ATE MSE KL Divergence
Actuals 0.000000 0.000000 0.000000
S Learner (LR) 0.401601 0.080840 3.944126
S Learner (XGB) 0.073994 0.283661 0.948965
T Learner (LR) 0.353086 0.033973 0.695373
T Learner (XGB) 0.090676 0.652876 1.350948
X Learner (LR) 0.353086 0.033973 0.695373
X Learner (XGB) 0.020359 0.332149 1.097056
R Learner (LR) 0.299843 0.037296 0.616230
R Learner (XGB) 0.164259 1.830500 1.492768)
PASSED
tests/test_datasets.py::test_get_synthetic_auuc Learner cum_gain_auuc
0 Actuals 3082.158899
2 T Learner (XGB) 2630.595869
3 Random 2490.139546
1 S Learner (LR) 2463.126242
PASSED
tests/test_features.py::test_load_data PASSED
tests/test_features.py::test_LabelEncoder PASSED
tests/test_features.py::test_OneHotEncoder PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:08<00:00, 1.19it/s]
PASSED
tests/test_match.py::test_nearest_neighbor_match_by_group PASSED
tests/test_match.py::test_match_optimizer PASSED
tests/test_meta_learners.py::test_synthetic_data PASSED
tests/test_meta_learners.py::test_BaseSLearner PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:02<00:00, 3.61it/s]
PASSED
tests/test_meta_learners.py::test_LRSRegressor PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:03<00:00, 2.82it/s]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:04<00:00, 2.22it/s]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:25<00:00, 2.57s/it]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:03<00:00, 2.65it/s]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:08<00:00, 1.15it/s]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:08<00:00, 1.23it/s]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:08<00:00, 1.14it/s]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:08<00:00, 1.19it/s]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:23<00:00, 2.37s/it]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:24<00:00, 2.44s/it]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:24<00:00, 2.45s/it]
PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:24<00:00, 2.41s/it]
PASSED
tests/test_meta_learners.py::test_TMLELearner PASSED
tests/test_meta_learners.py::test_BaseSClassifier [01:42:02] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
PASSED
tests/test_meta_learners.py::test_BaseTClassifier PASSED
tests/test_meta_learners.py::test_BaseXClassifier [01:42:03] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:04] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:05] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:05] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
PASSED
tests/test_meta_learners.py::test_BaseRClassifier /Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
[01:42:07] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:07] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:07] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:07] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:07] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
PASSED
tests/test_meta_learners.py::test_BaseRClassifier_with_sample_weights /Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/xgboost/sklearn.py:888: UserWarning: The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
warnings.warn(label_encoder_deprecation_msg, UserWarning)
[01:42:10] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:10] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:10] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:10] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[01:42:10] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[0] validation_0-auc:2.75329
[1] validation_0-auc:-4.78198
[2] validation_0-auc:-3.52732
[3] validation_0-auc:-5.61398
[4] validation_0-auc:-4.07529
[5] validation_0-auc:-4.58928
[6] validation_0-auc:-3.94142
[7] validation_0-auc:-3.24399
[8] validation_0-auc:-6.07570
[9] validation_0-auc:-8.59653
[10] validation_0-auc:-7.84374
[11] validation_0-auc:-6.41278
[12] validation_0-auc:-4.45992
[13] validation_0-auc:-5.09416
[14] validation_0-auc:-5.12351
[15] validation_0-auc:-3.64573
[16] validation_0-auc:-3.01243
[17] validation_0-auc:-2.80259
[18] validation_0-auc:-1.67346
[19] validation_0-auc:-2.18767
[20] validation_0-auc:-2.77537
[21] validation_0-auc:-2.62919
[22] validation_0-auc:-2.49174
[23] validation_0-auc:-1.50853
[24] validation_0-auc:-0.98859
[25] validation_0-auc:-0.79339
[26] validation_0-auc:-0.52949
[27] validation_0-auc:-0.60107
[28] validation_0-auc:0.03568
[29] validation_0-auc:0.38625
PASSED
tests/test_meta_learners.py::test_pandas_input PASSED
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:11<00:00, 1.10s/it]
PASSED
tests/test_propensity.py::test_logistic_regression_propensity_model PASSED
tests/test_propensity.py::test_logistic_regression_propensity_model_model_kwargs PASSED
tests/test_propensity.py::test_elasticnet_propensity_model PASSED
tests/test_propensity.py::test_gradientboosted_propensity_model [01:42:28] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
PASSED
tests/test_propensity.py::test_gradientboosted_propensity_model_earlystopping [01:42:28] WARNING: /opt/concourse/worker/volumes/live/7a2b9f41-3287-451b-6691-43e9a6c0910f/volume/xgboost-split_1619728204606/work/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
[0] validation_0-logloss:0.68365
[1] validation_0-logloss:0.67243
[2] validation_0-logloss:0.64779
[3] validation_0-logloss:0.62546
[4] validation_0-logloss:0.60664
[5] validation_0-logloss:0.58847
[6] validation_0-logloss:0.57660
[7] validation_0-logloss:0.57160
[8] validation_0-logloss:0.56192
[9] validation_0-logloss:0.55328
[10] validation_0-logloss:0.54668
[11] validation_0-logloss:0.54318
[12] validation_0-logloss:0.54001
[13] validation_0-logloss:0.53335
[14] validation_0-logloss:0.53029
[15] validation_0-logloss:0.52541
[16] validation_0-logloss:0.52656
[17] validation_0-logloss:0.52321
[18] validation_0-logloss:0.52327
[19] validation_0-logloss:0.52239
[20] validation_0-logloss:0.52392
[21] validation_0-logloss:0.52404
[22] validation_0-logloss:0.52376
[23] validation_0-logloss:0.52374
[24] validation_0-logloss:0.52289
[25] validation_0-logloss:0.52229
[26] validation_0-logloss:0.52028
[27] validation_0-logloss:0.52110
[28] validation_0-logloss:0.52270
[29] validation_0-logloss:0.52229
[30] validation_0-logloss:0.52084
[31] validation_0-logloss:0.52308
[32] validation_0-logloss:0.52387
[33] validation_0-logloss:0.52583
[34] validation_0-logloss:0.52824
[35] validation_0-logloss:0.53039
[36] validation_0-logloss:0.52990
PASSED
tests/test_sensitivity.py::test_Sensitivity Method ATE New ATE New ATE LB New ATE UB
0 Placebo Treatment 0.680042 -0.009359 -0.022652 0.003934
0 Random Cause 0.680042 0.680049 0.667253 0.692846
0 Subset Data(sample size @0.5) 0.680042 0.682025 0.663973 0.700077
0 Random Replace 0.680042 0.678623 0.665698 0.691548
0 Selection Bias (alpha@-0.80626, with r-sqaure:... 0.680042 1.353547 1.34094 1.366155
0 Selection Bias (alpha@-0.645, with r-sqaure:0.... 0.680042 1.218846 1.206217 1.231475
0 Selection Bias (alpha@-0.48375, with r-sqaure:... 0.680042 1.084145 1.071487 1.096803
0 Selection Bias (alpha@-0.3225, with r-sqaure:0... 0.680042 0.949444 0.936748 0.96214
0 Selection Bias (alpha@-0.16125, with r-sqaure:... 0.680042 0.814743 0.802001 0.827485
0 Selection Bias (alpha@0.0, with r-sqaure:0.0 0.680042 0.680042 0.667245 0.692838
0 Selection Bias (alpha@0.16125, with r-sqaure:0... 0.680042 0.545341 0.532482 0.558199
0 Selection Bias (alpha@0.3225, with r-sqaure:0.... 0.680042 0.41064 0.397711 0.423568
0 Selection Bias (alpha@0.48375, with r-sqaure:0... 0.680042 0.275939 0.262933 0.288944
0 Selection Bias (alpha@0.645, with r-sqaure:0.0... 0.680042 0.141237 0.128146 0.154329
0 Selection Bias (alpha@0.80626, with r-sqaure:0... 0.680042 0.006536 -0.006648 0.01972
PASSED
tests/test_sensitivity.py::test_SensitivityPlaceboTreatment Method ATE New ATE New ATE LB New ATE UB
0 Random Cause 0.678358 -0.004009 -0.017335 0.009316
PASSED
tests/test_sensitivity.py::test_SensitivityRandomCause Method ATE New ATE New ATE LB New ATE UB
0 Random Cause 0.674445 0.674436 0.661632 0.68724
PASSED
tests/test_sensitivity.py::test_SensitivityRandomReplace Method ATE New ATE New ATE LB New ATE UB
0 Random Replace 0.68259 0.809523 0.796646 0.822401
PASSED
tests/test_sensitivity.py::test_SensitivitySelectionBias alpha rsqs New ATE New ATE LB New ATE UB
0 -0.800120 0.107832 0.660142 0.647300 0.672984
0 -0.640096 0.072265 0.662217 0.649428 0.675006
0 -0.480072 0.042282 0.664292 0.651535 0.677050
0 -0.320048 0.019399 0.666367 0.653619 0.679115
0 -0.160024 0.004965 0.668442 0.655683 0.681202
0 0.000000 0.000000 0.670517 0.657724 0.683311
0 0.160024 0.005063 0.672592 0.659744 0.685441
0 0.320048 0.020160 0.674667 0.661743 0.687592
0 0.480072 0.044736 0.676742 0.663720 0.689765
0 0.640096 0.077731 0.678818 0.665678 0.691957
0 0.800120 0.117713 0.680893 0.667615 0.694170 feature partial_rsqs
0 feature_0 -0.065992
1 feature_1 -0.067405
2 feature_2 -0.000011
3 feature_3 -0.000623
4 feature_4 -0.000643
5 feature_5 -0.000026
PASSED
tests/test_sensitivity.py::test_one_sided PASSED
tests/test_sensitivity.py::test_alignment PASSED
tests/test_sensitivity.py::test_one_sided_att PASSED
tests/test_sensitivity.py::test_alignment_att PASSED
tests/test_uplift_trees.py::test_make_uplift_classification PASSED
tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[threads-loky] FAILED
tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[threads-threading] FAILED
tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[threads-multiprocessing] FAILED
tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[processes-loky] FAILED
tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[processes-threading] FAILED
tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[processes-multiprocessing] FAILED
tests/test_uplift_trees.py::test_UpliftTreeClassifier PASSED
tests/test_uplift_trees.py::test_UpliftTreeClassifier_feature_importance PASSED
tests/test_utils.py::test_weighted_variance PASSED
tests/test_value_optimization.py::test_counterfactual_value_optimization PASSED
================================================================================================================================== FAILURES ==================================================================================================================================
______________________________________________________________________________________________________________ test_UpliftRandomForestClassifier[threads-loky] _______________________________________________________________________________________________________________
joblib.externals.loky.process_executor._RemoteTraceback:
"""
Traceback (most recent call last):
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/queues.py", line 153, in feed
obj = dumps(obj, reducers=reducers)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/reduction.py", line 271, in dumps
dump(obj, buf, reducers=reducers, protocol=protocol)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/reduction.py", line 264, in dump
_LokyPickler(file, reducers=reducers, protocol=protocol).dump(obj)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/cloudpickle/cloudpickle_fast.py", line 563, in dump
return Pickler.dump(self, obj)
_pickle.PicklingError: Can't pickle <cyfunction UpliftRandomForestClassifier.bootstrap at 0x7fd5fff8b5f0>: attribute lookup bootstrap on causalml.inference.tree.uplift failed
"""
The above exception was the direct cause of the following exception:
generate_classification_data = <function generate_classification_data.._generate_data at 0x7fd5d1eab430>, backend = 'loky', joblib_prefer = 'threads'
tests/test_uplift_trees.py:37:
causalml/inference/tree/uplift.pyx:1331: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.fit
(delayed(self.bootstrap)(X, treatment, y, tree) for tree in self.uplift_forest)
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:1054: in call
self.retrieve()
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:933: in retrieve
self._output.extend(job.get(timeout=self.timeout))
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py:542: in wrap_future_result
return future.result(timeout=timeout)
../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:439: in result
return self.__get_result()
self = <Future at 0x7fd5d180afa0 state=finished raised PicklingError>
E _pickle.PicklingError: Could not pickle the task to send it to the workers.
../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:388: PicklingError
____________________________________________________________________________________________________________ test_UpliftRandomForestClassifier[threads-threading] ____________________________________________________________________________________________________________
joblib.externals.loky.process_executor._RemoteTraceback:
"""
Traceback (most recent call last):
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/queues.py", line 153, in feed
obj = dumps(obj, reducers=reducers)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/reduction.py", line 271, in dumps
dump(obj, buf, reducers=reducers, protocol=protocol)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/reduction.py", line 264, in dump
_LokyPickler(file, reducers=reducers, protocol=protocol).dump(obj)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/cloudpickle/cloudpickle_fast.py", line 563, in dump
return Pickler.dump(self, obj)
_pickle.PicklingError: Can't pickle <cyfunction UpliftTreeClassifier.evaluate_KL at 0x7fd5fff7aba0>: attribute lookup evaluate_KL on causalml.inference.tree.uplift failed
"""
The above exception was the direct cause of the following exception:
generate_classification_data = <function generate_classification_data.._generate_data at 0x7fd5d1eab430>, backend = 'threading', joblib_prefer = 'threads'
tests/test_uplift_trees.py:46:
../../../../opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/_testing.py:308: in wrapper
return fn(*args, **kwargs)
causalml/inference/tree/uplift.pyx:1379: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.predict
(delayed(tree.predict)(X=X) for tree in self.uplift_forest)
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:1054: in call
self.retrieve()
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:933: in retrieve
self._output.extend(job.get(timeout=self.timeout))
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py:542: in wrap_future_result
return future.result(timeout=timeout)
../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:439: in result
return self.__get_result()
self = <Future at 0x7fd5d18ab7c0 state=finished raised PicklingError>
E _pickle.PicklingError: Could not pickle the task to send it to the workers.
../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:388: PicklingError
_________________________________________________________________________________________________________ test_UpliftRandomForestClassifier[threads-multiprocessing] _________________________________________________________________________________________________________
generate_classification_data = <function generate_classification_data.._generate_data at 0x7fd5d1eab430>, backend = 'multiprocessing', joblib_prefer = 'threads'
tests/test_uplift_trees.py:37:
causalml/inference/tree/uplift.pyx:1331: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.fit
(delayed(self.bootstrap)(X, treatment, y, tree) for tree in self.uplift_forest)
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:1054: in call
self.retrieve()
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:933: in retrieve
self._output.extend(job.get(timeout=self.timeout))
../../../../opt/anaconda3/lib/python3.8/multiprocessing/pool.py:771: in get
raise self._value
../../../../opt/anaconda3/lib/python3.8/multiprocessing/pool.py:537: in _handle_tasks
put(task)
obj = (140, 0, <joblib._parallel_backends.SafeFunction object at 0x7fd5d196bbb0>, (), {})
E _pickle.PicklingError: Can't pickle <cyfunction UpliftRandomForestClassifier.bootstrap at 0x7fd5fff8b5f0>: attribute lookup bootstrap on causalml.inference.tree.uplift failed
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/pool.py:156: PicklingError
_____________________________________________________________________________________________________________ test_UpliftRandomForestClassifier[processes-loky] ______________________________________________________________________________________________________________
joblib.externals.loky.process_executor._RemoteTraceback:
"""
Traceback (most recent call last):
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/queues.py", line 153, in feed
obj = dumps(obj, reducers=reducers)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/reduction.py", line 271, in dumps
dump(obj, buf, reducers=reducers, protocol=protocol)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/reduction.py", line 264, in dump
_LokyPickler(file, reducers=reducers, protocol=protocol).dump(obj)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/cloudpickle/cloudpickle_fast.py", line 563, in dump
return Pickler.dump(self, obj)
_pickle.PicklingError: Can't pickle <cyfunction UpliftRandomForestClassifier.bootstrap at 0x7fd5fff8b5f0>: attribute lookup bootstrap on causalml.inference.tree.uplift failed
"""
The above exception was the direct cause of the following exception:
generate_classification_data = <function generate_classification_data.._generate_data at 0x7fd5d1eab430>, backend = 'loky', joblib_prefer = 'processes'
tests/test_uplift_trees.py:37:
causalml/inference/tree/uplift.pyx:1331: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.fit
(delayed(self.bootstrap)(X, treatment, y, tree) for tree in self.uplift_forest)
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:1054: in call
self.retrieve()
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:933: in retrieve
self._output.extend(job.get(timeout=self.timeout))
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py:542: in wrap_future_result
return future.result(timeout=timeout)
../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:439: in result
return self.__get_result()
self = <Future at 0x7fd5d1898a00 state=finished raised PicklingError>
E _pickle.PicklingError: Could not pickle the task to send it to the workers.
../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:388: PicklingError
___________________________________________________________________________________________________________ test_UpliftRandomForestClassifier[processes-threading] ___________________________________________________________________________________________________________
joblib.externals.loky.process_executor._RemoteTraceback:
"""
Traceback (most recent call last):
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/queues.py", line 153, in feed
obj = dumps(obj, reducers=reducers)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/reduction.py", line 271, in dumps
dump(obj, buf, reducers=reducers, protocol=protocol)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/loky/backend/reduction.py", line 264, in dump
_LokyPickler(file, reducers=reducers, protocol=protocol).dump(obj)
File "/Users/zhenyuzhao-zz/opt/anaconda3/lib/python3.8/site-packages/joblib/externals/cloudpickle/cloudpickle_fast.py", line 563, in dump
return Pickler.dump(self, obj)
_pickle.PicklingError: Can't pickle <cyfunction UpliftTreeClassifier.evaluate_KL at 0x7fd5fff7aba0>: attribute lookup evaluate_KL on causalml.inference.tree.uplift failed
"""
The above exception was the direct cause of the following exception:
generate_classification_data = <function generate_classification_data.._generate_data at 0x7fd5d1eab430>, backend = 'threading', joblib_prefer = 'processes'
tests/test_uplift_trees.py:46:
../../../../opt/anaconda3/lib/python3.8/site-packages/sklearn/utils/_testing.py:308: in wrapper
return fn(*args, **kwargs)
causalml/inference/tree/uplift.pyx:1379: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.predict
(delayed(tree.predict)(X=X) for tree in self.uplift_forest)
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:1054: in call
self.retrieve()
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:933: in retrieve
self._output.extend(job.get(timeout=self.timeout))
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/_parallel_backends.py:542: in wrap_future_result
return future.result(timeout=timeout)
../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:439: in result
return self.__get_result()
self = <Future at 0x7fd5d1e8d6d0 state=finished raised PicklingError>
E _pickle.PicklingError: Could not pickle the task to send it to the workers.
../../../../opt/anaconda3/lib/python3.8/concurrent/futures/_base.py:388: PicklingError
________________________________________________________________________________________________________ test_UpliftRandomForestClassifier[processes-multiprocessing] ________________________________________________________________________________________________________
generate_classification_data = <function generate_classification_data.._generate_data at 0x7fd5d1eab430>, backend = 'multiprocessing', joblib_prefer = 'processes'
tests/test_uplift_trees.py:37:
causalml/inference/tree/uplift.pyx:1331: in causalml.inference.tree.uplift.UpliftRandomForestClassifier.fit
(delayed(self.bootstrap)(X, treatment, y, tree) for tree in self.uplift_forest)
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:1054: in call
self.retrieve()
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/parallel.py:933: in retrieve
self._output.extend(job.get(timeout=self.timeout))
../../../../opt/anaconda3/lib/python3.8/multiprocessing/pool.py:771: in get
raise self._value
../../../../opt/anaconda3/lib/python3.8/multiprocessing/pool.py:537: in _handle_tasks
put(task)
obj = (170, 0, <joblib._parallel_backends.SafeFunction object at 0x7fd5d1955d30>, (), {})
E _pickle.PicklingError: Can't pickle <cyfunction UpliftRandomForestClassifier.bootstrap at 0x7fd5fff8b5f0>: attribute lookup bootstrap on causalml.inference.tree.uplift failed
../../../../opt/anaconda3/lib/python3.8/site-packages/joblib/pool.py:156: PicklingError
============================================================================================================================== warnings summary ==============================================================================================================================
../../../../opt/anaconda3/lib/python3.8/site-packages/scipy/fft/init.py:97
The module numpy.dual is deprecated. Instead of using dual, use the functions directly from numpy or scipy.
../../../../opt/anaconda3/lib/python3.8/site-packages/scipy/special/orthogonal.py:81: 2 warnings
tests/test_datasets.py: 16 warnings
tests/test_ivlearner.py: 8 warnings
tests/test_meta_learners.py: 48 warnings
np.int
is a deprecated alias for the builtinint
. To silence this warning, useint
by itself. Doing this will not modify any behavior and is safe. When replacingnp.int
, you may wish to use e.g.np.int64
ornp.int32
to specify the precision. If you wish to review your current use, check the release note link for additional information.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
../../../../opt/anaconda3/lib/python3.8/site-packages/scipy/io/matlab/mio5.py:98
np.bool
is a deprecated alias for the builtinbool
. To silence this warning, usebool
by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, usenp.bool_
here.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
../../../../opt/anaconda3/lib/python3.8/site-packages/patsy/constraint.py:13
Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.9 it will stop working
tests/test_cevae.py::test_CEVAE
tests/test_cevae.py::test_CEVAE
tests/test_cevae.py::test_CEVAE
To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
tests/test_counterfactual_unit_selection.py: 1032 warnings
tests/test_meta_learners.py: 209 warnings
tests/test_value_optimization.py: 305 warnings
tostring() is deprecated. Use tobytes() instead.
tests/test_datasets.py::test_get_synthetic_preds[simulate_hidden_confounder]
tests/test_datasets.py::test_get_synthetic_preds[simulate_hidden_confounder]
tests/test_datasets.py::test_get_synthetic_preds[simulate_hidden_confounder]
tests/test_datasets.py::test_get_synthetic_preds[simulate_hidden_confounder]
invalid value encountered in true_divide
tests/test_features.py::test_load_data
tests/test_features.py::test_load_data
tests/test_features.py::test_load_data
np.object
is a deprecated alias for the builtinobject
. To silence this warning, useobject
by itself. Doing this will not modify any behavior and is safe.Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
tests/test_features.py::test_LabelEncoder
tests/test_features.py::test_LabelEncoder
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
tests/test_meta_learners.py::test_BaseSClassifier
tests/test_meta_learners.py::test_BaseXClassifier
tests/test_meta_learners.py::test_BaseXClassifier
tests/test_propensity.py::test_gradientboosted_propensity_model
tests/test_propensity.py::test_gradientboosted_propensity_model_earlystopping
The use of label encoder in XGBClassifier is deprecated and will be removed in a future release. To remove this warning, do the following: 1) Pass option use_label_encoder=False when constructing XGBClassifier object; and 2) Encode your labels (y) as integers starting with 0, i.e. 0, 1, 2, ..., [num_class - 1].
tests/test_meta_learners.py::test_BaseRClassifier
tests/test_meta_learners.py::test_BaseRClassifier_with_sample_weights
inspect.getargspec() is deprecated since Python 3.0, use inspect.signature() or inspect.getfullargspec()
-- Docs: https://docs.pytest.org/en/stable/warnings.html
---------- coverage: platform darwin, python 3.8.8-final-0 -----------
Name Stmts Miss Cover
causalml/init.py 3 0 100%
causalml/dataset/init.py 14 0 100%
causalml/dataset/classification.py 73 20 73%
causalml/dataset/regression.py 54 0 100%
causalml/dataset/synthetic.py 244 103 58%
causalml/feature_selection/init.py 1 1 0%
causalml/feature_selection/filters.py 153 153 0%
causalml/features.py 85 10 88%
causalml/inference/init.py 0 0 100%
causalml/inference/iv/init.py 2 0 100%
causalml/inference/iv/drivlearner.py 258 58 78%
causalml/inference/iv/iv_regression.py 17 8 53%
causalml/inference/meta/init.py 6 0 100%
causalml/inference/meta/base.py 71 17 76%
causalml/inference/meta/drlearner.py 195 41 79%
causalml/inference/meta/explainer.py 101 80 21%
causalml/inference/meta/rlearner.py 251 35 86%
causalml/inference/meta/slearner.py 178 27 85%
causalml/inference/meta/tlearner.py 170 28 84%
causalml/inference/meta/tmle.py 98 22 78%
causalml/inference/meta/utils.py 49 10 80%
causalml/inference/meta/xlearner.py 252 44 83%
causalml/inference/nn/init.py 1 0 100%
causalml/inference/nn/cevae.py 29 3 90%
causalml/inference/tf/init.py 1 1 0%
causalml/inference/tf/dragonnet.py 64 64 0%
causalml/inference/tf/utils.py 52 52 0%
causalml/inference/tree/init.py 4 0 100%
causalml/inference/tree/plot.py 100 95 5%
causalml/inference/tree/utils.py 43 36 16%
causalml/match.py 185 40 78%
causalml/metrics/init.py 7 0 100%
causalml/metrics/classification.py 11 4 64%
causalml/metrics/const.py 1 0 100%
causalml/metrics/regression.py 41 3 93%
causalml/metrics/sensitivity.py 257 50 81%
causalml/metrics/visualize.py 299 237 21%
causalml/optimize/init.py 5 0 100%
causalml/optimize/pns.py 23 20 13%
causalml/optimize/policylearner.py 54 39 28%
causalml/optimize/unit_selection.py 90 45 50%
causalml/optimize/utils.py 26 4 85%
causalml/optimize/value_optimization.py 30 3 90%
causalml/propensity.py 74 4 95%
TOTAL 3672 1357 63%
========================================================================================================================== short test summary info ===========================================================================================================================
FAILED tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[threads-loky] - _pickle.PicklingError: Could not pickle the task to send it to the workers.
FAILED tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[threads-threading] - _pickle.PicklingError: Could not pickle the task to send it to the workers.
FAILED tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[threads-multiprocessing] - _pickle.PicklingError: Can't pickle <cyfunction UpliftRandomForestClassifier.bootstrap at 0x7fd5fff8b5f0>: attribute lookup bootstrap on causalml.inference.tree.uplift failed
FAILED tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[processes-loky] - _pickle.PicklingError: Could not pickle the task to send it to the workers.
FAILED tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[processes-threading] - _pickle.PicklingError: Could not pickle the task to send it to the workers.
FAILED tests/test_uplift_trees.py::test_UpliftRandomForestClassifier[processes-multiprocessing] - _pickle.PicklingError: Can't pickle <cyfunction UpliftRandomForestClassifier.bootstrap at 0x7fd5fff8b5f0>: attribute lookup bootstrap on causalml.inference.tree.uplift f...
========================================================================================================== 6 failed, 58 passed, 1642 warnings in 571.89s (0:09:31) ===========================================================================================================`
Environment (please complete the following information):
pandas
,scikit-learn
,cython
): [e.g.pandas==0.25
,scikit-learn==0.22
,cython==0.28
]_The text was updated successfully, but these errors were encountered: