-
Notifications
You must be signed in to change notification settings - Fork 87
/
folder.py
90 lines (70 loc) · 2.59 KB
/
folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
from operator import itemgetter
import torch
import torch.utils.data as data
from PIL import Image
from PIL import ImageFilter
import os
import os.path
IMG_EXTENSIONS = [
'.jpg', '.JPG', '.jpeg', '.JPEG',
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
]
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def find_classes(dir):
classes = [d for d in os.listdir(dir)
if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def make_dataset(dir, class_to_idx):
images = []
for target in os.listdir(dir):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
for root, _, fnames in sorted(os.walk(d)):
for fname in fnames:
if is_image_file(fname):
path = os.path.join(root, fname)
item = (path, class_to_idx[target])
images.append(item)
images.sort(key=lambda t: os.path.split(t[0])[1])
return images
def default_loader(path):
return Image.open(path).convert('RGB')
class ImageFolder(data.Dataset):
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader, out_name=False, out_image_size=False):
classes, class_to_idx = find_classes(root)
imgs = make_dataset(root, class_to_idx)
if len(imgs) == 0:
raise (RuntimeError(
"Found 0 images in subfolders of: " + root + "\n"
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
self.root = root
self.imgs = imgs
self.classes = classes
self.class_to_idx = class_to_idx
self.transform = transform
self.target_transform = target_transform
self.loader = loader
self.out_name = out_name
self.out_image_size = out_image_size
def __getitem__(self, index):
path, target = self.imgs[index]
img = self.loader(path)
img_size = torch.LongTensor(img.size)
# img = img.filter(ImageFilter.GaussianBlur(7))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
output = [img, target]
if self.out_name:
output.append(os.path.split(path)[1])
if self.out_image_size:
output.append(img_size)
return tuple(output)
def __len__(self):
return len(self.imgs)