We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
def getFeatures(self, image, inithann, scale_adjust=1.0): extracted_roi = [0,0,0,0] #[int,int,int,int] cx = self._roi[0] + self._roi[2]/2 #float cy = self._roi[1] + self._roi[3]/2 #float if(inithann): padded_w = self._roi[2] * self.padding padded_h = self._roi[3] * self.padding if(self.template_size > 1): if(padded_w >= padded_h): self._scale = padded_w / float(self.template_size) else: self._scale = padded_h / float(self.template_size) self._tmpl_sz[0] = int(padded_w / self._scale) self._tmpl_sz[1] = int(padded_h / self._scale) else: self._tmpl_sz[0] = int(padded_w) self._tmpl_sz[1] = int(padded_h) self._scale = 1. if(self._hogfeatures): self._tmpl_sz[0] = int(self._tmpl_sz[0]) / (2*self.cell_size) * 2*self.cell_size + 2*self.cell_size self._tmpl_sz[1] = int(self._tmpl_sz[1]) / (2*self.cell_size) * 2*self.cell_size + 2*self.cell_size else: self._tmpl_sz[0] = int(self._tmpl_sz[0]) / 2 * 2 self._tmpl_sz[1] = int(self._tmpl_sz[1]) / 2 * 2 extracted_roi[2] = int(scale_adjust * self._scale * self._tmpl_sz[0]) extracted_roi[3] = int(scale_adjust * self._scale * self._tmpl_sz[1]) extracted_roi[0] = int(cx - extracted_roi[2]/2) extracted_roi[1] = int(cy - extracted_roi[3]/2) z = subwindow(image, extracted_roi, cv2.BORDER_REPLICATE) if(z.shape[1]!=self._tmpl_sz[0] or z.shape[0]!=self._tmpl_sz[1]): z = cv2.resize(z, tuple(self._tmpl_sz)) if(self._hogfeatures): mapp = {'sizeX':0, 'sizeY':0, 'numFeatures':0, 'map':0} mapp = fhog.getFeatureMaps(z, self.cell_size, mapp) mapp = fhog.normalizeAndTruncate(mapp, 0.2) mapp = fhog.PCAFeatureMaps(mapp) self.size_patch = map(int, [mapp['sizeY'], mapp['sizeX'], mapp['numFeatures']]) FeaturesMap = mapp['map'].reshape((self.size_patch[0]*self.size_patch[1], self.size_patch[2])).T # (size_patch[2], size_patch[0]*size_patch[1]) else: if(z.ndim==3 and z.shape[2]==3): FeaturesMap = cv2.cvtColor(z, cv2.COLOR_BGR2GRAY) # z:(size_patch[0], size_patch[1], 3) FeaturesMap:(size_patch[0], size_patch[1]) #np.int8 #0~255 elif(z.ndim==2): FeaturesMap = z #(size_patch[0], size_patch[1]) #np.int8 #0~255 FeaturesMap = FeaturesMap.astype(np.float32) / 255.0 - 0.5 self.size_patch = [z.shape[0], z.shape[1], 1] if(inithann): self.createHanningMats() # createHanningMats need size_patch FeaturesMap = self.hann * FeaturesMap return FeaturesMap
The text was updated successfully, but these errors were encountered:
FeaturesMap i find the FeaturesMap is a local variables .and not be define before
Sorry, something went wrong.
No branches or pull requests
The text was updated successfully, but these errors were encountered: