-
Notifications
You must be signed in to change notification settings - Fork 99
/
run_uie_finetune.py
520 lines (449 loc) · 21.9 KB
/
run_uie_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
default_data_collator,
set_seed
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from uie.extraction import constants
from uie.extraction.record_schema import RecordSchema
from uie.extraction.extraction_metrics import get_extract_metrics
from uie.extraction.noiser.spot_asoc_noiser import SpotAsocNoiser
from uie.extraction.dataset_processer import PrefixGenerator
from uie.seq2seq.constrained_seq2seq import ConstraintSeq2SeqTrainingArguments, ConstraintSeq2SeqTrainer
from uie.seq2seq.data_collator import (
DataCollatorForMetaSeq2Seq,
DynamicSSIGenerator,
)
from uie.seq2seq.features import RecordFeature
from uie.seq2seq.t5_bert_tokenizer import T5BertTokenizer
from uie.seq2seq.trainer_arguments import ModelArguments, DataTrainingArguments
logger = logging.getLogger(__name__)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, ConstraintSeq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
logger.info("Options:")
logger.info(model_args)
logger.info(data_args)
logger.info(training_args)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files in the summarization task, this script will use the first column for the full texts and the
# second column for the summaries (unless you specify column names for this with the `text_column` and
# `record_column` arguments).
# For translation, only JSON files are supported, with one field named "translation" containing two keys for the
# source and target languages (unless you adapt what follows).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
logger.info(data_files)
datasets = load_dataset("uie_json.py", data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
logger.info(datasets)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
logger.info("Load Config: %s" % model_args.config_name if model_args.config_name else model_args.model_name_or_path)
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
config.max_length = data_args.max_target_length
tokenizer_name = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
if 'char' in tokenizer_name:
tokenizer = T5BertTokenizer.from_pretrained(tokenizer_name)
else:
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_name,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
to_remove_token_list = list()
if tokenizer.bos_token:
to_remove_token_list += [tokenizer.bos_token]
if tokenizer.eos_token:
to_remove_token_list += [tokenizer.eos_token]
if tokenizer.pad_token:
to_remove_token_list += [tokenizer.pad_token]
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
mirror='tuna',
)
if training_args.do_train:
to_add_special_token = list()
for special_token in [constants.type_start, constants.type_end, constants.text_start, constants.span_start, constants.spot_prompt, constants.asoc_prompt]:
if special_token not in tokenizer.get_vocab():
to_add_special_token += [special_token]
tokenizer.add_special_tokens(
{"additional_special_tokens": tokenizer.special_tokens_map_extended['additional_special_tokens'] + to_add_special_token}
)
model.resize_token_embeddings(len(tokenizer))
logger.info(tokenizer)
# Set decoder_start_token_id
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
if data_args.record_schema and os.path.exists(data_args.record_schema):
record_schema = RecordSchema.read_from_file(data_args.record_schema)
else:
record_schema = None
if data_args.source_prefix is not None:
if data_args.source_prefix == 'schema':
prefix = PrefixGenerator.get_schema_prefix(schema=record_schema)
elif data_args.source_prefix.startswith('meta'):
prefix = ""
else:
prefix = data_args.source_prefix
else:
prefix = ""
logger.info(f"Prefix: {prefix}")
logger.info(f"Prefix Length: {len(tokenizer.tokenize(prefix))}")
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = datasets["train"].column_names
elif training_args.do_eval:
column_names = datasets["validation"].column_names
elif training_args.do_predict:
column_names = datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# To serialize preprocess_function below, each of those four variables needs to be defined (even if we won't use
# them all).
text_column = data_args.text_column
record_column = data_args.record_column
logger.info('Using src: %s and tgt: %s' % (text_column, record_column))
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.error(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_function(examples):
inputs = examples[text_column]
targets = examples[record_column]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(_label if _label != tokenizer.pad_token_id else -100) for _label in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
model_inputs['sample_prompt'] = [False] * len(model_inputs['input_ids'])
if data_args.source_prefix is not None and data_args.source_prefix.startswith('meta'):
model_inputs['spots'] = examples['spot']
model_inputs['asocs'] = examples['asoc']
model_inputs['spot_asoc'] = examples['spot_asoc']
# sample_prompt=True for Finetune and Pretrain
model_inputs['sample_prompt'] = [True] * len(model_inputs['input_ids'])
return model_inputs
def preprocess_function_eval(examples):
model_inputs = preprocess_function(examples)
# sample_prompt=False for evaluation
model_inputs['sample_prompt'] = [False] * len(model_inputs['input_ids'])
return model_inputs
def postprocess_text(x_str):
# Clean `bos` `eos` `pad` for cleaned text
for to_remove_token in to_remove_token_list:
x_str = x_str.replace(to_remove_token, '')
return x_str.strip()
logger.info("Start Data Preprocessing ...")
if training_args.do_train:
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
features=RecordFeature,
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
eval_dataset = datasets["validation"]
if data_args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
eval_dataset = eval_dataset.map(
preprocess_function_eval,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
features=RecordFeature,
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
test_dataset = datasets["test"]
if data_args.max_test_samples is not None:
test_dataset = test_dataset.select(range(data_args.max_test_samples))
test_dataset = test_dataset.map(
preprocess_function_eval,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
features=RecordFeature,
)
logger.info("End Data Preprocessing ...")
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
if data_args.pad_to_max_length:
data_collator = default_data_collator
elif data_args.source_prefix.startswith('meta'):
if data_args.spot_noise > 0 or data_args.asoc_noise > 0:
if data_args.decoding_format == 'spotasoc':
spot_asoc_nosier = SpotAsocNoiser(
spot_noise_ratio=data_args.spot_noise,
asoc_noise_ratio=data_args.asoc_noise,
null_span=constants.null_span,
)
else:
raise NotImplementedError(
f"decoding_format {data_args.decoding_format} is not implemented."
)
else:
spot_asoc_nosier = None
data_collator = DataCollatorForMetaSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
max_length=data_args.max_source_length,
max_prefix_length=data_args.max_prefix_length,
max_target_length=data_args.max_target_length,
negative_sampler=DynamicSSIGenerator(
tokenizer=tokenizer,
schema=record_schema,
positive_rate=data_args.meta_positive_rate,
negative=data_args.meta_negative,
ordered_prompt=data_args.ordered_prompt,
),
spot_asoc_nosier=spot_asoc_nosier,
decoding_format=data_args.decoding_format,
)
else:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=False, clean_up_tokenization_spaces=False)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=False, clean_up_tokenization_spaces=False)
decoded_preds = [postprocess_text(x) for x in decoded_preds]
decoded_labels = [postprocess_text(x) for x in decoded_labels]
result = get_extract_metrics(
pred_lns=decoded_preds,
tgt_lns=decoded_labels,
label_constraint=record_schema,
decoding_format=data_args.decoding_format,
)
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
return result
# Initialize our Trainer
trainer = ConstraintSeq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
decoding_type_schema=record_schema,
decoding_format=data_args.decoding_format,
source_prefix=prefix,
task=data_args.task,
)
# Training
if training_args.do_train:
if model_args.from_checkpoint:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
output_train_file = os.path.join(training_args.output_dir, "train_results.txt")
if trainer.is_world_process_zero():
with open(output_train_file, "w") as writer:
logger.info("***** Train results *****")
for key, value in sorted(train_result.metrics.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json"))
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
results = trainer.evaluate(max_length=data_args.val_max_target_length, num_beams=data_args.num_beams)
results = {k: round(v, 4) for k, v in results.items()}
eval_results = trainer.predict(
eval_dataset,
metric_key_prefix="eval",
max_length=data_args.val_max_target_length,
num_beams=data_args.num_beams,
)
output_eval_file = os.path.join(training_args.output_dir, "eval_results_seq2seq.txt")
if trainer.is_world_process_zero():
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in sorted(results.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
if training_args.predict_with_generate:
eval_preds = tokenizer.batch_decode(
eval_results.predictions, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
eval_preds = [postprocess_text(pred) for pred in eval_preds]
output_test_preds_file = os.path.join(training_args.output_dir, "eval_preds_seq2seq.txt")
with open(output_test_preds_file, "w") as writer:
writer.write("\n".join(eval_preds))
if training_args.do_predict:
logger.info("*** Test ***")
test_results = trainer.predict(
test_dataset,
metric_key_prefix="test",
max_length=data_args.val_max_target_length,
num_beams=data_args.num_beams,
)
test_metrics = test_results.metrics
test_metrics["test_loss"] = round(test_metrics["test_loss"], 4)
output_test_result_file = os.path.join(training_args.output_dir, "test_results_seq2seq.txt")
if trainer.is_world_process_zero():
with open(output_test_result_file, "w") as writer:
logger.info("***** Test results *****")
for key, value in sorted(test_metrics.items()):
logger.info(f" {key} = {value}")
writer.write(f"{key} = {value}\n")
if training_args.predict_with_generate:
test_preds = tokenizer.batch_decode(
test_results.predictions, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
test_preds = [postprocess_text(pred) for pred in test_preds]
output_test_preds_file = os.path.join(training_args.output_dir, "test_preds_seq2seq.txt")
with open(output_test_preds_file, "w") as writer:
writer.write("\n".join(test_preds))
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()