diff --git a/models/common.py b/models/common.py index 066f8774d3c3..0286c74fe8cd 100644 --- a/models/common.py +++ b/models/common.py @@ -121,7 +121,7 @@ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, nu def forward(self, x): y1 = self.cv3(self.m(self.cv1(x))) y2 = self.cv2(x) - return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) + return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1)))) class C3(nn.Module): @@ -136,7 +136,7 @@ def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, nu # self.m = nn.Sequential(*(CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n))) def forward(self, x): - return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) + return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1)) class C3TR(C3): @@ -527,7 +527,7 @@ def forward(self, imgs, size=640, augment=False, profile=False): p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference if isinstance(imgs, torch.Tensor): # torch - with amp.autocast(enabled=autocast): + with amp.autocast(autocast): return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference # Pre-process @@ -550,19 +550,19 @@ def forward(self, imgs, size=640, augment=False, profile=False): shape1.append([y * g for y in s]) imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update shape1 = [make_divisible(x, self.stride) if self.pt else size for x in np.array(shape1).max(0)] # inf shape - x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad + x = [letterbox(im, shape1, auto=False)[0] for im in imgs] # pad x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32 t.append(time_sync()) - with amp.autocast(enabled=autocast): + with amp.autocast(autocast): # Inference y = self.model(x, augment, profile) # forward t.append(time_sync()) # Post-process - y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes, - agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det) # NMS + y = non_max_suppression(y if self.dmb else y[0], self.conf, self.iou, self.classes, self.agnostic, + self.multi_label, max_det=self.max_det) # NMS for i in range(n): scale_coords(shape1, y[i][:, :4], shape0[i]) diff --git a/models/yolo.py b/models/yolo.py index 2f4bbe0f71d1..9f4701c49f9d 100644 --- a/models/yolo.py +++ b/models/yolo.py @@ -71,13 +71,13 @@ def forward(self, x): def _make_grid(self, nx=20, ny=20, i=0): d = self.anchors[i].device + shape = 1, self.na, ny, nx, 2 # grid shape if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility - yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij') + yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d), indexing='ij') else: - yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)]) - grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() - anchor_grid = (self.anchors[i].clone() * self.stride[i]) \ - .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() + yv, xv = torch.meshgrid(torch.arange(ny, device=d), torch.arange(nx, device=d)) + grid = torch.stack((xv, yv), 2).expand(shape).float() + anchor_grid = (self.anchors[i] * self.stride[i]).view((1, self.na, 1, 1, 2)).expand(shape).float() return grid, anchor_grid