diff --git a/utils/dataloaders.py b/utils/dataloaders.py index c1ad1f1a4b83..d8ef11fd94b4 100755 --- a/utils/dataloaders.py +++ b/utils/dataloaders.py @@ -455,7 +455,7 @@ def __init__(self, self.im_files = list(cache.keys()) # update self.label_files = img2label_paths(cache.keys()) # update n = len(shapes) # number of images - bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index + bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index nb = bi[-1] + 1 # number of batches self.batch = bi # batch index of image self.n = n @@ -497,7 +497,7 @@ def __init__(self, elif mini > 1: shapes[i] = [1, 1 / mini] - self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources) self.ims = [None] * n @@ -867,7 +867,7 @@ def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders impo b = x[1:] * [w, h, w, h] # box # b[2:] = b[2:].max() # rectangle to square b[2:] = b[2:] * 1.2 + 3 # pad - b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) + b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int) b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image b[[1, 3]] = np.clip(b[[1, 3]], 0, h)