-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconvert.py
216 lines (184 loc) · 7.23 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import warnings
from copy import deepcopy
from os import path as osp
import numpy as np
import onnx
import onnxruntime
import torch
from onnxconverter_common.float16 import convert_float_to_float16
from onnxsim import simplify
from neosr.archs import build_network
from neosr.utils.options import parse_options
def load_net():
# build_network
print(f"\n-------- Attempting to build network [{args.network}].")
if args.network is None:
msg = "Please select a network using the -net option"
raise ValueError(msg)
net_opt = {"type": args.network}
if args.network == "omnisr":
net_opt["upsampling"] = args.scale
net_opt["window_size"] = args.window
if args.window:
net_opt["window_size"] = args.window
net = build_network(net_opt)
load_net = torch.load(args.input, map_location=torch.device("cuda"))
# find parameter key
print("-------- Finding parameter key...")
try:
if "params-ema" in load_net:
param_key = "params-ema"
elif "params" in load_net:
param_key = "params"
elif "params_ema" in load_net:
param_key = "params_ema"
load_net = load_net[param_key]
except:
pass
# remove unnecessary 'module.'
for k, v in deepcopy(load_net).items():
if k.startswith("module."):
load_net[k[7:]] = v
load_net.pop(k)
# load_network and send to device
net.load_state_dict(load_net, strict=True)
net = net.to(device="cuda", non_blocking=True)
print(f"-------- Successfully loaded network [{args.network}].")
torch.cuda.empty_cache()
return net
def assert_verify(onnx_model, torch_model) -> None:
if args.static is not None:
dummy_input = torch.randn(1, *args.static, requires_grad=True)
else:
dummy_input = torch.randn(1, 3, 20, 20, requires_grad=True)
# onnxruntime output prediction
# NOTE: "CUDAExecutionProvider" errors if some nvidia libs
# are not found, defaulting to cpu
ort_session = onnxruntime.InferenceSession(
onnx_model, providers=["CPUExecutionProvider"]
)
ort_inputs = {ort_session.get_inputs()[0].name: dummy_input.detach().cpu().numpy()}
ort_outs = ort_session.run(None, ort_inputs)
# torch outputs
torch_outputs = torch_model(dummy_input)
# final assert - default tolerance values - rtol=1e-03, atol=1e-05
np.testing.assert_allclose(
torch_outputs.detach().cpu().numpy(), ort_outs[0], rtol=0.01, atol=0.001
)
print(f"-------- Model successfully verified.")
def to_onnx() -> None:
# error if network can't be converted
net_error = ["craft", "ditn"]
if args.network in net_error:
msg = f"Network [{args.network}] cannot be converted to ONNX."
raise RuntimeError(msg)
# load network and send to device
model = load_net()
# set model to eval mode
model.eval()
# set static or dynamic
if args.static is not None:
dummy_input = torch.randn(1, *args.static, requires_grad=True)
else:
dummy_input = torch.randn(1, 3, 20, 20, requires_grad=True)
# dict for dynamic axes
if args.static is None:
dyn_axes = {
'dynamic_axes': {
'input': {0: 'batch_size', 2: 'width', 3: 'height'},
'output': {0: 'batch_size', 2: 'width', 3: 'height'},
},
'input_names': ["input"],
'output_names': ["output"],
}
else:
dyn_axes = None
# add _fp32 suffix to output str
filename, extension = osp.splitext(args.output)
output_fp32 = filename + "_fp32" + extension
# begin conversion
print("-------- Starting ONNX conversion (this can take a while)...")
with torch.device("cpu"):
# TODO: switch to dynamo_export once it supports ATen PixelShuffle
# then torch.testing.assert_close for verification
torch.onnx.export(
model,
dummy_input,
output_fp32,
export_params=True,
opset_version=args.opset,
do_constant_folding=False,
**(dyn_axes or {}),
)
print("-------- Conversion was successful. Verifying...")
# verify onnx
load_onnx = onnx.load(output_fp32)
torch.cuda.empty_cache()
onnx.checker.check_model(load_onnx)
print(f"-------- Model successfully converted to ONNX format. Saved at: {output_fp32}.")
# verify outputs
if args.nocheck is False:
assert_verify(output_fp32, model)
if args.optimize:
print("-------- Running ONNX optimization...")
#filename, extension = osp.splitext(args.output)
#output_optimized = filename + "_fp32_optimized" + extension
session_opt = onnxruntime.SessionOptions()
# ENABLE_ALL can cause compatibility issues, leaving EXTENDED as default
session_opt.graph_optimization_level = (
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_EXTENDED
)
session_opt.optimized_model_filepath = output_optimized
# save
onnxruntime.InferenceSession(output_fp32, session_opt)
# verify
onnx.checker.check_model(onnx.load(output_optimized))
print(f"-------- Model successfully optimized. Saved at: {output_optimized}")
if args.fp16:
print("-------- Converting to fp16...")
output_fp16 = filename + "_fp16" + extension
# convert to fp16
if args.optimize:
to_fp16 = convert_float_to_float16(onnx.load(output_optimized))
else:
to_fp16 = convert_float_to_float16(load_onnx)
# save
onnx.save(to_fp16, output_fp16)
# verify
onnx.checker.check_model(onnx.load(output_fp16))
print(
f"-------- Model successfully converted to half-precision. Saved at: {output_fp16}."
)
if args.fulloptimization:
# error if network can't run through onnxsim
opt_error = ["omnisr"]
if args.network in opt_error:
msg = f"Network [{args.network}] doesnt support full optimization."
raise RuntimeError(msg)
print("-------- Running full optimization (this can take a while)...")
output_fp32_fulloptimized = filename + "_fp32_fullyoptimized" + extension
output_fp16_fulloptimized = filename + "_fp16_fullyoptimized" + extension
# run onnxsim
if args.optimize:
simplified, check = simplify(onnx.load(output_optimized))
elif args.fp16:
simplified, check = simplify(onnx.load(output_fp16))
else:
simplified, check = simplify(load_onnx)
assert check, "Couldn't validate ONNX model."
# save and verify
if args.fp16:
onnx.save(simplified, output_fp16_fulloptimized)
onnx.checker.check_model(onnx.load(output_fp16_fulloptimized))
else:
onnx.save(simplified, output_fp32_fulloptimized)
onnx.checker.check_model(onnx.load(output_fp32_fulloptimized))
print(
f"-------- Model successfully optimized. Saved at: {output_fp32_fulloptimized}\n"
)
if __name__ == "__main__":
torch.set_default_device("cuda")
warnings.filterwarnings("ignore", category=UserWarning)
root_path = osp.abspath(osp.join(__file__, osp.pardir))
__, args = parse_options(root_path)
to_onnx()