You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This is my model config file base on this paper: GhostNet: More Features from Cheap Operations
Link: https://arxiv.org/abs/1911.11907
I am a beginner of deep learning and thanks for your patient answer
And after these operations, I ran yolo.py to try this model. And yolo.py report this error:
Sizes of tensors must match except in dimension 1. Got 4 and 2 in dimension 2 (The offending index is 1)
Paste the full text:
from n params module arguments
0 -1 1 3520 models.common.Focus [3, 32, 3]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 3440 models.experimental.GhostBottleneck [64, 64, 3, 1]
3 -1 1 18784 models.experimental.GhostBottleneck [64, 128, 3, 2]
4 -1 3 32928 models.experimental.GhostBottleneck [128, 128, 3, 1]
5 -1 1 66240 models.experimental.GhostBottleneck [128, 256, 3, 2]
6 -1 3 115008 models.experimental.GhostBottleneck [256, 256, 3, 1]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]]
9 -1 1 142208 models.experimental.GhostBottleneck [512, 512, 3, 1]
10 -1 1 1024 n DWConv at 0x000001F4DBB19E5 [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 7] 1 0 models.common.Concat [1]
13 -1 1 7424 n DWConv at 0x000001F4DBB19E5 [768, 256, 3, 1]
14 -1 1 38336 models.experimental.GhostBottleneck [256, 256, 3, 1]
15 -1 1 512 n DWConv at 0x000001F4DBB19E5 [256, 128, 1, 1]
16 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
17 [-1, 5] 1 0 models.common.Concat [1]
18 -1 1 3712 n DWConv at 0x000001F4DBB19E5 [384, 128, 3, 1]
19 -1 1 10976 models.experimental.GhostBottleneck [128, 128, 3, 1]
20 -1 1 32895 torch.nn.modules.conv.Conv2d [128, 255, 1, 1]
21 -2 1 1408 n DWConv at 0x000001F4DBB19E5 [128, 128, 3, 2]
22 [-1, 15] 1 0 models.common.Concat [1]
23 -1 1 38336 models.experimental.GhostBottleneck [256, 256, 3, 1]
24 -1 1 65535 torch.nn.modules.conv.Conv2d [256, 255, 1, 1]
25 -2 1 2816 n DWConv at 0x000001F4DBB19E5 [256, 256, 3, 2]
26 [-1, 10] 1 0 models.common.Concat [1]
27 -1 1 142208 models.experimental.GhostBottleneck [512, 512, 3, 1]
28 -1 1 130815 torch.nn.modules.conv.Conv2d [512, 255, 1, 1]
29 [17, 20, 23] 1 228990 Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [384, 255, 256]]
Traceback (most recent call last):
File "D:/yolov/yolov5-comment-master/models/yolo.py", line 251, in
model = Model(opt.cfg).to(device)
File "D:/yolov/yolov5-comment-master/models/yolo.py", line 79, in init
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
File "D:/yolov/yolov5-comment-master/models/yolo.py", line 109, in forward
return self.forward_once(x, profile) # single-scale inference, train
File "D:/yolov/yolov5-comment-master/models/yolo.py", line 129, in forward_once
x = m(x) # run
File "D:\anaconda_yolo\envs\yolov5\lib\site-packages\torch\nn\modules\module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "D:\yolov\yolov5-comment-master\models\common.py", line 100, in forward
return torch.cat(x, self.d)
RuntimeError: Sizes of tensors must match except in dimension 1. Got 8 and 4 in dimension 2 (The offending index is 1)
Process finished with exit code 1
The text was updated successfully, but these errors were encountered:
If this is a bug report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.
If this is a custom model or data training question, please note Ultralytics does not provide free personal support. As a leader in vision ML and AI, we do offer professional consulting, from simple expert advice up to delivery of fully customized, end-to-end production solutions for our clients, such as:
Cloud-based AI systems operating on hundreds of HD video streams in realtime.
Edge AI integrated into custom iOS and Android apps for realtime 30 FPS video inference.
Custom data training, hyperparameter evolution, and model exportation to any destination.
❔Question
This is my model config file base on this paper: GhostNet: More Features from Cheap Operations
Link: https://arxiv.org/abs/1911.11907
I am a beginner of deep learning and thanks for your patient answer
YOLOv5 backbone
backbone:
[from, number, module, args]
[[-1, 1, Focus, [64, 3]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, GhostBottleneck, [128, 3, 1]],
[-1, 1, GhostBottleneck, [256, 3, 2]], # 3-P3/8
[-1, 9, GhostBottleneck, [256, 3, 1]],
[-1, 1, GhostBottleneck, [512, 3, 2]], # 5-P4/16
[-1, 9, GhostBottleneck, [512, 3, 1]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
]
YOLOv5 head
head:
[[-1, 3, GhostBottleneck, [1024, 3, 1]], #10
[-1, 1, DWConv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 8], 1, Concat, [1]],
[-1, 1, DWConv, [512, 3, 1]],
[-1, 3, GhostBottleneck, [512, 3, 1]], #15
[-1, 1, DWConv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 5], 1, Concat, [1]],
[-1, 1, DWConv, [256, 3, 1]],
[-1, 3, GhostBottleneck, [256, 3, 1]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],
[-2, 1, DWConv, [256, 3, 2]],
[[-1, 15], 1, Concat, [1]],
[-1, 3, GhostBottleneck, [512, 3, 1]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],
[-2, 1, DWConv, [512, 3, 2]],
[[ -1, 10], 1, Concat, [1]],
[-1, 3, GhostBottleneck, [1024, 3, 1]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1]],
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
Additional context
And after these operations, I ran yolo.py to try this model. And yolo.py report this error:
Sizes of tensors must match except in dimension 1. Got 4 and 2 in dimension 2 (The offending index is 1)
Paste the full text:
from n params module arguments
0 -1 1 3520 models.common.Focus [3, 32, 3]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 3440 models.experimental.GhostBottleneck [64, 64, 3, 1]
3 -1 1 18784 models.experimental.GhostBottleneck [64, 128, 3, 2]
4 -1 3 32928 models.experimental.GhostBottleneck [128, 128, 3, 1]
5 -1 1 66240 models.experimental.GhostBottleneck [128, 256, 3, 2]
6 -1 3 115008 models.experimental.GhostBottleneck [256, 256, 3, 1]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 656896 models.common.SPP [512, 512, [5, 9, 13]]
9 -1 1 142208 models.experimental.GhostBottleneck [512, 512, 3, 1]
10 -1 1 1024 n DWConv at 0x000001F4DBB19E5 [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 7] 1 0 models.common.Concat [1]
13 -1 1 7424 n DWConv at 0x000001F4DBB19E5 [768, 256, 3, 1]
14 -1 1 38336 models.experimental.GhostBottleneck [256, 256, 3, 1]
15 -1 1 512 n DWConv at 0x000001F4DBB19E5 [256, 128, 1, 1]
16 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
17 [-1, 5] 1 0 models.common.Concat [1]
18 -1 1 3712 n DWConv at 0x000001F4DBB19E5 [384, 128, 3, 1]
19 -1 1 10976 models.experimental.GhostBottleneck [128, 128, 3, 1]
20 -1 1 32895 torch.nn.modules.conv.Conv2d [128, 255, 1, 1]
21 -2 1 1408 n DWConv at 0x000001F4DBB19E5 [128, 128, 3, 2]
22 [-1, 15] 1 0 models.common.Concat [1]
23 -1 1 38336 models.experimental.GhostBottleneck [256, 256, 3, 1]
24 -1 1 65535 torch.nn.modules.conv.Conv2d [256, 255, 1, 1]
25 -2 1 2816 n DWConv at 0x000001F4DBB19E5 [256, 256, 3, 2]
26 [-1, 10] 1 0 models.common.Concat [1]
27 -1 1 142208 models.experimental.GhostBottleneck [512, 512, 3, 1]
28 -1 1 130815 torch.nn.modules.conv.Conv2d [512, 255, 1, 1]
29 [17, 20, 23] 1 228990 Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [384, 255, 256]]
Traceback (most recent call last):
File "D:/yolov/yolov5-comment-master/models/yolo.py", line 251, in
model = Model(opt.cfg).to(device)
File "D:/yolov/yolov5-comment-master/models/yolo.py", line 79, in init
m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward
File "D:/yolov/yolov5-comment-master/models/yolo.py", line 109, in forward
return self.forward_once(x, profile) # single-scale inference, train
File "D:/yolov/yolov5-comment-master/models/yolo.py", line 129, in forward_once
x = m(x) # run
File "D:\anaconda_yolo\envs\yolov5\lib\site-packages\torch\nn\modules\module.py", line 722, in _call_impl
result = self.forward(*input, **kwargs)
File "D:\yolov\yolov5-comment-master\models\common.py", line 100, in forward
return torch.cat(x, self.d)
RuntimeError: Sizes of tensors must match except in dimension 1. Got 8 and 4 in dimension 2 (The offending index is 1)
Process finished with exit code 1
The text was updated successfully, but these errors were encountered: