-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrun.py
137 lines (105 loc) · 3.84 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from time import perf_counter
from json import load
from sys import argv
import psutil
import numpy as np
from tqdm import tqdm
from usearch.io import load_matrix
from utils.metrics import recall
from index import INDEXES
STATS_DIR = "stats"
SAVE_DIRS = {
"USearch-HNSW-f32": "./tmp",
"USearch-HNSW-i8": "./tmp",
"USearch-HNSW-f16": "./tmp",
"FAISS-HNSW": "./tmp",
}
def get_memory_usage():
return psutil.Process().memory_info().rss / 1024
def get_train_dataset(dataset_path, dataset_size, frac=0.01):
size = int(dataset_size * frac)
start_idx = np.random.randint(0, dataset_size - size)
return load_matrix(dataset_path, start_idx, size, view=True)
def measure(
index,
dataset_path,
query_path,
groundtruth_path,
dataset_size,
step_size,
save_every_nth,
suffix,
):
queries = load_matrix(query_path)
if index.dim != queries.shape[1]:
queries = np.tile(queries, (1, index.dim // queries.shape[1]))
groundtruth = load_matrix(groundtruth_path)[:, :1]
construction_time = []
memory_consumption = []
search_time = []
recalls = []
chunk_idx = 1
memory_usage_before = get_memory_usage()
for start_idx in tqdm(range(0, dataset_size, step_size), desc=index.name):
if index.name != "SCANN":
chunk = load_matrix(dataset_path, start_idx, step_size, view=True)
else:
chunk = load_matrix(dataset_path, 0, chunk_idx * step_size, view=True)
if index.dim != chunk.shape[1]:
chunk = np.tile(chunk, (1, index.dim // chunk.shape[1]))
start_time = perf_counter()
index.add(chunk)
consumed_time = perf_counter() - start_time
consumed_memory = get_memory_usage() - memory_usage_before
construction_time.append(consumed_time)
memory_consumption.append(consumed_memory)
start_time = perf_counter()
nn_ids = index.search(queries, 1)
consumed_time = perf_counter() - start_time
search_time.append(consumed_time)
recall_at_one = recall(nn_ids, groundtruth, ats=(1,))
recalls.append(float(recall_at_one[0]))
if chunk_idx % save_every_nth == 0:
np.savez(
f"{STATS_DIR}/{index.name}.chunk_{chunk_idx}{suffix}.npz",
construction_time=construction_time,
memory_consumption=memory_consumption,
search_time=search_time,
recalls=recalls,
)
chunk_idx += 1
return construction_time, memory_consumption, search_time, recalls
if __name__ == "__main__":
config_path = argv[1]
suffix = "" if len(argv) < 3 else f"-{argv[2]}"
with open(config_path, "r") as f:
config = load(f)
for index_config in config["indexes"]:
index = INDEXES[index_config["name"]](**index_config["params"])
if index.is_training_needed:
train_dataset = get_train_dataset(
config["index_vectors_path"], config["dataset_size"]
)
if index.dim != train_dataset.shape[1]:
train_dataset = np.tile(
train_dataset, (1, index.dim // train_dataset.shape[1])
)
print(f"Training: {index}")
index.train(train_dataset)
construction_time, memory_consumption, search_time, recalls = measure(
index,
config["index_vectors_path"],
config["query_vectors_path"],
config["groundtruth_path"],
config["dataset_size"],
config["step_size"],
config["save_every_nth"],
suffix,
)
np.savez(
f"{STATS_DIR}/{index.name}{suffix}.npz",
construction_time=construction_time,
memory_consumption=memory_consumption,
search_time=search_time,
recalls=recalls,
)