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Topics

1. Processor/Memory/IO Interaction 

2. Direct Cache Access 

3. PCIe Transaction Processing Hit (TPH)

4. Xilinx Zynq IO Cache Coherent Access
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Interactions between Processor, Memory and I/O

1. Processor sets up buffer and descriptor (pointer to 
buffer)

2. Write to a MMIO register 
3. I/O adaptor fetches descriptor
4. I/O adaptor completes a block transfer, and 

update status
5. I/O adapter sends an interrupt, Processor query 

the device using MMIO read
6. Processor reads stats and payload data
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I/O Read/Write to Memory from A Cache Perspective -

1. IO read/write to system memory

2. Snoop on system interconnect, if cache hit

1. If write, invalidate from the process cache

2. If read, marked as a shared cacheline

3. If cacheline is modified, write-back to system 

memory

4. Write back date merge with  IO write data

5. Process subsequently read a cache miss
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Direct Cache Access - DCA

• IO data directly into the processor’s cache

• CPU read will be cache hit

• Reduce memory bandwidth

• Write to cache, eliminate the need to write data to memory

• An industry example: PCIe Transaction Layer Packet Processing Hint
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1. I/O device DMAs* packets to main 

memory 

2. 2. CPU later fetches them to cache 

Inefficient:
•Large number of accesses to main memory
•High access latency (>60ns)
•Unnecessary memory bandwidth usage

1. I/O device DMAs packets to main 
memory
2.DCA exploits TPH* to prefetch a portion 
of packets into cache
3.CPU later fetches them from cache
Still inefficient 
• in terms of memory bandwidth usage
• Requires OS intervention and support 

from processor

1. DDIO in Xeon processors since
Xeon E5
2. DMA packets or descriptors
directly to/from Last Level Cache
(LLC)

Convention I/O Direct Cache Access (DCA) Intel DDIO
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IO Read System Memory

1. CPU allocates data buffer with data, and control structures. 
Then IO is notified to begin a transmit operation.

2. When the IO receives notification for starting a transmit 
operation, it first reads control structures and subsequently 
the packet data. The data was very likely in CPU cache.
2.1 Each read operation triggered by the IO causes data 
to be write-back from the cache, if present and dirty; 
2.2 This read operation also causes a speculative read to 
be issued to memory in parallel, while the coherency 
protocol checks if the data happens to be in the CPU’s 
caching hierarchy.

=> a single read operation caused two or three trips to 
memory, depending on the platform.
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IO Read System Memory - DDIO

1. Data access operations associated with creating a packet 
are satisfied from within the cache. Thus, software running 
on the CPU does not encounter cache misses, and, 
therefore does not have to fetch data from memory.

2. The read operation initiated by the IO is satisfied by data 
from the cache, without causing evictions, that is, the data 
remains in the cache; since this data is re-used by 
software, it stays in the cache.

Benefit: 
1. fewer trips to memory, and, in the ideal case, no trips to 

memory. 
2. The data in the cache is not disturbed by an I/O data 

consumption operation
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IO Write System Memory

1. IO transfers data (packets or control) to host memory. If 
the data being delivered happens to be in the CPU’s 
caching hierarchy, it is invalidated.

2. SW running on the CPU reads the data to perform 
processing tasks. These data access operations misses 
cache (See step 1 above for explanation) and causes data 
to be read in from memory, into the CPU’s caching 
hierarchy.
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IO Write System Memory - DDIO

1. I/O data delivery uses Write Update or Write Allocate 
operations (depending on cache residency of the memory 
addresses to which data is being delivered), which causes 
data to be delivered to the cache, without going to 
memory.

2. The subsequent read operations initiated by SW are 
satisfied by data from the cache, without causing cache 
misses.
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Not all I/O data updates on Processor’s Cache
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PCIe Transaction Processing Hit (TPH)
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https://old.hotchips.org/wp-content/uploads/hc_archives/hc21/1_sun/HC21.23.1.SystemInterconnectTutorial-
Epub/HC21.23.131.Ajanovic-Intel-PCIeGen3.pdf

https://old.hotchips.org/wp-content/uploads/hc_archives/hc21/1_sun/HC21.23.1.SystemInterconnectTutorial-Epub/HC21.23.131.Ajanovic-Intel-PCIeGen3.pdf
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Xilinx Zynq FPGA for IO Cache Access
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Zynq Block Diagram

https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/ACP-Interface?tocId=nBXmrCWPBNy5eVgxEHWuzQ

https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/ACP-Interface?tocId=nBXmrCWPBNy5eVgxEHWuzQ
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• ACP – Accelerator Coherency Port

• ACP Transaction is coherent to the APU L1/L2 Cache

• Read Transaction
• Hit L1 or L2 Cache – data is returned from L1/L2 Cache
• If miss, request forward to DDR memory

• Write Transaction
• Optionally allocate into the L2 cache

• ARCACHE and AWCACHE limited ‘b0111, ‘b1011, ‘b1111 
(Cachable & Bufferable)

• Up to 4 outstanding transactions (using different AXI ID)
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Accelerator Coherence Port (ACP)

• ACP allows limited support for Hardware Coherency
• Allows a PL accelerator to access cache of the Cortex-A9 processors

• PL has access through the same path as CPUs including caches, OCM, 
DDR, and peripherals

• Access is low latency (assuming data is in processor cache) no switches in 
path

• ACP does not allow full coherency
• PL is not notified of changes in processor caches

• Use write to PL register for synchronization

• ACP is compromise between bandwidth and latency
• Optimized for cache line length transfers

• Low latency for L1/L2 hits

• Minimal buffering to hide external memory latency

• Treating all ACP transaction coherent. May cause undesirable cache 
thrashing.


