
©BOLEDU

SOC Design
Interconnect – IO Cache Access

Jiin Lai

©BOLEDU

Topics

1. Processor/Memory/IO Interaction

2. Direct Cache Access

3. PCIe Transaction Processing Hit (TPH)

4. Xilinx Zynq IO Cache Coherent Access

©BOLEDU

Interactions between Processor, Memory and I/O

1. Processor sets up buffer and descriptor (pointer to
buffer)

2. Write to a MMIO register
3. I/O adaptor fetches descriptor
4. I/O adaptor completes a block transfer, and

update status
5. I/O adapter sends an interrupt, Processor query

the device using MMIO read
6. Processor reads stats and payload data

1

2

3

4

5

6

©BOLEDU

I/O Read/Write to Memory from A Cache Perspective -

1. IO read/write to system memory

2. Snoop on system interconnect, if cache hit

1. If write, invalidate from the process cache

2. If read, marked as a shared cacheline

3. If cacheline is modified, write-back to system

memory

4. Write back date merge with IO write data

5. Process subsequently read a cache miss

©BOLEDU

Direct Cache Access - DCA

• IO data directly into the processor’s cache

• CPU read will be cache hit

• Reduce memory bandwidth

• Write to cache, eliminate the need to write data to memory

• An industry example: PCIe Transaction Layer Packet Processing Hint

©BOLEDU

1. I/O device DMAs* packets to main

memory

2. 2. CPU later fetches them to cache

Inefficient:
•Large number of accesses to main memory
•High access latency (>60ns)
•Unnecessary memory bandwidth usage

1. I/O device DMAs packets to main
memory
2.DCA exploits TPH* to prefetch a portion
of packets into cache
3.CPU later fetches them from cache
Still inefficient
• in terms of memory bandwidth usage
• Requires OS intervention and support

from processor

1. DDIO in Xeon processors since
Xeon E5
2. DMA packets or descriptors
directly to/from Last Level Cache
(LLC)

Convention I/O Direct Cache Access (DCA) Intel DDIO

©BOLEDU

IO Read System Memory

1. CPU allocates data buffer with data, and control structures.
Then IO is notified to begin a transmit operation.

2. When the IO receives notification for starting a transmit
operation, it first reads control structures and subsequently
the packet data. The data was very likely in CPU cache.
2.1 Each read operation triggered by the IO causes data
to be write-back from the cache, if present and dirty;
2.2 This read operation also causes a speculative read to
be issued to memory in parallel, while the coherency
protocol checks if the data happens to be in the CPU’s
caching hierarchy.

=> a single read operation caused two or three trips to
memory, depending on the platform.

©BOLEDU

IO Read System Memory - DDIO

1. Data access operations associated with creating a packet
are satisfied from within the cache. Thus, software running
on the CPU does not encounter cache misses, and,
therefore does not have to fetch data from memory.

2. The read operation initiated by the IO is satisfied by data
from the cache, without causing evictions, that is, the data
remains in the cache; since this data is re-used by
software, it stays in the cache.

Benefit:
1. fewer trips to memory, and, in the ideal case, no trips to

memory.
2. The data in the cache is not disturbed by an I/O data

consumption operation

©BOLEDU

IO Write System Memory

1. IO transfers data (packets or control) to host memory. If
the data being delivered happens to be in the CPU’s
caching hierarchy, it is invalidated.

2. SW running on the CPU reads the data to perform
processing tasks. These data access operations misses
cache (See step 1 above for explanation) and causes data
to be read in from memory, into the CPU’s caching
hierarchy.

©BOLEDU

IO Write System Memory - DDIO

1. I/O data delivery uses Write Update or Write Allocate
operations (depending on cache residency of the memory
addresses to which data is being delivered), which causes
data to be delivered to the cache, without going to
memory.

2. The subsequent read operations initiated by SW are
satisfied by data from the cache, without causing cache
misses.

©BOLEDU

Not all I/O data updates on Processor’s Cache

©BOLEDU

PCIe Transaction Processing Hit (TPH)

©BOLEDU

https://old.hotchips.org/wp-content/uploads/hc_archives/hc21/1_sun/HC21.23.1.SystemInterconnectTutorial-
Epub/HC21.23.131.Ajanovic-Intel-PCIeGen3.pdf

https://old.hotchips.org/wp-content/uploads/hc_archives/hc21/1_sun/HC21.23.1.SystemInterconnectTutorial-Epub/HC21.23.131.Ajanovic-Intel-PCIeGen3.pdf

©BOLEDU

©BOLEDU

©BOLEDU

©BOLEDU

©BOLEDU

Xilinx Zynq FPGA for IO Cache Access

©BOLEDU

Zynq Block Diagram

https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/ACP-Interface?tocId=nBXmrCWPBNy5eVgxEHWuzQ

https://docs.xilinx.com/r/en-US/ug1085-zynq-ultrascale-trm/ACP-Interface?tocId=nBXmrCWPBNy5eVgxEHWuzQ

©BOLEDU

• ACP – Accelerator Coherency Port

• ACP Transaction is coherent to the APU L1/L2 Cache

• Read Transaction
• Hit L1 or L2 Cache – data is returned from L1/L2 Cache
• If miss, request forward to DDR memory

• Write Transaction
• Optionally allocate into the L2 cache

• ARCACHE and AWCACHE limited ‘b0111, ‘b1011, ‘b1111
(Cachable & Bufferable)

• Up to 4 outstanding transactions (using different AXI ID)

©BOLEDU

Accelerator Coherence Port (ACP)

• ACP allows limited support for Hardware Coherency
• Allows a PL accelerator to access cache of the Cortex-A9 processors

• PL has access through the same path as CPUs including caches, OCM,
DDR, and peripherals

• Access is low latency (assuming data is in processor cache) no switches in
path

• ACP does not allow full coherency
• PL is not notified of changes in processor caches

• Use write to PL register for synchronization

• ACP is compromise between bandwidth and latency
• Optimized for cache line length transfers

• Low latency for L1/L2 hits

• Minimal buffering to hide external memory latency

• Treating all ACP transaction coherent. May cause undesirable cache
thrashing.

