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English Summary 

Plagues and outbreaks of locusts have caused famine, harvest failure and negative impacts 
on grazing livestock ever since mankind became sedentary. Reports of catastrophic locust 
plagues are documented in numerous historical and religious writings and affected all 
continents except Antarctica.  

With the accompanying industrialization and progress in agriculture, as well as the 
transformation of natural areas, locust infestations and outbreaks have declined since the 
second half of the 20th century. On the one hand, natural habitats of various locust species 
were transformed and used by humans, so that locust population dynamics were 
automatically contained by anthropogenic activities alone. On the other hand, the progress 
and use of insecticides as a control measure against locusts led to shorter and less intensive 
outbreak events. However, the large-scale and extensive use of chemicals negatively impact 
the environment and human health. 

In order to minimize the use of insecticides and maximize their effectiveness, the so-called 
preventive locust management has been introduced since the 1960s. The goal of preventive 
locust management is to have a continuous, standardized and timely close-meshed 
observation of all relevant environmental parameters, as well as locust life cycles and 
phases. In this way, it aims at enabling locust population control as early as possible and 
contain potential outbreaks in their initial phase and at a small geographic scale. Considering 
the necessity of large-scale monitoring of habitats as well as environmental and weather 
conditions, the usage of satellite-based data and remote sensing methods have proven to 
be extremely beneficial since the 1980s. In detail, remote sensing data allows for the 
assessment of the situation on large and highly remote or difficult-to-access areas.  

In the last ten years, there has been a tremendous boost in the development of satellite data 
and computer technology. Nowadays, many remote sensing datasets with high spatial and 
temporal resolution and historical archives are freely available to the public. Furthermore, 
data processing with the possibilities of modern computer technology and cloud-based 
applications offer new perspectives that were unimaginable just a few years ago. This 
constellation of data availability and the advanced technical possibilities of data processing 
bring new perspectives also for locust management and research.  

In this context, this dissertation focuses on satellite remote sensing applications for locust 
management and additional contributions to locust research. Specifically, the remote 
sensing-based characterization and interpretation of land surface cover and its dynamics 
are addressed with a special emphasis on the requirements of different locust species. At 
first, the aim of this dissertation is to provide a holistic overview of the existing applications 
using satellite data focusing on different locust species and thus, to present current and new 
opportunities. Furthermore, remote sensing and geospatial datasets are used in a model to 
categorize areas with ideal and less than ideal conditions for locust outbreaks. The benefit 
of up-to-date remote sensing data for preventive locust management is demonstrated using 
time-series-based Sentinel-2 land cover classification. Due to the diversity of the numerous 
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locust species and their spatial distribution in different geographical locations, this research 
focuses mainly on two locust species, the Italian locust (Calliptamus italicus) and the 
Moroccan locust (Dociostaurus maroccanus), as well as on selected study areas within their 
extensive habitats, respectively. Both selected locust species caused numerous damages 
in Europe, the Caucasus, Central Asia and North Africa in the past. For both species, there 
is only a limited number of publications exploiting the capabilities of remote sensing 
methods. Therefore, this dissertation aims to explore the potential approaches of Earth 
observation datasets to support preventive locust management and research for both 
species. 

In the view of described challenges and opportunities, four major objectives are delineated 
in the present dissertation. As first part of this dissertation, a systematic review on available 
applications of remote sensing data in the context of locust management and research is 
provided. The focus of the review is on the various sensor types, indices and methods 
applied, as well as on thematic topics, that are categorized by species and geographic study 
areas. The results of this review form the basis for further methodological developments 
within this dissertation. In more detail, the results show that within the international literature, 
previous studies on remote sensing applications in the context of locust management and 
research mainly investigated the desert locust (Schistocerca gregaria 33%), migratory locust 
(Locusta migratoria 27%) and Australian plague locust (Chortoicetes terminifera 14%). Only 
few studies exist that deal with the Italian locust (5%) and the Moroccan locust (1%). 

In the second part of this dissertation, a so-called Habitat Suitability Index (HSI) model was 
applied in order to better describe the habitats of the Italian locust and the Moroccan locust 
and to identify possible hotspot regions of their breeding sites. The HSI model considers 
favorable static and dynamic environmental variables derived from remote sensing datasets 
and factors that counteract successful breeding of locusts. Here, it is crucial to define 
species-specific characteristics and to take them into account within the model. The 
modelling results show that satellite datasets with high temporal and spatial resolution have 
significant potential to better categorize locust habitats in terms of suitability for successful 
breeding and population development. 

Third, the current outbreak of the Moroccan locust in Sardinia, Italy, in the year 2022 was 
analyzed based on Sentinel-2 time-series and land cover classification approaches. This 
analysis quantifies, in an unprecedented way, the relationship between land cover types and 
land management information derived from remote sensing data and breeding locations 
during the outbreak. The integration of field survey data showed that a total of 43% of the 
detected locations were found to be in areas which were previously cultivated (e.g., fallow 
fields, untilled, pastureland). The relationship between the previous and current land 
management activities, as well as vegetation development within the locust breeding areas 
demonstrate that remote sensing data as well as up-to-date and task specified land cover 
applications can be an additional advantage for preventive locust management and 
research. 

Finally, the benefits of using remote sensing and geospatial datasets for locust management 
are discussed and exemplified. Because practical applications of remote sensing and 
geospatial datasets are still not exploited fully in practice, this dissertation presents a system 
that standardizes the spatial information with the aim to facilitate a broader usage of such 
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datasets. The presented system provides a straightforward approach for professionals 
without geo-data-based training to apply spatial datasets in a simplified format for everyday 
analyses, assessments and planning. 

Overall, this dissertation demonstrates that remote sensing applications for preventive locust 
management and research, especially for the Italian locust (Calliptamus italicus) and the 
Moroccan locust (Dociostaurus maroccanus), still have a lot of potential. This potential has 
not yet been sufficiently utilized especially considering the recent scientific developments. 
Even though remote sensing data plays a crucial role e.g., for the management of the desert 
locust and the Australian plague locust, there are barely any remote sensing-based 
applications for many other dangerous locust species. On the one hand, this is due to the 
different characteristics of the habitats and environmental factors that can favor the 
outbreaks of different species. On the other hand, there is comparatively low international 
research interest in many species, because they only have a regional or at most continental 
damage potential. With ongoing climate change and continuing alterations in land 
management activities, e.g., due to political, economic or security reasons, it remains an 
important task to derive remotely sensed information for all locust pests in order to support 
preventive management activities. In particular, it is of great importance to keep potential 
outbreaks to a minimum and at the same time the use of insecticides as effective and as 
low as possible. In this context, it should be mentioned that locusts are extremely resourceful 
for human and animal nutrition due to their high protein content. However, it is important that 
the insects for consumption are not contaminated by chemicals. Within the balancing act of 
locust control and harvest as well as exacerbating impacts of climate change and land 
management alteration, remote sensing data and methods will play an even more important 
role in future. 
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Zusammenfassung 

Heuschreckenplagen und -ausbrüche führen seit Sesshaftwerdung des Menschen immer 
wieder zu Hungersnöten, Ernteausfällen und Beeinträchtigungen der Weidetierhaltung. 
Berichte über katastrophale Heuschreckenplagen finden sich in zahlreichen historischen 
und religiösen Schriften und betrafen bereits alle Kontinente mit Ausnahme der Antarktis.  

Mit einhergehender Industrialisierung, Fortschritten in der Landwirtschaft, sowie der 
Umgestaltung von Naturräumen durch den Menschen, sind seit der zweiten Hälfte des 20. 
Jahrhunderts Heuschreckenplagen und -ausbrüche zurückgegangen. Zum einen wurden 
die natürlichen Habitate verschiedener Heuschreckenarten umgestaltet und vom Menschen 
genutzt, sodass die Heuschreckenpopulationsdynamik schon allein durch die menschliche 
Aktivität eingedämmt wurde. Zum anderen führte der Fortschritt und Einsatz von 
Insektiziden als Bekämpfungsmaßname gegen Heuschrecken zu kürzeren und weniger 
intensiven Ausbruchsereignissen. Dabei ist ein großräumiger und massiver Einsatz von 
Chemikalien mit all seinen negativen Auswirkungen auf die Umwelt und den Menschen die 
Kehrseite. 

Um den Einsatz mit Insektiziden möglichst gering aber maximal effektiv zu gestalten, wird 
beim sogenannten Heuschreckenmanagement seit den 1960er Jahren auf präventive 
Strategien gesetzt. Die wesentliche Aufgabe innerhalb des präventiven Heuschrecken-
managements ist eine kontinuierliche und engmaschige Beobachtung aller relevanten 
Umweltparameter, sowie der Heuschreckenlebenszyklen und -phasen. Somit soll eine 
möglichst kleinräumige und frühzeitige Bekämpfung ermöglicht werden, um potentielle 
Ausbrüche bereits in ihrer Anfangsphase einzudämmen. Vor allem bei der großräumigen 
Beobachtung der Habitate sowie der Umweltsituation und Wetterlage hat sich der Einsatz 
von Fernerkundungsdaten und -methoden seit den 1980er Jahren als äußerst vorteilhaft 
herausgestellt. Des Weiteren ermöglichen Fernerkundungsdaten eine Abschätzung der 
Situation auch in stark abgelegenen oder schwer zugänglichen Gebieten.  

In den letzten zehn Jahren gab es einen enormen Entwicklungsschub hinsichtlich der 
Verfügbarkeit von Satellitendaten sowie im Bereich der Computertechnologie. So sind 
heutzutage viele Daten mit hoher räumlicher und zeitlicher Auflösung sowie historische 
Archive öffentlich zugänglich. Des Weiteren bieten moderne Computertechnologien und 
cloudbasierte Prozessierungsumgebungen neue Anwendungsperspektiven, die noch vor 
einigen Jahren unvorstellbar waren. Diese Konstellation aus Datenverfügbarkeit und den 
fortgeschrittenen technischen Möglichkeiten der Datenverarbeitung bringen neue Potentiale 
auch für das präventive Heuschreckenmanagement und entsprechende Forschungs-
ansätze.  

Vor diesem Hintergrund beschäftigt sich die vorliegende Dissertation mit dem Einsatz der 
Satellitenfernerkundung im Bereich Heuschreckenmanagement und -forschung. Die 
fernerkundungsbasierte Charakterisierung und Interpretation der Landoberflächen-
bedeckung und deren Dynamik stehen dabei - mit Fokus auf die Anforderungen der 
verschiedenen Heuschreckenarten - im Vordergrund. Ziel dieser Dissertation ist es 
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zunächst, einen ganzheitlichen Überblick über vorhandene Anwendungen von 
Satellitendaten im Kontext Heuschreckenmanagement zu erarbeiten. Des Weiteren werden 
fernerkundungs- und geobasierten Datensätzen in einem Model verwendet, um Flächen mit 
idealen bzw. weniger idealen Bedingungen für Heuschreckenausbrüche zu kategorisieren. 
Der Vorteil von aktuellen Fernerkundungsdaten für präventives Heuschreckenmanagement 
wird anhand zeitreihenbasierten Sentinel-2 Landbedeckungsklassifikation demonstriert. 
Aufgrund der Vielfältigkeit der zahlreichen Heuschreckenarten und deren räumlicher 
Verteilung in verschiedenen geographischen Lagen, konzentriert sich diese Arbeit im 
Wesentlichen auf zwei Heuschreckenarten, die Italienische Schönschrecke (Calliptamus 
italicus) und die Marokkanische Wanderheuschrecke (Dociostaurus maroccanus), sowie auf 
ausgewählte Studiengebiete innerhalb deren weiträumigen Habitaten. Beide 
Heuschreckenarten verursachten zahlreiche Ausbrüche in der Vergangenheit mit Schäden 
in Europa, dem Kaukasus, Zentralasien und Nordafrika. Für beide Heuschreckenarten 
existieren nur wenige Forschungsarbeiten, die sich mit der Anwendung von Fern-
erkundungsdaten auseinandersetzen. Vor diesem Hintergrund zielt diese Dissertation auf 
die Entwicklung von relevanten Methoden unter Einsatz von Fernerkundungsdaten für beide 
Heuschreckenarten ab, um präventives Heuschreckenmanagement und -forschung zu 
unterstützen.  

Angesichts der beschriebenen Herausforderungen und Möglichkeiten werden in der 
vorliegenden Dissertation vier Hauptziele skizziert. Zunächst wird ein umfassender 
Überblick zu bereits vorhandenen Anwendungen von Fernerkundungsdaten im 
Zusammenhang mit Heuschreckenmanagement und -forschung erarbeitet. Hierbei stehen 
sowohl die verwendeten Fernerkundungssensoren, Indizes und Methoden als auch die 
inhaltlichen Schwerpunkte relevanter Studien im Vordergrund. Diese werden zudem nach 
untersuchten Heuschreckenarten und Studiengebieten kategorisiert. Die Ergebnisse der 
Literaturstudie bilden dann die Grundlage für weitere methodische Entwicklungen innerhalb 
dieser Arbeit. Die herausgearbeiteten Ergebnisse der Literaturrecherche zeigen, dass die in 
der internationalen Literatur vorhandenen Studien zum Thema, Einsatz der Fernerkundung 
im Bereich Heuschreckenmanagement bzw. Heuschreckenforschung, sich hauptsächlich 
mit der Wüstenheuschrecke (Schistocerca gregaria 33%), der Wanderheuschrecke 
(Locusta migratoria 27%) und der Australischen Pestheuschrecke (Chortoicetes terminifera 
14%) beschäftigen. Ebenso zeigt die Literaturrecherche, dass nur wenige Untersuchungen 
zur Italienischen Schönschrecke (5%) und der Marokkanischen Wanderheuschrecke (1%) 
existieren.  

Im zweiten Teil dieser Arbeit wurde ein sogenanntes „Habitat Suitability Index Model“ 
angewendet um die Habitate der Italienischen Schönschrecke und der Marokkanischen 
Wanderheuschrecke besser zu beschreiben und eventuelle Hotspotregionen für Brutstätten 
zu identifizieren. Das Modell berücksichtigt sowohl begünstigende statische und 
dynamische Umweltfaktoren, als auch Faktoren, welche einem erfolgreichen Schlüpfen und 
der Vermehrung von Heuschrecken entgegenwirken. Dabei war es von enormer Bedeutung 
artenspezifische Charakteristika herauszuarbeiten und im Modell entsprechend zu 
berücksichtigen. Die Ergebnisse der Modellierung zeigen, dass der Einsatz von zeitlich und 
räumlich hochaufgelösten Satellitendaten hohes Potential hat, um die Habitate von 
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Heuschrecken bzgl. ihrer Eignung für ein erfolgreiches Schlüpfen und eine erfolgreiche 
Populationsentwicklung besser zu kategorisieren.  

Drittens, wurde der Ausbruch der Marokkanischen Wanderheuschrecke auf Sardinien 
(Italien) aus dem Jahr 2022 auf der Grundlage von Sentinel-2 Zeitreihen und Methoden der 
Landbedeckungsklassifizierung analysiert. Diese Analyse quantifiziert auf beispiellose 
Weise den Zusammenhang von Landbedeckungstypen und Landmanagement, welche aus 
Fernerkundungsdaten abgeleitet wurden, mit beobachteten Brutgebieten während des 
Ausbruchs. Die Analysen haben gezeigt, dass sich insgesamt 43% der in der Feldbegehung 
erfassten Standorte der Brutgebiete auf Flächen befinden, die zuvor kultiviert waren (z.B. 
Brachflächen, Ackerland, Weideland). Der daraus abgeleitete Zusammenhang zwischen 
früherer sowie aktueller Landbewirtschaftung und der Vegetationsentwicklung in 
Heuschreckenbrutgebieten verdeutlicht, dass Fernerkundungsdaten und aktuelle sowie 
aufgabenspezifische Landbedeckungsklassifikationen von Vorteil für das präventive 
Heuschreckenmanagement und -forschung sein können. 

Schlussendlich werden die Vorteile des Einsatzes von fernerkundungs- und geobasierten 
Datensätzen für das Heuschreckenmanagement diskutiert und der Nutzen dieser Daten 
beispielhaft aufgezeigt. Da der Einsatz von fernerkundungs- und geobasierten Datensätzen 
in der Praxis immer noch nicht das vorhandene Potenzial ausschöpft, wird in dieser Arbeit 
ein System präsentiert, welches die räumlichen Informationen standardisiert, mit dem Ziel, 
eine breitere Nutzung solcher Datensätze zu ermöglichen. Dies soll Fachkräften ohne 
geodatenbasierte Ausbildung eine Grundlage bietet, um bestehende Daten und 
Informationsprodukte in vereinfachter Form für alltägliche Analysen, Einschätzungen und 
Planungen zu nutzen.    

Insgesamt veranschaulicht diese Arbeit, dass Fernerkundungsdaten und -methoden bzgl. 
des Heuschreckenmanagements und diesbezüglicher Forschung mit Fokus auf die 
Italienische Schönschrecke (Calliptamus italicus) und Marokkanische Wanderheuschrecke 
(Dociostaurus maroccanus) noch viel Potential haben. Die vor allem durch die 
technologischen Entwicklungen der letzten Jahre verbesserten Möglichkeiten des Einsatzes 
fernerkundungsbasierter Methoden werden noch nicht ausreichend ausgeschöpft. Auch 
wenn Fernerkundungsdaten eine entscheidende Rolle z.B. für das Management der 
Wüstenheuschrecke und der Australischen Pestheuschrecke spielen, gibt es für viele 
andere gefährliche Arten wenig oder kaum fernerkundungsbasierte Anwendungen und 
Methoden. Dies liegt zum einen an den unterschiedlichen Charakteristika der Habitate und 
Umweltfaktoren, die die Ausbrüche von verschiedenen Arten begünstigen können. Zum 
anderen am vergleichsweise geringen internationalen Forschungsinteresse, aufgrund der 
Vielzahl an Arten, die ein eher regionales bzw.  kontinentales Schadenspotential aufweisen. 
Unter der Annahme eines weiter fortschreitenden Klimawandels und sich immer wieder 
ändernder menschlicher Landnutzung - sei es aus politischen, wirtschaftlichen oder 
sicherheitstechnischen Gründen - ist es auch in Zukunft wichtig für alle gefährlichen 
Heuschreckenarten fernerkundungsbasierte Informationen abzuleiten, um ein präventives 
Heuschreckenmanagement zu unterstützen. Besonders wichtig ist es, die potentiellen 
Ausbruchsherde minimal, aber auch den Einsatz von Insektiziden möglichst effektiv und 
gering zu halten. In diesem Zusammenhang sei auch erwähnt, dass Heuschrecken aufgrund 
des hohen Proteingehalts großes Potenzial zur Unterstützung der Ernährungssicherheit (für 
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Mensch oder Tier) haben. Dabei ist es wichtig, dass die Insekten für den Verzehr zuvor nicht 
durch Chemikalien kontaminiert werden. Bei diesem Spagat zwischen der Heuschrecken-
bekämpfung auf der einen Seite und der Heuschreckenverzehr auf der anderen Seite, 
könnten Daten und Methoden der Fernerkundung in Zukunft eine zunehmend wichtige Rolle 
spielen. 
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Russian Summary 

Вспышки и нашествия саранчи вызывали голод, неурожай и негативное воздействие 
на пастбищный скот с тех пор, как человечество стало оседлым. Информация о 
катастрофических нашествиях саранчи задокументированы в многочисленных 
исторических и религиозных писаниях и затронули все континенты, кроме 
Антарктиды. 

В ходе индустриализации и развития сельского хозяйства, а также преобразованием 
природных зон, со второй половины 20 века численность и вспышки саранчи 
сократились. С одной стороны, естественные места обитания различных видов 
саранчовых преобразовались и стали использоваться человеком, соответственно 
динамика численности саранчовых автоматически сдерживалась. С другой стороны, 
прогресс и использование инсектицидов в качестве меры борьбы с саранчой привели 
к более коротким и менее интенсивным вспышкам. Однако масштабное и широкое 
применение химических веществ негативно влияет на окружающую среду и здоровье 
человека. 

Для того чтобы минимизировать использование инсектицидов и максимально 
повысить их эффективность, с 1960-х годов внедряются методы контроля и 
управления саранчовыми. Целью управления саранчовых является постоянное, 
стандартизированное и своевременное наблюдение за всеми соответствующими 
параметрами окружающей среды, а также за жизненными циклами и фазами саранчи. 
Таким образом, обеспечить контроль популяции саранчи как можно раньше и 
сдержать потенциальные вспышки на начальной стадии и в небольших 
географических масштабах. Учитывая необходимость крупномасштабного 
мониторинга мест обитания, а также состояния окружающей среды и погоды, 
использование спутниковых данных и методов дистанционного зондирования 
оказалось чрезвычайно полезным с 1980-х годов. В частности, данные 
дистанционного зондирования позволяют оценить ситуацию на больших и очень 
удаленных или труднодоступных территориях. 

За последние десять лет произошел огромный скачок в развитии спутниковых данных 
и компьютерных технологий. В настоящее время многие наборы данных 
дистанционного зондирования с высоким пространственным и временным 
разрешением, и исторические архивы находятся в свободном доступе. Кроме того, 
обработка данных с использованием возможностей современных компьютерных 
технологий и облачных приложений открывает новые перспективы, которые 
невозможно было представить еще несколько лет назад. Это сочетание доступности 
данных и передовых технических возможностей обработки данных открывают новые 
перспективы для контроля саранчовых и исследований в том числе. 

Данная диссертация раскрывает тему применения спутникового дистанционного 
зондирования для контроля саранчовых и проведения дополнительных исследований 
саранчи. В частности, особое внимание уделяется изучению потребностей различных 
видов саранчовых при описании характеристик земного покрова и его динамики на 



Russian Summary 

xx 

основе данных дистанционного зондирования. Первостепенная цель данной 
диссертации состоит в том, чтобы предоставить целостный обзор существующих 
приложений, использующих спутниковые данные, в разрезе различных видов 
саранчовых для того, чтобы раскрыть текущие и потенциальные возможности. Кроме 
того, дистанционное зондирование и наборы геопространственных данных 
используются для классификации территорий с идеальными и не идеальными 
условиями для нашествий саранчи. Преимущества современных данных 
дистанционного зондирования для контроля саранчовых продемонстрированы с 
помощью классификации почвенно-растительного покрова на основе временных 
рядов Sentinel-2. Из-за разнообразия многочисленных видов саранчовых и их 
пространственного распределения в разных географических точках, исследование 
сосредоточено в основном на двух видах саранчи, итальянского пруса (Calliptamus 
italicus) и марокканской саранче (Dociostaurus maroccanus), а также на определенных 
территориях, в пределах их обширного местообитаний. Оба вида саранчи в прошлом 
нанесли многочисленные повреждения в Европе, на Кавказе, в Центральной Азии и 
Северной Африке. Ограниченное количество публикаций имеется об обоих видах, где 
используются возможности методов дистанционного зондирования. Таким образом, 
целью данной диссертации является изучение потенциальных методов применения 
наборов данных наблюдения Земли для поддержки профилактических мероприятий 
по борьбе с саранчой и исследований обоих видов. 

С учетом описанных проблем и возможностей в настоящей диссертации обозначены 
четыре основные цели. В качестве первой части этой диссертации представлен 
систематический обзор доступных приложений данных дистанционного зондирования 
в контексте контроля саранчовых и научных исследований. Основное внимание в 
обзоре уделяется различным типам датчиков, индексам и применяемым методам, а 
также тематикам, классифицированным по видам и географическим областям 
исследования. Результаты этого обзора составляют основу для дальнейших 
методологических разработок в рамках данной диссертации. Результаты изучения 
показывают, что в международной литературе предыдущие исследования по 
применению дистанционного зондирования для контроля и изучения саранчовых, в 
основном изучалась пустынная саранча (Schistocerca gregaria 33%), перелетная 
саранча (Locusta migratoria 27%) и австралийская саранча (Chortoicetes terminifera 
14%). Существует лишь несколько исследований, посвященных итальянского пруса 
(5%) и мароккской саранче (1%). 

Во второй части диссертации была применена так называемая модель индекса 
пригодности местообитаний (HSI), для того чтобы лучше описать места обитания 
итальянского пруса и мароккской саранчи и определить возможные очаги их 
размножения. Модель HSI учитывает благоприятные статические и динамические 
переменные окружающей среды, полученные благодаря данным дистанционного 
зондирования, и факторы, препятствующие успешному размножению саранчи. Здесь 
важно определить видоспецифические характеристики и учесть их в модели. 
Результаты моделирования показывают, что наборы спутниковых данных с высоким 
временным и пространственным разрешением обладают значительным потенциалом 
для лучшей классификации местообитаний саранчовых с точки зрения их пригодности 
для успешного размножения и развития популяции. 
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В-третьих, вспышка мароккской саранчи на Сардинии, Италия, в 2022 году была 
проанализирована на основе временных рядов Sentinel-2 и методов классификации 
земного покрова. Этот анализ дает беспрецедентную количественную оценку 
взаимосвязи между типами земного покрова и информации об использовании 
земельных ресурсов, полученной на основе данных дистанционного зондирования и 
мест размножения во время вспышки. Интеграция данных полевого обследования 
показала, что в общей сложности 43% выявленных местонахождений находились на 
ранее возделываемых территориях (например, залежи, пашни, пастбища). Связь 
между предыдущей и текущей деятельностью по землеустройству, а также развитие 
растительности в районах размножения саранчи показывает, что данные 
дистанционного зондирования, а также актуальные и конкретизированные по задачам 
приложения изучения почвенного покрова, могут стать дополнительным 
преимуществом для контроля и борьбы с саранчовыми и исследований. 

Наконец, обсуждаются и приводятся примеры преимуществ использования 
дистанционного зондирования и наборов геопространственных данных для борьбы с 
саранчой. Поскольку практическое применение наборов данных дистанционного 
зондирования и геопространственных данных все еще не используется в полной мере 
на практике, в данной диссертации представлена система, которая стандартизирует 
пространственную информацию с целью содействия более широкому использованию 
таких наборов данных. Представленная система обеспечивает простой подход для 
специалистов, не имеющих подготовки в области геоданных, к применению 
пространственных наборов данных в упрощенном формате для повседневного 
анализа, оценки и планирования. 

В целом, данная диссертация показывает, что применение дистанционного 
зондирования для контроля и исследования саранчи, особенно итальянского пруса 
(Calliptamus italicus) и марокканской саранчи (Dociostaurus maroccanus), все еще имеет 
большой потенциал. Этот потенциал еще недостаточно использован, особенно с 
учетом последних научных разработок. Несмотря на то, что данные дистанционного 
зондирования играют решающую роль, например, для борьбы с пустынной саранчой 
и австралийской саранчой, для многих других опасных видов саранчи практически нет 
приложений, основанных на дистанционном зондировании. С одной стороны, это 
связано с различными характеристиками мест обитания и экологическими факторами, 
которые могут благоприятствовать вспышкам различных видов. С другой стороны, 
международный исследовательский интерес ко многим видам сравнительно невелик, 
поскольку они имеют лишь региональный или, в крайнем случае, континентальный 
потенциал ущерба. В условиях продолжающегося изменения климата и постоянных 
изменений в деятельности по управлению земельными ресурсами, например, по 
политическим, экономическим причинам или причинам безопасности, остается 
важной задачей получение информации дистанционного зондирования для всех 
саранчовых вредителей с целью их контроля и управления. В частности, очень важно 
свести потенциальные вспышки к минимуму и в то же время использовать 
инсектициды как можно эффективнее и реже. В этом контексте следует отметить, что 
саранча чрезвычайно питательна людей и животных, благодаря высокому 
содержанию белка. Однако важно, чтобы насекомые, используемые для потребления, 
не содержали химические вещества. В целях сбалансирования борьбы с саранчой и 
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сбором урожая, а также усугубляющегося воздействия изменения климата и 
изменения землепользования, данные и методы дистанционного зондирования будут 
играть еще более важную роль в будущем. 
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CHAPTER 1 

1 Introduction 
Biological disasters diminished global crop and livestock production between 2008 and 2018 
by a total of nine percent (FAO, 2021). For the future, it is estimated that the global crop 
yield reduction caused by biological pests such as locusts, armyworm divers plant 
pathogens and weeds will be between 30 to 40% (Savary et al., 2019). One of the most 
dangerous invasive pests are locusts. Plagues and outbreaks of different locust species are 
ancient agricultural pests and can be dated several thousand years back almost everywhere 
around the world (Latchininsky, 1998; Le Gall et al., 2019; Zhang et al., 2019). Locust 
population can increase rapidly due to changing abiotic conditions and cause devastation to 
crops and pasture in a very short time. Swarms of locusts can migrate up to several hundred 
kilometers per day invading vast areas independent of country borders. According to 
Latchininsky (2013) pest species such as locusts and grasshoppers affect the livelihood of 
10% of the world population. Additionally, locust plagues and outbreaks also harm natural 
vegetation which can lead to increased soil erosion and limited food sources for other 
animals and insects within affected ecosystems.  

Despite technological progress and comparably less frequent and intense outbreaks over 
the past decades, locust outbreaks still affect food security and livelihoods, especially of 
rural population (Zhang et al., 2019). The scale of an outbreak depends on species, 
environmental conditions and anthropogenic influence. Outbreaks can occur either 
regularly, such as e.g. in African Sahel and China, or episodically with changing periods of 
invasion and recession, common for desert locust (Schistocerca gregaria) or Australian 
plague locust (Chortoicetes terminifera) (Zhang et al., 2019). Locust outbreaks usually 
evolve due to exceptional weather conditions or due to a combination of several 
environmental and anthropogenic factors. Heavy rains, prolonged droughts and land 
management play a crucial role. Recently, several outbreaks on continental, regional and 
local scale underlined, once again, that locusts maintain a serious threat leading to 
economic losses and affecting food security and social stability (Lecoq and Cease, 2022). 
This becomes even more important with growing world population, food insecurity for billions 
of people due to climate change and collapsing supply caused by armed conflicts and wars. 
Despite their destructive character for agriculture and pasture, locusts can be an additional 
source of food for human and livestock due to their high content of protein (van Huis, 2021). 
In this context, preventive management and, control of different locust species all over the 
world, as well as further research are essential. 
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1.1 The role of remote sensing for locust management and 
research 

Locusts are grasshoppers of the family Acrididae (Orthoptera: Acrididae) including about 
500 species capable of causing harm to agriculture, whereby around 50 species are actually 
considered as major agricultural pests (Zhang et al., 2019). The control of these highly 
destructive species is essential for food security, social and economic stability. Locust 
plagues (compare Table 1-1 for terminology) are sporadic and have the capacity to rapidly 
expand across large areas. Therefore, their control is critical for food security worldwide and 
often requires governmental or international involvement (Zhang et al., 2019). The 
improvement of locust control over the past 50+ years was initiated by a paradigm change 
from crop protection to preventive management (Hunter, 2004; Magor et al., 2008; Zhang et 
al., 2019). Preventive management is proactive and aims to detect the hazard of a locust 
population upsurge and control it on a smaller scale before it evolves into outbreaks or even 
into large scale plagues (Latchininsky, 2013). Preventive management includes a better 
understanding of the species biology and ecology, more effective monitoring, early warning 
system and different control strategies. Especially the monitoring of vast areas which provide 
favorable conditions for successful breeding and potential for locust population increase, are 
of high importance within preventive locust management strategies. This kind of geospatial 
risk assessment benefits highly from availability and quality of geospatial and remote 
sensing datasets. Therefore, the role of remote sensing data for locust management has 
been growing over the past decades (Cressman, 2013; Latchininsky, 2013).  

Table 1-1. Locust related terminology for this thesis (adapted based on Zhang et al. (2019)) 

Terminology Definition 

Phase change 
transition process between solitarious and gregarious 

phases of locusts in response to changes in population 
density 

Upsurge 
period following a recession marked by a very large 

increase in locust numbers 

Outbreak limited area where significant damage was caused 

Plague 
period of one or more years of widespread and heavy 

infestations of locust bands or swarms 

Recession 
period without widespread and heavy infestations by 

swarms 

Preventive locust management 

strategy aiming to control hotspots before damage occurs. 
Activities including monitoring (population dynamics, locust 
morphology, environment, weather), early warning, control, 

reporting 

Locust control 
measurements to counteract locust population increase 
(e.g. treatment with chemical, biological insecticides, soil 

tilling, introducing of natural enemies) 
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Satellite remote sensing-based research and various case study applications were important 
drivers to improve our understanding of locust-relevant ecological and environmental 
conditions and were first introduced by Pedgley (1974) and Hielkema (1977) for desert 
locust and later by Bryceson and Wright (1986) for Australian plague locust. Since then, 
available datasets from satellites have become important to assess favorable ecological 
conditions for locust breeding and population increase. Remote sensing-based forecast of 
regions with exceptional rainfall and monitoring the development of green vegetation are the 
main goals of desert and Australian plague locust early warning strategies (Bryceson et al., 
1993; Cressman, 2013; Latchininsky, 2013). The main advantage of remote sensing data is 
the coverage of large areas at regular frequency (temporal resolution) because millions of 
hectares (ha) have to be monitored independent from country borders, accessibility or 
security. Therefore, remote sensing has played a significant part for preventive locust 
management by contributing to decision making with forecast of heavy rains, mapping 
vegetation development, and assessing favorable ecological conditions within locust 
habitats. In this way, it helps field teams to find hotspot regions and significantly reduce 
operative costs, increase reaction time and improve effectiveness of preventive locust 
management (Latchininsky, 2013). Remote sensing data application and comprehensive 
methods are well developed especially for desert locust and Australian plague locust. The 
Food and Agriculture Organization (FAO) of the United Nations (UN) operates successfully 
the Desert Locust Information Service (DLIS) (FAO, 2009, 2022). The Australian Plague 
Locust Commission (APLC) also implements satellite based weather forecast and different 
remote sensing datasets (Hunter, 2004). Similar efforts are under development for Central 
Asia and Caucasus region (FAO, 2021b).  

1.2 The requirement for specific locust species consideration 
and regional perspectives   

First of all, the standard convention on naming species is the common name, scientific name 
and abbreviated scientific name (Cullen et al., 2017). Many existing locust species, their 
naming convention and geographic distribution are summarized in Cullen et al. (2017), Le 
Gall et al. (2019), and Steedman (1990). Table 1-2 presents the three main species relevant 
for this thesis. 

Efficient monitoring and control of any locust pest is based on the detailed knowledge of its 
biology and ecology (Latchininsky, 2013). Local and regional phytosanitary teams usually 
have comprehensive information on environmental and climatic factors (temperature, 
moisture, vegetation, soil and land-use) and how these variables affect different locust 
species of interest, and their interaction within the ecosystem and human activities 
(Scholthof, 2007). Since each species has its unique ecological niche, it is important to 
consider their specification in the context of remote sensing and geospatial data. Even 
though some methods can be transferred to different species, it is necessary to review and 
adapt all important variables under consideration from state-of-the-art literature and expert 
knowledge.  
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Table 1-2. Locust species relevant for this thesis. 

Scientific Locust Name Common Name 
Scientific  

Abbreviation 

Geographic 
Distribution 

Calliptamus italicus 
(Linnaeus, 1758) 

Italian locust CIT 
Europe, Central Asia, 
Mongolia and western 

Siberia 

Dociostaurus maroccanus 
(Thunberg, 1815) 

Moroccan locust DMA 
North Africa, Europe, 
Caucasus, Central 

Asia 

Schistocerca gregaria 
gregaria (Forska l̊, 1775) 

Desert locust n.a. 

North Africa, Middle 
East, Indian 

subcontinent, 
southern Europe 

1.3 Research focus and objectives 

Over the past years and decades, there have been many locust plagues and outbreaks of 
different scale and intensity all around the world. Changes in land management, political or 
security instability, as well as climate change affect locust population and can contribute to 
more outbreaks in future. In addition to all other factors which endanger food security (e.g. 
prolonged droughts, natural hazards, armed conflicts, various agricultural pests and 
diseases), the risk of destructive locust species cannot be neglected. The use of remote 
sensing data as an independent data source that is able to cover vast areas at different 
temporal resolutions, has been an important contribution to the progress of desert locust 
and Australian plague locust management over the past decades. Nevertheless, a lot of 
potential is still to be explored, especially for other dangerous locust species and regions. 
Within this context, four main research objectives are defined:  

Objective 1: “Conduct a comprehensive review on international studies which have applied 
remote sensing data in the context of locust distribution, monitoring and forecast”  

Integrated remote sensing applications for locust management and research studies have 
been published since the availability of Landsat and Advanced Very-High-Resolution 
Radiometer (AVHRR) data. This results in more than five decades of development for 
different locust species, regions and applications. Despite a few review studies on general 
applicability of remote sensing within locust research, a comprehensive categorized review 
does not exist. Therefore, this thesis provides a comprehensive overview, by grouping 
existing research based on different locust species and applications. To comply the first 
overarching objective, the following research questions are formulated and addressed: 
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Objective 2: “Use different remote sensing and geospatial datasets to demonstrate the 
advantage of data combination and higher-resolution datasets such as Sentinel-2”  

This objective focuses on the Habitat Suitability Index (HSI) model which takes advantage 
of different environmental variables, including Ecological Niche Modelling (ENM) results, 
time-series analyses of satellite data and species-specific knowledge to better discriminate 
areas providing optimal locust breeding and egg pod incubation conditions. Current climate, 
vegetation, land cover and land use conditions are considered for the three species of 
interest, the Italian locust in North Kazakhstan (Pavlodar oblast), the Moroccan locust in 
South Kazakhstan (Turkistan oblast) and the desert locust in the Awash River Basin (ARB) 
in Ethiopia, Djibouti and, Somalia. In this way, a high-resolution map of potential habitats for 
laying and surviving locust eggs is derived. The results are validated with ground truth data 
collected by field scouts. The derived information is relevant for the identification of habitat 
suitability of different locust species based on individual species preference and up-to-date 
data of the current land and climate situation. In this context, the following research 
questions are formulated and addressed: 

 

 Which locust species have been investigated by means of remote sensing 
applications?  

 Where were remote sensing-based analyses for locust management and 
research conducted?  

 Which satellite sensor types were used for locust management and research 
studies? 

 What kind of remote sensing-based variables and indices were applied for 
locust management and research studies? 

 What time periods are covered by remote sensing-based locust 
management and research studies? 

 What are the thematical foci of the existing studies? 

Research Questions 1: 
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Objective 3: “Analyze the recent Moroccan locust outbreak in Sardinia (Italy) from the 
perspective of remote sensing based on up-to-date land cover characteristics with focus on 
favorable conditions for this species” 

The outbreak of Moroccan locust in Sardinia between 2019 and 2022 resulted from an 
ongoing drought period in this region in combination with changing land management. This 
objective aims to quantify the relationship between locust breeding sites during locust 
population increase, and previous and ongoing land management, as well as vegetation 
development. Time-series of Sentinel-2 data are exploited with the aim to map active 
cultivation and abandoned, fallow or untilled land. To address this objective, the following 
research questions shall be answered: 

 

 

 

 

 

 How can unique locust species characteristics be included in modelling 
approaches?  

 What kind of up-to-date climate and geospatial datasets can be used to 
conduct Ecological Niche Modelling (ENM) and Habitat Suitability Index (HSI) 
modelling for selected locust species? 

 How can suitable conditions for locust breeding and potential population 
upsurge be better differentiated?  

 What are the advantages of improving spatial resolution of modelled results? 

 What are the relations between recent Moroccan locust outbreak in Sardinia 
and land cover characteristics derived from Sentinel-2 data? 

 What kind of land surface was preferred by Moroccan locust for breeding 
during the outbreak? 

 How can remote sensing analyses contribute to an early warning system and 
decision support to minimize higher risk concerning this agricultural pest? 

Research Questions 3: 

Research Questions 2: 
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Objective 4: “Demonstrate an application case for locust management, based on expert 
rule set exploiting remote sensing and geoscientific datasets” 

Since many locust experts, field guards and locust managers have different levels of 
knowledge (sometimes not including application of geospatial and remote sensing data) the 
practical applicability must improve and, consequently may close the discrepancy between 
available spatial information sources and practice. This objective aims at combining 
important and available geospatial information with expert based practices. The goal is to 
simplify different pre-processing steps and provide a more practical base for locust 
managers. All necessary datasets are processed within a h3-hexagon system which allows 
straightforward application and rule development for locust managers without dealing with 
complex characteristics of different spatial datasets (e.g., data format, spatial and temporal 
resolution, projection). Such an assessment may support rapid decision and planning 
measurements for a better prioritization over vast areas of potential locust habitats. The final 
research questions addressing in the context of this objective are formulated as: 

 

 

1.4 Thesis structure 

This dissertation is structured in seven main chapters. In chapter one, an introduction of the 
multidisciplinary topic “locust” and requirements on modern locust management and the role 
of remote sensing are presented. Additionally, chapter one provides the principles, 
objectives, research questions and structure of this thesis. In chapter two, the reader is 
provided with a synthesized description of the main biological and ecological characteristics 
of locusts in general, as well as the threat of locust plagues and outbreaks nowadays. The 
main body of the research is presented in chapters three to seven, whereby chapters three, 
four, five and six are organized and presented in the form of individual research articles, 
which have been published or submitted to peer-reviewed scientific journals. 

Chapter three focuses on a comprehensive review of existing studies, which apply remote 
sensing datasets for locust research and management. This review study examines which 
locust species and regions of interest were focused on, applied methods and remote sensing 
datasets which were implemented under the aspect of spatial and temporal resolution and 
their main objectives. The review study was essential for further research of this thesis 

 How can different types of geospatial and remote sensing datasets be 
simplified for a straightforward spatial analysis? 

 How can expert rules, applied in practice, be implemented to exploit geospatial 
and remote sensing datasets? 

 What kind of practical locust management tasks can be conducted by such 
spatial applications? 

Research Questions 4: 



1 Introduction 

8 

because it allowed the identification of research gaps and formed the basis for further 
method development and appropriate data selection for all subsequent applications. The 
content of this chapter was published in the following journal: 

Klein, I., Oppelt, N. & Kuenzer, C. (2021). Application of Remote Sensing Data for 
Locust Research and Management - A Review. Insects, 12, 233. 
https://doi.org/10.3390/insects12030233. 

In chapter four, remote sensing data in combination with different geospatial environmental 
datasets and individual species-relevant parameters, are used to model the suitability of 
areas for successful eggs survival and locust breeding. The application is performed within 
ENM and HSI models for three different locust species and three different regions of interest 
to demonstrate the advantage of higher spatial resolution data, as well as the importance to 
consider species-relevant features and ecological characteristics. The research presented 
in this chapter was published in: 

Klein, I., van der Woude, S., Schwarzenbacher, F., Muratova, N., Slagter, B., 
Malakhov, D., Oppelt, N., Kuenzer, C. (2022). Predicting suitable breeding areas for 
different locust species - A multi-scale approach accounting for environmental 
conditions and current land cover situation. International Journal of Applied Earth 
Observation and Geoinformation, 107, 02672. 
https://doi.org/10.1016/j.jag.2021.102672. 

Chapter five presents how remote sensing and up-to-date information on the land cover 
situation can contribute to future locust management and preventive measurements. In this 
study, the relation between Moroccan locust breeding sites of the recent outbreak in 
Sardinia, Italy, and abandoned or fallow land is quantified. The study described in this 
chapter is submitted and will be likely published in:     

Klein, I., Cocco, A., Uereyen, S., Mannu, R., Ignazio, F., Oppelt, N., Kuenzer, C. 
(2022). Outbreak of Moroccan locust in Sardinia (Italy): A remote sensing perspective. 
Remote Sensing, 14(23), 6050. https://doi.org/10.3390/rs14236050. 

In chapter six, the application of remote sensing and geospatial datasets is presented in a 
standardized h3-hexagon system to simplify application and analyses for locust managers 
and field teams. The study focuses on how available geospatial information can be exploited 
based on a practical example case from Italian locust in Pavlodar region (Kazakhstan). The 
study described in this chapter is submitted and will be likely published in:     

Klein, I., Uereyen, S., Eisfelder, C., Pankov, V., Oppelt, N., Kuenzer, C. (2023). 
Application of geospatial and remote sensing data to support locust management. 
International Journal of Applied Earth Observation and Geoinformation, 117, 103212. 
https://doi.org/10.1016/j.jag.2023.103212. 

Finally, chapter seven provides the reader with a synthesized summary of the results and 
answers formulated research questions obtained from chapter three to six. Furthermore, 
future research challenges and opportunities in the field of locust research and management 
with the inclusion of remote sensing applications are addressed.  
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  CHAPTER 2 

2 Key aspects of locust ecology 
Locusts belong to the group of grasshoppers of the family Acridoidea. However, locusts 
differ from grasshoppers because of their capability to change their behavior and appear in 
two different phases depending on their population density (Cullen et al., 2017; van Huis, 
2021). This so-called locust phase polyphenism is characteristic for locust species. At low 
population density locusts are solitarious, behave as individuals and avoid each other (Le 
Gall et al., 2019; Zhang et al., 2019). In this phase, they stimulate plant growth, participate 
in nutrient cycling and are important component of food chains and grassland ecosystems 
(Latchininsky et al., 2011). However, once the population of locusts is increasing and reach 
a high density, the phase changes and locusts become gregarious. During the gregarious 
phase locusts behave in crowds, form bands during hopper stages and swarms after 
fledgling. Swarms invade large territories and cause devastation in agricultural production 
and pasture (Sword et al., 2010). Outbreaks of locusts and grasshoppers can be either 
chronic (e.g., grasshopper species in the African Sahel, China) or episodic (e.g., desert 
locust, Australian plague locust, South American locust, Migratory locust). For species with 
episodic outbreak character, time development can be considered as periods of invasion 
and recession (Zhang et al., 2019). For more information on locust phase change the reader 
is referred to e.g., Buhl and Rogers (2016), Pener and Simpson (2009), Uvarov (1977), 
Wang and Kang (2014). 

2.1 Locust life cycle 

The locust life cycle can be categorized in a succession of three stages: egg, nymph (in 
some literature also referred to as instar, hopper or, larvae) and adult. Locust species in 
temperate regions, such as CIT and DMA are univoltine. This means they produce one 
generation per year and the eggs remain in diapause during winter. Nevertheless, 
population density can increase rapidly from year to year during favorable environmental 
conditions, and sometimes in combination with anthropogenic factors. Tropical and 
subtropical species such as desert locust and Australian plague locust can produce two to 
four generations per year depending on meteorological conditions (Latchininsky, 2013; 
Steedman, 1990; Uvarov, 1977). A typical locust life cycle of univoltine species is illustrated 
in Figure 2-1.  
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Figure 2-1. Exemplary life cycle of univoltine locust species (Northern hemisphere). Adjusted based 
on Latchininsky (2013). Exact timing and duration of stages are determined by geographical location, 
species and meteorological conditions. 
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The eggs laid by female insects are preserved within a so called egg pod (Figure 2-2) which 
can contain from 30 to over 100 eggs depending on the species (Latchininsky, 2013). 
Hatching of the eggs usually occurs after certain environmental conditions are met (e.g., soil 
moisture, temperature). After hatching, locust undergo five to seven successive hopper 
stages (Figure 2-3, 2-4) to finally become adult insects capable of flying. Each hopper stage 
lasts approximately from three to eight days depending on meteorological conditions and 
food availability (Sergeev et al., 2022; Uvarov, 1977). While, higher temperature usually 
leads to faster development. After fledgling (last molt), locusts are capable to fly, become 
mature and can migrate large distances. The migration distances depend again on locust 
species and meteorological conditions and may vary daily from 10 km for DMA up to 200 
km or even 1000 km especially for desert and migratory locusts during extreme events 
(Latchininsky, 2013; Steedman, 1990). The capacity of long distance migration is an 
additional aspect making locusts extremely dangerous transboundary pests (Latchininsky, 
2013; Uvarov, 1977). Finally, mature adults mate and lay their eggs (Figure 2-5, 2-6). The 
period between mating and laying e.g. for CIT is between 3 to 5 days (Sergeev et al., 2022). 
One individual female can lay one to four egg pods. Therefore, during gregarious phase the 
density of egg pods can reach up to several thousand per m². In total, the life spam of locusts 
depends mainly on the time it takes to become sexually mature, which can last from 2.5 to 
5 months (Steedman, 1990). For more information on different locust species, their 
distribution and ecological specification the reader is referred to e.g., COPR (1982), Le Gall 
et al. (2019), Steedman (1990). 

 

 

Figure 2-2. Italian locust egg pod (Photo: Kazakhstan, Pavlodar region, July 2022). 



2 Key aspects of locust ecology 

14 

 

Figure 2-3. Second phase hoppers of Moroccan locust (Photo: Kazakhstan, Turkistan region, April 
2019). 

 

 

Figure 2-4. First and second phase hoppers of Moroccan locust (Photo: Italy, Sardinia, April 2022, 
© Arturo Cocco). 
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Figure 2-5. Italian locust during mating (Photo: Kazakhstan, Pavlodar region, July 2022). 
 

 

 

 

Figure 2-6. Italian locust females during oviposition (Photo: Kazakhstan, Pavlodar region, July 2022). 
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2.2 Main characteristics and distribution of the Italian locust 

2.2.1 Environmental and ecological factors 

In year 1008 the first recorded great pest in Russia was caused by CIT (FAO, 2021). 
Although CIT is on the red list of endangered species in northern Europe, it is a threatening 
acridid pest in the steppes and semi-deserts of Siberia, Central Asia and the Caucasus 
(Latchininsky, 2013; Sergeev, 2021; Sergeev and Van’kova, 2008). The distribution of CIT 
ranges from Europe to the southern part of West Siberia, East Kazakhstan, and North-West 
China (Figure 2-7). Within this large territory, preferred habitats can be found in 
heterogeneous semi-arid landscapes containing vegetation types dominated by wormwood 
and sagebrush (Artemisia spp., (Monard et al., 2009; Sergeev, 2021)). This kind of 
vegetation compositions can be also found in some human-affected areas such as field 
borders, fallow fields, neglected orchards, waste lands and road edges (Kambulin, 2018; 
Latchininsky, 2013; Sergeev et al., 2022). CIT tolerates a wide range of semi-arid soils and 
climate conditions (Monard et al., 2009). However, during periods between outbreaks, it is 
observed that CIT prefers very dry habitats in the north of its distribution range. In the central 
parts it prefers relatively dry and diverse habitats of the steppe and semi-desert and meadow 
habitats of river valleys or in mountains in the southern parts (Sergeev, 2021). CIT 
disappears completely due to mechanical destruction of egg pods when land is tilled. 
Besides food preference, the occurrence of CIT is related to physical soil properties. 
Moderate compact sandy soils are more favorable than very loose or compact soils and thus 
facilitating oviposition (Toleubayev et al., 2007).  

CIT is a typical univoltine species (Figure 2-1). Once moisture is introduced during the 
warming period in spring, the incubation period starts and hatching occurs from late April to 
June. During this period, higher temperatures and lower precipitation generally lead to 
increased survival and thus higher population. Therefore, once ecological conditions are 
highly suitable over a multiple-year period, a high density of egg pods and increased survival 
rates cause higher density of adult individuals. In case there are no control measurements 
during this upsurge periods, the population upsurge leads to outbreaks (Sergeev and 
Van’kova, 2008). CIT is an intermediate form between gregarious and solitarious species 
with migration distances of several hundred meters for bands and 100-200 km for swarms 
(Sergeev, 2021). However, during extreme events, swarms can migrate up to 750-800 km. 
During outbreaks they can colonize all kind of fields and transformed habitats. If available, 
CIT prefers to consume dicotyledon plants and therefore can seriously damage different 
types of crops (Sergeev, 2021). 
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Figure 2-7. Italian locust distribution (adjusted based on FAO (2021)). 

2.2.2 Plagues and outbreaks 

Population upsurge of locust and resulting outbreaks show a regular rhythm which is related 
to sun activity (sunspots cycle of eleven years) and intervals of approximately nine to twelve 
years. After the maximum of sun activity, locust population usually starts to increase.    

Between 1940 and 1990 outbreaks of CIT occurred mostly on local scale without infestation 
of large territory but with regular occurrences and serious consequences for affected regions 
and local livelihoods. In the southern part of Western Siberia, four outbreaks were 
documented in 1952-1956, 1967-1971, 1977-1982, and 1999-2002 and in North Caucasus 
and lower Volga the outbreaks occurred slightly later in 1954-1957, 1972-1974, 1982-1984, 
and 1992-1998 (Sergeev, 2021). The last and worst outbreak started in 1991 in North 
Caucasus and lower Volga region and spread from year-to-year eastwards towards 
Kazakhstan (1996-1998), reaching finally a peak outbreak between 1999-2001 in eastern 
and northern parts of Kazakhstan. A total of eight Mio. ha of infested land had to be treated 
by chemical control activities. The outbreak was qualified as a plague because of the large 
scale infection and duration over several years (Sergeev and Van’kova, 2008). The reasons 
of this plague were also due to economic transformation in the former USSR countries as 
plant protection organizations were partly out of order and had limited transboundary 
communication between countries. At the same time, large areas with abandoned fields 
provided optimal conditions for locust breeding and population increase. Since then, 
sporadic outbreaks were located in central and eastern parts of CIT range but has been 
controlled immediately by better organization and structures of affected regions (Sergeev, 
2021). For more detailed description of CIT and its outbreaks the reader is referred to 
Sergeev et al. (2016, 2022). 
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2.3 Main characteristics and distribution of the Moroccan locust 

2.3.1 Environmental and ecological factors 

Previously, DMA was considered as one of the most dangerous agricultural pests in the 
Mediterranean zone and Central Asia. However, the population of this species has 
decreased and is highly fragmented due to industrial, agricultural and urban developments 
and accompanied transition of natural habitats (Latchininsky, 1998). Nevertheless, DMA still 
leads to outbreaks and damages in crops and pasture especially in Central Asia. The 
habitats of DMA are distributed ranging from Atlantic islands in the west, through 
Mediterranean zone, Caucasus, Central Asia and Afghanistan in the east (Figure 2-8). The 
permanent breeding hotspots are isolated during low population densities (Latchininsky, 
1998). 

On the contrary to CIT, DMA has quite specific requirements for suitable breeding areas. 
Preferred habitats are located in elevated regions and foothills at altitudes of 400-800 m 
above sea level with hard dry soils, high clay content and ephemeral spring forbs 
(Latchininsky, 1998; Monard et al., 2009). The annual precipitation varies between 300-500 
mm, whereby spring precipitation specifically, being the most important for development at 
optimum around 100 mm (Kokanova, 2017). Preferred breeding areas are found within 
mosaics of steppe vegetation and bare soils, typically for overgrazed pasture. The degree 
of overgrazing and tramping by cattle play an important role to create vegetation mosaics 
and compact soil which are ideal breeding and gregarization milieu for DMA (Latchininsky, 
1998). Similar to CIT, agricultural activity usually destroys egg pods. Furthermore, dense 
vegetation, no vegetation at all, wet and moist areas are unsuitable for DMA breeding 
(Latchininsky, 1998, 2013; Uvarov, 1977; Zhang et al., 2019). 

The DMA is also an univoltine species with winter egg diapause (Figure 2-1). Hatching takes 
place from February to April including successive five hopper stages. The migration 
distances during outbreaks reaches between 70-100 km which is quite short when 
compared to other locusts pests’ (Latchininsky, 1998). 

 

Figure 2-8. Moroccan locust distribution (adjusted based on FAO (2021)). 
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2.3.2 Plagues and outbreaks 

According to Latchininsky (1998) the actual state of DMA differs significantly depending on 
location and human practice. For example, in continental France DMA does not produce 
swarms because its habitat has significantly shrunk due to agricultural activities. On the 
contrary, in Spain, vast and continuous zone of native dry grasslands still exists. Therefore, 
monitoring and chemical control activities are necessary to maintain the population low. In 
1983 a total of 130.657 ha and in 1992 113.600 ha were infested in Spain. Further main 
outbreaks are documented for Hungary (1948-1949, 1993), Bulgaria (1939-1940), and 
Balkan region (1930-1933). Many of these outbreaks are considered to be a result of 
increased fallow fields, which provided areas for locust population upsurge, in combination 
with prolonged droughts around those times. Particular wars and political instability leading 
to collapse of agricultural activities and consequently abandoned fields, played a major role 
for many DMA related outbreaks (Latchininsky, 1998). Regular outbreaks in Sardinia (1932-
1934, 1946, 1951, 1988-1989, 2019-2022), North Africa, and all Central Asian countries are 
still common until present days and requires continuous monitoring and phytosanitary 
control activities to maintain the population low. Furthermore, DMA is a major pest in Near 
East with harmful plagues in West Anatoliea, Mesopotamia and Southern Caucasus (Ciplak 
2021). For more detailed description of DMA and its outbreaks the reader is referred to 
Benfekih et al. (2002), Kokanova (2017), Latchininsky (1998), Molinu et al. (2004), Uvarov 
(1957). 

2.4 Other locust species 

There are about 25 species around the world which are considered to be major pest locusts 
(Lecoq and Cease, 2022). The most distributed locust species is the migratory locust and 
its many subspecies (Figure 2-9). The migratory locust is present across entire temperate 
and tropical Eastern hemisphere (Le Gall et al., 2019). Plagues are associated with droughts 
and flood events because their habitats are distributed typically around rivers, lakes and 
deltas covered with plantings of reeds and sedges. 

Furthermore, the most dangerous migratory agricultural pest is the desert locust 
(Schistocerca gregaria) (Cressman, 2016). Its distribution is found in deserts of North Africa, 
the Middle East and Southwest Asia covering approximately 16 Mio. km² of recession area 
(Cressman, 2016). Outbreaks and plagues of desert locust cover large areas with massive 
crop losses. For example, during 2003-2005 outbreak in West Africa a total of 13 Mio. ha 
were treated with broad-spectrum insecticides across 22 countries (Cressman, 2016). 
During the most recent outbreak in the Horn of Africa, a total of 2.2 Mio. ha were treated 
since march 2020 (FAO, 2022). The distribution of desert locust and some other important 
destructive locust species are presented in (Figure 2-10). 
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Figure 2-9. Locust migratoria subspecies distribution (adjusted based on Steedman (1990)). 

 
Figure 2-10. Additional locust species distribution (adjusted based on Latchininsky (2013), Lecoq 
(1995), Steedman (1990), Trumper et al. (2022)). Not included species e.g., Bombay locust, Javanese 
grasshopper, Mongolian locust, Peruvian locust, rangeland grasshopper, rice grasshopper, Sahelian 
grasshoppers, Senegalese locust, Siberian locust, Spur throated locust, Sudan plague locust, tree 
locusts, variegated grasshopper. For more information and complete overview, the reader is referred 
to COPR (1982), Le Gall et al. (2019), Steedman (1990). 



2 Key aspects of locust ecology 

21 

2.5 References 

Benfekih, L., Chara, B., Doumandji-Mitiche, B., 2002. Influence of anthropogenic impact on 
the habitats and swarming risks of Dociostourus morocconus and Locusto 
migratoria (Orthoptera, Acrididae) in the Algerian Sahara and the semiarid zone. J. 
Orthoptera Res. 11, 243–250. https://doi.org/10.1665/1082-
6467(2002)011[0243:IOAIOT]2.0.CO;2 

Buhl, J., Rogers, S., 2016. Mechanisms underpinning aggregation and collective 
movement by insect groups. Curr. Opin. Insect Sci. 15, 125–130. 
https://doi.org/10.1016/j.cois.2016.04.011 

Çiplak, B. 2021. Locust and grasshopper outbreaks in the Near East: Review under global 
warming context. Agronomy 11, 111. https://doi.org/10.3390/agronomy11010111 

COPR (Ed.), 1982. The locust and grasshopper agricultural manual. Centre for Overseas 
Pest Research, London. 

Cressman, K., 2016. Desert Locust, in: Biological and Environmental Hazards, Risks, and 
Disasters. Elsevier, pp. 87–105. https://doi.org/10.1016/B978-0-12-394847-
2.00006-1 

Cullen, D.A., Cease, A.J., Latchininsky, A.V., Ayali, A., Berry, K., Buhl, J., De Keyser, R., 
Foquet, B., Hadrich, J.C., Matheson, T., Ott, S.R., Poot-Pech, M.A., Robinson, 
B.E., Smith, J.M., Song, H., Sword, G.A., Vanden Broeck, J., Verdonck, R., 
Verlinden, H., Rogers, S.M., 2017. From Molecules to Management: Mechanisms 
and Consequences of Locust Phase Polyphenism, in: Advances in Insect 
Physiology. Elsevier, pp. 167–285. https://doi.org/10.1016/bs.aiip.2017.06.002 

FAO, 2022. Locust Hub. Food and Agriculture Organization of the United Nations (FAO). 
https://locust-hub-hqfao.hub.arcgis.com/ 

FAO, 2021. Locust Watch - Locusts in Caucasus and Central Asia. Food and Agriculture 
Organization of the United Nations (FAO). http://www.fao.org/locusts-cca/en/ 

Kambulin, V.E., 2018. Locust - methods of assessing harm, forecasting the number and 
technologies for identifying populated areas. Almaty. 

Kokanova, E.O., 2017. Natural foci of the Moroccan locust (Dociostaurus maroccanus, 
Orthoptera, Acrididae) in Turkmenistan and their current state. Entomol. Rev. 97, 
584–593. https://doi.org/10.1134/S0013873817050049 

Latchininsky, A., Sword, G., Sergeev, M., Cigliano, M.M., Lecoq, M., 2011. Locusts and 
Grasshoppers: Behavior, Ecology, and Biogeography. Psyche J. Entomol. 2011, 1–
4. https://doi.org/10.1155/2011/578327 

Latchininsky, A.V., 2013. Locusts and remote sensing: a review. J. Appl. Remote Sens. 7, 
075099. https://doi.org/10.1117/1.JRS.7.075099 

Latchininsky, A.V., 1998. Moroccan locust Dociostaurus maroccanus (Thunberg, 1815): a 
faunistic rarity or an important economic pest? J. Insect Conserv. 167–178. 

Le Gall, M., Overson, R., Cease, A., 2019. A Global Review on Locusts (Orthoptera: 
Acrididae) and Their Interactions With Livestock Grazing Practices. Front. Ecol. 
Evol. 7, 263. https://doi.org/10.3389/fevo.2019.00263 



2 Key aspects of locust ecology 

22 

Lecoq, M., Cease, A., 2022. What Have We Learned after Millennia of Locust Invasions? 
Agronomy 12, 472. https://doi.org/10.3390/agronomy12020472 

Lecoq, M., 1995. Forecasting systems for migrant pests. III. Locusts and grasshoppers in 
West Africa and Madagascar, in: Insect Migration: Physical Factors and 
Physiological Mechanisms. Drake V. A., Gatehouse A. G. (Eds). Cambridge 
University Press, Cambridge, UK, pp. 377–395. 

Molinu, A., Cesaroni, C., Pantaleoni, R.A., 2004. Arsenic locusts - The control of locusts in 
Sardinia in the first half of twentieth century. Sassari, Itally. 

Monard, A., Chiris, M., Latchininsky, A.V., 2009. Analytical report on locust situations and 
management in caucasus and central asia (cca). FAO, Rome. 

Pener, M.P., Simpson, S.J., 2009. Locust Phase Polyphenism: An Update, in: Advances in 
Insect Physiology. Elsevier, pp. 1–272. https://doi.org/10.1016/S0065-
2806(08)36001-9 

Sergeev, M., Childebaev, M.K., Vankova, I.A., Gapparov, F.A., Kambulin, V.E., Kokanova, 
E., Latchininsky, A.V., Pshenitsyna, L.B., Temreshev, I.I., Tschernjachowski, M.E., 
Sobolev, N.N., Molodcov, V.V., 2016. Italian locust [calliptamus italicus (linnaeus 
1758)]: morphology, distribution, ecology, population control. FAO, Rome. 

Sergeev, M.G., 2021. Ups and Downs of the Italian Locust (Calliptamus italicus L.) 
Populations in the Siberian Steppes: On the Horns of Dilemmas. Agronomy 11, 
746. https://doi.org/10.3390/agronomy11040746 

Sergeev, M.G., Childebaev, M.K., Vankova, I.A., Gapparov, F.A., Kambulin, V.E., 
Kokanova, E.O., Latchininsky, A.V., Pshenitsyna, L.B., Temreshev, I.I., 
Chernyakhovsky, M.E., Sobolev, N.N., Molodcov, V.V., 2022. Italian Locust 
Calliptamus italicus (Linnaeus, 1758). morphology, distribution, ecology, population 
management. FAO, Rome. 

Sergeev, M.G., Van’kova, I.A., 2008. The Dynamics of a Local Population of the Italian 
Locust (Calliptatus italicus L.) in an Anthropogenic Landscape 1, 8. 

Steedman, A. (Ed.), 1990. Locust handbook, 3rd ed. ed. Chatham, UK. 

Sword, G.A., Lecoq, M., Simpson, S.J., 2010. Phase polyphenism and preventative locust 
management. J. Insect Physiol. 56, 949–957. 
https://doi.org/10.1016/j.jinsphys.2010.05.005 

Toleubayev, K., Jansen, K., van Huis, A., 2007. Locust Control in Transition: The Loss and 
Reinvention of Collective Action in Post-Soviet Kazakhstan. Ecol. Soc. 12, art38. 
https://doi.org/10.5751/ES-02229-120238 

Trumper, E.V., Cease, A.J., Cigliano, M.M., Copa Bazán, F., Lange, C.E., Medina, H.E., 
Overson, R.P., Therville, C., Pocco, M.E., Piou, C., Zagaglia, G., Hunter, D., 2022. 
A Review of the Biology, Ecology, and Management of the South American Locust, 
Schistocerca cancellata (Serville, 1838), and Future Prospects. Agronomy 12, 135. 
https://doi.org/10.3390/agronomy12010135 

Uvarov, B., 1977. Grasshoppers and Locusts., 2nd ed. Centre for Overseas Pest 
Research, London. 

Uvarov, B.P., 1957. The aridity factor in the ecology of locusts and grasshoppers of the 
Old World., in: Arid Zone Research. Paris. 



2 Key aspects of locust ecology 

23 

van Huis, A., 2021. Harvesting desert locusts for food and feed may contribute to crop 
protection but will not suppress upsurges and plagues. J. Insects Food Feed 7, 
245–248. https://doi.org/10.3920/JIFF2021.x003 

Wang, X., Kang, L., 2014. Molecular Mechanisms of Phase Change in Locusts. Annu. 
Rev. Entomol. 59, 225–244. https://doi.org/10.1146/annurev-ento-011613-162019 

Zhang, L., Lecoq, M., Latchininsky, A., Hunter, D., 2019. Locust and Grasshopper 
Management. Annu. Rev. Entomol. 64, 15–34. https://doi.org/10.1146/annurev-
ento-011118-11250 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 Key aspects of locust ecology 

24 

 



3 Application of Remote Sensing Data for Locust Research and Management – A Review 

25 

  CHAPTER 3 

3 Application of remote sensing data for locust 
research and management – A review  

Abstract 

Recently, locust outbreaks around the world have destroyed agricultural and natural vegetation and 
caused massive damage endangering food security. Unusual heavy rainfalls in habitats of the desert 
locust (Schistocerca gregaria) and lack of monitoring due to political conflicts or inaccessibility of 
those habitats lead to massive desert locust outbreaks and swarms migrating over the Arabian 
Peninsula, East Africa, India and Pakistan. At the same time, swarms of the Moroccan locust 
(Dociostaurus maroccanus) in some Central Asian countries and swarms of the Italian locust 
(Calliptamus italicus) in Russia and China destroyed crops despite developed and ongoing monitoring 
and control measurements. These recent events underline that the risk and damage caused by locust 
pests is as present as ever and affects 100 million of human lives despite technical progress in locust 
monitoring, prediction and control approaches. Remote sensing has become one of the most 
important data sources in locust management. Since the 1980s, remote sensing data and applications 
have accompanied many locust management activities and contributed to an improved and more 
effective control of locust outbreaks and plagues. Recently, open-access remote sensing data 
archives as well as progress in cloud computing provide unprecedented opportunity for remote 
sensing-based locust management and research. Additionally, unmanned aerial vehicle (UAV) 
systems bring up new prospects for a more effective and faster locust control. Nevertheless, the full 
capacity of available remote sensing applications and possibilities have not been exploited yet. This 
review paper provides a comprehensive and quantitative overview of international research articles 
focusing on remote sensing application for locust management and research. We reviewed 110 
articles published over the last four decades, and categorized them into different aspects and main 
research topics to summarize achievements and gaps for further research and application 
development. The results reveal a strong focus on three species—the desert locust, the migratory 
locust (Locusta migratoria), and the Australian plague locust (Chortoicetes terminifera)—and 
corresponding regions of interest. There is still a lack of international studies for other pest species 
such as the Italian locust, the Moroccan locust, the Central American locust (Schistocerca piceifrons), 
the South American locust (Schistocerca cancellata), the brown locust (Locustana pardalina) and the 
red locust (Nomadacris septemfasciata). In terms of applied sensors, most studies utilized Advanced 
Very-High-Resolution Radiometer (AVHRR), Satellite Pour l’Observation de la Terre VEGETATION 
(SPOT-VGT), MODIS as well as Landsat data focusing mainly on vegetation monitoring or land cover 
mapping. Application of geomorphological metrics as well as radar-based soil moisture data is 
comparably rare despite previous acknowledgement of their importance for locust outbreaks. Despite 
great advance and usage of available remote sensing resources, we identify several gaps and 
potential for future research to further improve the understanding and capacities of the use of remote 
sensing in supporting locust outbreak- research and management. 
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3.1 Introduction 
Locust and grasshopper pests have been destroying agriculture and affecting human lives 
by causing major food security challenges since ancient times and serious outbreaks are 
documented both in historical sources and modern literature (Gupta, 1983; Huang et al., 
2016; Le Gall et al., 2019; Zhang et al., 2019). There are approximately one dozen serious 
pest locust and grasshopper species, which are capable of migrating great distances and 
are destructive to crops, pastures and other green vegetation during their gregarious phase 
(Kimathi et al., 2020; Steedman, 1990). Locusts differ from other insects because their 
population can grow rapidly, forming dense bands and swarms (Zhang et al., 2019). In the 
solitarious phase, locusts are an important part of ecosystems. However, a change in 
environmental conditions and growth in population may initiate the gregarious phase, which 
can lead to an outbreak (Zhang et al., 2019). Furthermore, locust population dynamics are 
also influenced by land management (Cease et al., 2015). For locust phase polyphenism 
and population density research, we refer the reader to (Cullen et al., 2017; Sergeev and 
Van’kova, 2008; Sword et al., 2010; Xiang et al., 2016). 
One of the most destructive species, the desert locust (Schistocerca gregaria), is 
responsible for the most dramatic and sudden outbreaks and plagues in the 20th and 21st  
centuries (Pedgley, 1981; Zhang et al., 2019). Low populations of the desert locust are 
usually present at any time across a vast recession area of 16 Mio. km², stretching from 
West Africa to Southwest Asia (Cressman, 2013). Migrating downwind, the desert locust 
breed sequentially where winter, spring and summer rains are falling (van Huis et al., 2007). 
Warm weather conditions and unusual heavy rainfalls combined with a lack of monitoring 
created perfect conditions for the recent 2019/2020 outbreak, which was evident in large 
occupied areas across East African countries, the Arabian Peninsula, Pakistan and India 
(Roussi, 2020). Apart from desert locust outbreaks, there were local outbreak occurrences 
of the Moroccan locust (Dociostaurus maroccanus) in parts of Central Asia, the Italian locust 
(Calliptamus italicus) in parts of East Russia, the South American locust (Schistocerca 
cancellata) in parts of Paraguay and Argentina, the African migratory locust (Locusta 
migratoria migratorioides) in Botswana, Namibia, Zambia and Zimbabwe as well as Yellow-
spined bamboo locust (Ceracris kiangsu) in parts of Vietnam, Laos and China (Arizona State 
University, 2020). Furthermore, an unexpected Moroccan locust outbreak during summer 
2019 and 2020 destroyed several thousand hectares of crops in Sardinia, Italy (Reuters, 
2019). These recent large-scale as well as local outbreak events of different locust species 
around the world underline the actual presence of locust pest risk for food security, their 
destructive effects and the importance of functioning locust management services. 

Outbreaks of locust and grasshopper are either chronic (e.g., grasshoppers in the African 
Sahel and grasshoppers/locusts in China) or episodic, with alternating periods of invasion 
and recession (e.g., the Australian plague locust and the desert locust) (Zhang et al., 2019). 
Locust outbreaks have many negative effects on land management, food security and the 
natural environment, ranging from total damage of crops and grazing fields to negative 
effects from control measurements when using insecticides. In Figure 3-1, we summarize 
general effects of locust outbreaks. In particular, the damage to crops and chemical 
contamination caused by control measurements have short- to long-term negative impacts 
(Prior and Streett, 1997; Zhang et al., 2019). 



3 Application of Remote Sensing Data for Locust Research and Management – A Review 

27 

 
 
Figure 3-1. Schematic sketch of locust interaction during the gregarious phase (outbreak) with the 
natural environment, agriculture and human settlements.  
 

Due to the size of the impact, locust management and control are essential. Locust 
management is complex and requires a multi-disciplinary approach including entomology, 
biology, and ecology, with aspects of spatial distribution modelling, climate analysis, weather 
prediction, organism behavior and interaction with other species (e.g., birds and grazing 
sheep), control using chemical insecticides or bio-agents as well as remote sensing 
applications. The latter has become one of the most important sources providing valuable 
information within locust management. Meanwhile, there is a wide range of existing passive 
(employ natural sources of energy) and active (emit a controlled beam of energy and detect 
the amount of energy reflected back to the sensor) Earth Observation (EO) sensor systems. 
For a detailed introduction to remote sensing, we refer the reader to (Chuvieco, 2020; 
Lillesand et al., 2015; Schowengerdt, 2007). The most important sensor characteristics are 
the spectral resolution (number of spectral bands), spatial resolution (smallest unit-area 
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indicating the minimum size of objects that can be detected), temporal resolution (time 
between two observations of one and the same location) and spatial coverage (total area 
covered by one image). For this review, important sensor types can be categorized into 
optical sensors (covering visible, near infrared (NIR), short-wave infrared (SWIR) spectrum) 
and sensors covering thermal infrared (TIR). Spaceborne radar (RAdio Detection and 
Ranging) remote sensing includes passive and active systems. While active sensors are 
usually characterized by higher-spatial-resolution, passive microwave sensors operate on 
coarser resolution (Ottinger and Kuenzer, 2020). The electromagnetic radiation spectrum 
with important bands used in satellite remote sensing (SRS) is shown in Figure 3-2. 

Remote sensing-based research and case study applications were important drivers to 
improve our understanding of locust-relevant ecological and environmental conditions. 
Since the 1980s, information acquired from remote sensing data has accompanied many 
locust management activities and contributed to improved and more effective control of 
locust outbreaks and plagues around the world. Nevertheless, locust outbreaks still cause 
devastation and hunger, despite technological progress and improvement in monitoring and 
control. One of the reasons is the ineffective monitoring, management or population control 
in some locust habitats, e.g., due to lack of available resources and technology (Roussi, 
2020). Environmental changes (e.g., land use alterations) and weather variability within the 
locust habitats can create optimal conditions for locust breeding, which needs to be realized 
and control undertaken in time. Otherwise, such changes may lead to increased population, 
causing a transition from the solitarious phase to the gregarious phase and therefore initiate 
a locust outbreak. Therefore, continuous monitoring during the solitarious phase is essential. 
Apart from short- to mid-term variability of important ecological variables, the effect of climate 
change is also considered to be a factor for more frequent and severe outbreaks (Meynard 
et al., 2020; Salih et al., 2020; Tratalos et al., 2010).  

 

 
 
Figure 3-2. Electromagnetic radiation spectrum with bands used in satellite remote sensing (SRS) 
from Pettorelli et al. (2018). 
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The Food and Agriculture Organization (FAO) has been successfully introducing 
standardized monitoring methods and data collection when remote sensing data and 
applications play an essential role. Remote sensing data related to locust outbreaks was 
first introduced by Pedgley (1974) and Hielkema (1977) and was later implemented in FAO 
operative desert Locust Information Service (DLIS). Hielkema et al. (1990) and Hielkema 
and Snijders (1994) focused on Meteosat cloud imagery to estimate rainfall, and on Landsat 
and AVHRR-based estimation of vegetation development. The Australian Plague Locust 
Commission (APLC) is another organization successfully utilizing remote sensing data to 
support locust management (Bryceson, 1990; Hunter, 2004). Since then, FAO and APLC 
and different research projects have contributed to a steady progress in implementing 
remote sensing-based products. In general, remote sensing can provide different kinds of 
information at different critical moments within the locust life cycle. Figure 3-3 represents a 
typical locust life cycle and sketches where remote sensing technologies have been applied 
in the past and present or have the potential for future applications. These applications can 
be summed up in following overarching topics: 

 Mapping and monitoring the locust habitat state and environmental conditions which 
promote the transition process between the solitarious and gregarious phases. 

 Prediction of hatching time and possible outbreaks based on historical information, 
present vegetation monitoring and weather forecast. 

 Locust nymph bands and swarm monitoring with airborne or UAV-based sensors. 
 Post outbreak crop and vegetation damage assessment. 
 In addition to EO remote sensing, direct radar (X-band) observations of ‘migration in 

progress’ have been used for research on the migration systems of locusts and 
migratory grasshoppers, particularly for the Australian Plague locust and the 
Senegalese grasshopper (Drake and Reynolds, 2012). Insect-monitoring radars 
(IMRs) are currently used to supplement existing survey and monitoring programs of 
the Australian Plague locust (Drake and Wang, 2013). 
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Figure 3-3. Representative life cycle of locust and grasshopper species including critical phases for 
locust management and where remote sensing can provide support and provide data. 
a) Red, green, blue (RGB) image taken by a UAV from 80 m height with visible vegetation damage 
caused by early stage of the Moroccan locust (South Kazakhstan, April 2019). b) Aerial image of 
bands of the Australian plague locust and visible caused damage (source: Figure 60 from Weiss, 
(2016), photos from Victorian Government Agriculture Department). c) Bands of the Australian plague 
locust and damaged vegetation visible in airplane-taken RGB image from 400 m height (source: 
Figure 2 from Hunter et al. (2008)). 
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This review aims to provide a comprehensive and quantitative overview on ‘satellite-based’ 
remote sensing applications and research within critical phases for locust management. Due 
to high potential for locust management, as well as similar principles in image interpretation 
and processing, we also included UAV and airborne-based studies. We aim to summarize 
past and present developments and identify topics which still require further research and 
scientific attention. This review is structured as follows: in Section 2. Materials and Methods, 
we present the applied literature search and categorize different publication-specific aspects 
and thematic foci which are reviewed and presented separately. In Section 3. Results, we 
present the outcome for each aspect and summarize most important findings. In Section 4. 
Discussion, results are critically discussed, gaps and further potential are stated. In Section 
5. Conclusion, we summarize and underline main findings. 

3.2 Materials and methods 

Locust pest research and management cover several scientific disciplines. Therefore, 
potential articles cover a broad range of journals. For this review, we systematically reviewed 
110 scientific publications including remote sensing applications which were published since 
1980. The conducted literature search was based on the bibliographic digital database of 
Web of Science (last accessed on 15 December 2020) including Science Citation Index 
(SCI) journals and full-text conference contributions (Figure 3-4). For the literature search, 
we used specified terms and additional keywords including ’locust’, ’locust pest’, ’locust 
plague’, ’locust outbreak’ and ‘grasshopper’ in combination with ’remote sensing’ or 
‘satellite’, ‘UAV’, ‘airborne’ as well as ’habitat’, ‘monitoring’, ‘prediction’, ‘control’, and 
‘management’. This search query resulted in a very large number of research articles also 
including publications which are not related to locusts and grasshoppers (Orthoptera: 
Acrididae). Therefore, additional excluding keywords were applied. In a final step, we 
screened the resulting publications based on the following inclusion criteria which are 
relevant for this review: 

 Articles are related to locust and grasshopper species (Orthoptera: Acrididae). 
 Articles should be based or include EO, airborne or UAV data as one of the data 

sources. 
 Articles investigated either locust/grasshopper habitat, presence, or outbreak 

prediction. 
 Articles are related to locust/grasshopper ecological modelling or population 

distribution with EO-based input. 
 Articles related to locust/grasshopper damage monitoring/mapping with EO. 
 The literature review workflow and number of studies for each step are summarized 

in Figure 3-4. 
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Figure 3-4. Workflow and literature searching criteria applied for this review. 

The total selected 110 studies were analyzed to extract relevant information for this review 
in two main aspects. The first aspect includes publication-specific information about “species 
of interest”, “region of interest”, “applied remote sensing sensor” and “derived variables from 
remote sensing data”. Additionally, we extracted involved authors’ affiliation to investigate 
where main research is based compared to regions of interest. The second aspect includes 
thematical foci which were categorized into “habitat mapping”, “habitat monitoring”, “forecast 
of hatching/outbreak”, “damage assessment” as well as “review and general articles” without 
a specific data analyzing part (Table 3-1).  

 
Table 3-1. Categorization of research articles for this review. 

Publication-Specific Aspects Thematic Foci 
Species of interest Habitat mapping (static) 

Region of interest (country level) Habitat monitoring (temporal) 
Sensor and used variables, scales Outbreak/Hatching prediction (future) 
Authors’ affiliation (country level) Damage assessment (past) 

 Review articles (general) 
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3.3 Results 

3.3.1 Development over time  

In this section, we recap the historical development of studies related to locust research and 
management applying remote sensing data (Figure 3-5). The first studies were published by 
Pedgley (1974) and Hielkema (1977) using Landsat Multi-Spectral Scanner (MSS) data to 
detect the presence of green vegetation in desert locust habitats in northwest Africa. After 
recognizing the potential of satellite imagery, the 1980s and 1990s were dominated by a few 
experimental studies and pioneer research on how remote sensing data analysis and 
application could be utilized to provide valuable information for locust management and to 
be implemented into operational services. Referring to locust plagues, Hielkema (1981) 
introduced satellite remote sensing for desert locust habitat monitoring as “a new technology 
to an old problem”. McCulloch and Hunter (1983), Bryceson and Wright (1986), Bryceson 
and Bryceson (1989, 1990, 1991) and Bryceson et al. (1993) investigated the usage of 
Landsat MSS imagery to identify and monitor habitats of the Australian plague locust. Tucker 
et al. (1985) introduced the potential of AVHRR and Landsat datasets to forecast desert 
locust activity. Further feasibility studies followed for the Senegalese grasshopper 
(Oedaleus senegalensis) (Tappan et al., 1991, 1990; Tappan and Moore, 1989), the brown 
locust (Nailand, 1993), and the Moroccan locust (Latchininsky, 1998). 

At the beginning of the new millennia, there was a slight increase in publications and a trend 
towards more specific studies related to outbreaks between 1999 and 2001 in Central Asia, 
Russia, China, Australia as well as desert locust outbreak in 2003–2005 in West Africa. This 
increase is visible in a first significant accumulation of studies from 2004 with the peak in 
2008. The second peak of studies in 2013/2014 is related to a special issue “Advances in 
Remote Sensing Applications for Locust Habitat Monitoring and Management in the Journal 
of Applied Remote Sensing” with a total of 14 studies. The peaks in 2018 and 2020 can be 
related to an open source policy and accessibility of different satellite data archives and 
following new approaches (e.g., soil moisture and ecological niche modelling), as well as 
overall increased public and research interest and available funding probably related to 
recent severe outbreaks. 

In general, it is clear that remote sensing application studies, at least those published in the 
English language, were rather rare until the start of the new millennium, mostly driven by 
research developments in collaboration between research centers and universities with FAO 
and APLC for monitoring and prediction service for the desert locust and the Australian 
plague locust. Afterwards, the academic interest involving EO data increased in the past two 
decades. Nevertheless, a significant development observed in other disciplines, e.g., related 
to new available EO data sources (e.g., Sentinel fleet) or opening long term archives 
(especially Landsat) is not evident. The observed accumulation of studies is related to locust 
outbreaks rather than technological advances and availability of remote sensing data. 
However, recent analysis related to soil moisture (Escorihuela et al., 2018; Gómez et al., 
2018, 2019; Piou et al., 2019) as well as ecological niche modelling (Kimathi et al., 2020; 
Malakhov and Zlatanov, 2020; Meynard et al., 2017) based on several data sources were 
the focus of investigation and showed promising results. 
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In terms of the investigated temporal scale, 18% of all studies were conducted only for one 
image representing the conditions at the time of overfly (mono-temporal). A total of 71% of 
studies were conducted for several images representing several states at different time 
steps or temporal development (multi-temporal, see also Figure 3-5). Within multi-temporal 
studies, we can further discriminate between studies which applied multiple mono-temporal 
processing steps to mirror the state at these dates (28%), and studies applying time-series 
analyses (43%). Studies marked as “NA” (11%) are reviews and general articles without a 
specific data analysis part.  

 

 

 
Figure 3-5. Total number of studies dealing with locust or grasshoppers applying remote sensing 
data (Mono-temporal = 18%, Multi-temporal = 71%, NA = 11%, see text for definitions of terms). 

 

Figure 3-6 shows the investigated time periods. It is obvious that most multi-temporal studies 
focus only on few years rather than longer time periods. In total, there are only 18 studies 
which cover at least ten or more years (added citation in Figure 3-6). 
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Figure 3-6. Temporal coverage of investigation within reviewed articles. 
Green: mono-temporal studies, blue: multi-temporal studies; references indicate studies analyzing 
ten or more years 

3.3.2 Publication specific aspects 

3.3.2.1 Species of interest 

Two species dominate the publications, i.e., the desert locust (33%) and the migratory locust 
(27%) (Figure 3-7). The migratory locust includes approximately ten subspecies which 
slightly differ biologically and morphologically, yet are characterized by similar ecological 
requirements (Latchininsky and Sivanpillai, 2010). Therefore, we consider this species as 
one overarching group. The third most investigated species is the Australian plague locust 
(14%).  
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Figure 3-7. Total number of studies categorized by locust and grasshopper species.  
Note: the category migratory locust includes all subspecies, e.g., the Oriental, African and Asian 
migratory locusts. 

Few studies were found for the Senegalese grasshopper (6%), the Italian locust (5%), the 
brown locust (4%) and rangeland grasshoppers (e.g., Heiroglyphus nigrorepletus, Oedaleus 
decorus asiaticus, Rhammatocerus schistocercoides; 4%). Studies for other destructive 
species such as the Central and South American locusts (1%), the Moroccan locust (1%) 
and the red locust (1%) are rare. The category General (5%) does not focus on specific 
species but rather summarizes review papers including several species or general research 
which is relevant for more than one species (e.g., climate change). 

3.3.2.2 Area of interest 

In this section, we would like to pay attention to countries and regions of interest which were 
in focus of reviewed publications (Figure 3-8). Obviously, the area of interest is related to 
the species and its habitat distribution. Nevertheless, several species habitats cover large 
areas and invasion regions across several countries. For example, the countries of the Sahel 
region, especially Burkina Faso, Chad, Ethiopia, Eritrea, Mauritania, Mali, Niger, Nigeria, 
Senegal, Somalia, and Sudan are particularly susceptible to the desert locust (Kimathi et 
al., 2020). In general, the desert locust breeds extensively in arid and semi-arid zones 
extending from West Africa through the Middle East to Southwest Asia including the Arabian 
Peninsula, Pakistan and India. The habitat of the Italian locust spreads across Europe, 
Russia, Central Asia and China (Latchininsky, 2013). The different subspecies of the 
migratory locust such as the Asia, Oriental and African locusts are found in temperate and 
tropical zones of the eastern hemisphere (Latchininsky and Sivanpillai, 2010). On the 
contrary, the Australian plague locust, is only found in Australia.  
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Figure 3-8. Regions of interest of reviewed studies. Comments indicate the most destructive locust 
species and their distribution (Cullen et al., 2017; Le Gall et al., 2019). 

Most studies focused on study areas in China (26%), followed by Australia (13%), Mauritania 
(12%), Uzbekistan (7%) and Kazakhstan (5%). There are no studies for the Arabian 
Peninsula, Pakistan and only one for India, although those regions are highly vulnerable, 
e.g., to desert locust outbreaks. English-language publications using remote sensing for 
locust research or management were barely found for North and South America, South-East 
Asia and Europe. This may be due to minor risk of locust outbreaks (e.g., in case of Europe) 
or that applications use data sources apart from remote sensing, e.g., field and station 
measurements (e.g., in case of North America) (Belovsky and Slade, 1995; Branson, 2017, 
2008). 

3.3.2.3 Sensors and variables 

In this section, we quantify the studies based on different sensor types, derived variables 
and metrics. The reviewed publications show a distinct dominance with 57% of using optical 
instruments only (Figure 3-9). This dominance is due to the fact that the detection of green 
vegetation and its density is of high importance for locust habitat monitoring as well as for 
damage assessment. With few exceptions the authors used data from AVHRR, MODIS, 
Landsat and SPOT-VGT sensors. Applications of radar sensors were found in 6% and in 
combination with other sensors in an additional 20% of the studies (optical/radar 10%, 
optical/radar/TIR 5%, radar/TIR 5%). Passive and active radar sensors are applied for soil 
moisture, precipitation and wind estimations. The category of sensors including thermal 
infrared (TIR) is related to temperature estimation which is, together with rainfall, important 
for monitoring as well as for hatching and outbreak prediction. In combination, there were 
16% of studies using TIR (optical/radar/TIR 5%, radar/TIR 5%, TIR 3%, optical/TIR 3%). 
There were no studies using satellite-based hyperspectral sensors and only two studies 
(2%) referring to data from airborne and UAV cameras.  
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Figure 3-9. Total number of studies and remote sensing sensor types used. 

Among variables, parameters and metrics, we found that vegetation indices (39%), 
precipitation (14%), land cover classification (13%), temperature (11%) and soil moisture 
(9%) are dominant (Figure 3-10). Within the vegetation indices (VI), the Normalized 
Difference Vegetation Index (NDVI) was applied in most cases with only few exceptions 
(e.g., Enhanced Vegetation Index (EVI)). Furthermore, the usage of geomorphological 
metrics derived either from optical or SAR data have shown great potential (Lazar et al., 
2015) but its application was found only in 5% of studies. Moreover, very few studies use 
the Leaf Area Index (LAI) (5%) or fraction of vegetation Cover (fCover) (4%). 
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Figure 3-10. Satellite-based studies categorized into used/derived parameters/variables. 

3.3.3 Thematic foci  

As described in the introduction, remote sensing can add valuable information at different 
critical time steps of the locust life cycle (Figure 3-3). This depends on temporal as well as 
on spatial scale. For example, ecological niche modeling considers species-relevant 
variables and are mostly applied on regional to continental scales with up to 1 km spatial 
resolution by utilizing long-term climate data (e.g., WorldClim (Hijmans et al., 2005) or 
National Centers for Environmental Modeling (NCEP)/National Center for Atmospheric 
Research (NCAR) reanalysis data (Kanamitsu et al., 2002)) and environmental variables 
such as soil structure or terrain. Contrary, the damage on vegetation by instar nymphs can 
only be assessed with high to very-high-spatial-resolution (VHR) satellite sensors with a 
spatial resolution of few ten meters up to centimeters. Overall, the literature review revealed 
five major thematic categories (Figure 3-11): 

 Habitat mapping and ecological niche modeling as static state description of potential 
habitat where locust might breed. 
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 Habitat monitoring as temporal description focusing on variable environmental 
parameters relevant for locust development. 

 Outbreak and hatching prediction as forecast component for future. 
 Damage and loss assessment as post outbreak evaluation. 
 Overarching review and general research papers. 

The thematic categorization of reviewed studies was performed by examining the major 
objectives and presented results. If the objective of a study was to map or describe habitat 
or ecological niche of a locust species, it is grouped into the category “habitat mapping”. The 
major result can be categorical habitat maps for a certain time or time period, as well as 
probability assessment about which areas are more prone to locust breeding. Studies which 
focus on monitoring or detecting changes of ecological parameters over time are grouped 
in “habitat monitoring”. Here, the focus is on analyses at high temporal frequency or 
operational monitoring of ecological parameters which affects locust life cycle and potentially 
contribute to early warning. Studies focusing on forecast are grouped in “outbreak and 
hatching prediction”. For these three categories, there are studies which might include 
components in line with two or even three described categories. For example, most studies 
grouped into “outbreak and hatching prediction” also contain monitoring aspects because it 
is an important tool to predict outbreaks and many forecast approaches are constructed 
based on statistical relationship between historical field data and relevant ecological and 
meteorological parameters. In these cases, we categorize based on the most important 
outcome. The grouping into “damage assessment” and “review and general” was more 
straight forward due to none intersecting objectives. 

 

 

Figure 3-11. Total number of studies categorized in major research topics. 
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3.3.3.1 Habitat mapping studies 

Identifying habitat and possible breeding sites is one of the most important tasks for 
implementing cost- and time effective pest control (Kimathi et al., 2020). Since the 
introduction of Landsat and AVHRR sensors, identifying potential locust habitats has been 
an essential priority for locust management services to prioritize monitoring. We identified 
two main approaches which have been used to map, model or classify suitable habitats of 
locust species, i) land cover-based habitat mapping and ii) habitat suitability assessment or 
modelling-based ecological niche estimation. The most important information and outcomes 
are summarized in following subsections for each approach. 

Land cover-based habitat mapping 

The first approach utilizes land cover classification methods. The outcome of land cover-
based mapping are usually categorical maps of land cover or vegetation classes, which also 
might be converted into risk or habitat suitability classes (e.g., high, middle, low). At the 
beginning, researchers, e.g., McCulloch and Hunter (1983), classified locust habitats using 
Landsat MSS data at a 90 m spatial resolution by visual image interpretation. Based on 
expert knowledge about the ecology of different species and preferred vegetation types, 
habitats can be described by different land cover types. In this way, it is possible to indirectly 
assess the suitability for locust breeding. This strategy has been widely applied, especially 
for migratory locust species which breed in wetlands with reed vegetation (e.g., Phragmites 
australis). These habitats are highly dynamic in terms of inundation, which defines the locust 
population density and therefore triggers outbreaks. Sivanpillai et al. (2006) applied 
unsupervised classification approach using 30 m spatial resolution Landsat images in Ili river 
delta (Kazakhstan) to identify land cover classes which provide favorable conditions for the 
Asian migratory locust. A similar strategy was used in Latchininsky et al. (2007) and 
Sivanpillai and Latchininsky (2008) for selected Landsat images in Amudarya delta 
(Uzbekistan). In Sivanpillai and Latchininsky (2007) the authors identified common reed 
areas as potential Asian migratory locust habitats in Amudarya delta based on time-series 
analysis of MODIS 8-day NDVI composites (250 m spatial resolution) between April and 
September which represented the phenology of reed vegetation. In the same study region, 
Navratil and Wilps (2013) applied an object-based classification approach using one SPOT-
5 image (10 m spatial resolution) to identify reed vegetation densities and categorize them 
into potential habitat functions such as feeding and breeding habitats. In this way, Navratil 
and Wilps (2013) demonstrated the potential of higher-spatial-resolution imagery as well as 
segmentation-based classification methodology. Later, Löw et al. (2016) analyzed MODIS 
EVI time series (250 m spatial resolution) between 2003 and 2014 to derive land cover for 
the entire Amudarya delta and relating it to migratory locust breeding sites. In this study, the 
authors utilize annual temporal signature to achieve high classification accuracy for each 
year. The classification results are finally used to derive potential risk categories and in this 
way support locust management.  

Additionally, research efforts on habitat mapping have been conducted for the migratory 
locust in several study sites in China. Q. Liu et al. (2006) applied land cover classification-
based approach to derive potential habitats in Yellow River delta based on one Landsat TM 
(Thematic Mapper) image. Li et al. (2011) used 14 HJ-1 CCD images (30 m spatial 
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resolution) to derive NDVI time series to produce a land cover classification map and convert 
it to potential habitats of Asian migratory locusts in Hebei Province. Zheng et al. (2018) 
applied decision tree-based classification for six Landsat Operational Land Imager (OLI) 
images in the Dongying region to derive Oriental migratory locust habitat in 2015. Shi et al. 
(2018) analyzed time series of MODIS and Landsat data between 2000 and 2016 to estimate 
annual changes in Oriental migratory locust habitat. Recently, Zhao et al. (2020) identified 
land cover and land use changes in Oriental migratory locust habitats for entire China. They 
classified multi-annual Landsat TM, Enhanced Thematic Mapper (ETM) composites 
generated from data between 1993 and 1997, 2003 and 2007 and 2015 and 2018 to 
compare the habitat status in the years 1995, 2005 and 2017 concluding that Oriental 
migratory locust habitats decreased due to the change in land use. Geng et al. (2020) 
introduced a Patch-based Analytic Hierarchy Process (PB-AHP) and Habitat Suitability 
Index (HSI) model based on MODIS and Landsat time series to analyzing Oriental migratory 
locust habitat factors in Tianjin province that affect locust oviposition and growth. The habitat 
factors included vegetation coverage, land cover classification, soil moisture, soil salinity 
and land surface temperature. The PB-AHP model was used to derive weight coefficients 
for each habitat factor and the degree of patch scale suitability by quantitative analysis of 
landscape structure and in this way map locust habitat at different suitability levels. 

On the contrary to reed vegetation for the migratory locust, the detection of plant species 
which are favored by other locust species is more challenging due to the spectral 
characteristics of most optical sensors. Therefore, studies for other locust species rather 
focus on the general state of vegetation as a proxy for favorable breeding or invasion areas. 
For example, Bryceson (1989) utilized Landsat MSS data to determine the location of 
Australian plague locust eggbeds based on vegetation greenness as areas favorable for 
invasion and land cover type as areas favorable for oviposition. She concluded, however, 
that using only NDVI information without land cover information (e.g., woods, forest versus 
grassland and shrubland) remains problematic. In this context, Bryceson (1989) shows a 
high correlation between low NDVI values (−0.13 to 0.04 range) and localized nymph bands 
for certain land cover types (grasses and forbs and natural pasture). De Miranda et al. (1994) 
used Landsat images to map the static state, and AVHRR-based NDVI time series to map 
the dynamic development of the biotopes of one grasshopper species (Hammatocerus 
schistocercoides) in Mato Grosso, Brazil. Dreiser (1994) and Voss and Dreiser (1997) 
produced detailed habitat maps for selected pilot regions within the recession area of the 
desert locust in Sudan, Mali, Mauritania and Niger using Landsat data, field observations 
and expert knowledge. Another approach was introduced by Lazar et al. (2015), who 
integrated 43 years of field data in combination with selected Landsat images to classify 
main breeding sites of the desert locust during solitary phase. Their approach focused on 
identifying geomorphological structures such as wadis. The results for the pilot region in 
southern Algerian Sahara show that wadies contained 81% of observed laid egg pods 
according to the field data archive. Lazar et al. (2015) suggested ignoring the vegetation 
dynamics and focusing on correlations between breeding areas of solitary locusts and 
specific geomorphological features such as wadis. On the other hand, the study states also 
that 19% of laid eggs within the test region were outside of such areas. Therefore, such 
approach should be applied in combination with vegetation dynamics to account for all 
suitable areas.  
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A unique human-locust species inter-connection example can be found by examining the 
Italian locust. The Italian locust prefers sagebrush (Artemisia spp.) which also grows on 
fallow and abandoned fields, overgrazed pastures, as well as along roads and other man 
made structure (Kambulin, 2018; Latchininsky, 2013). However, when crop fields are 
plowed, the egg pods of the Italian locust are destroyed mechanically. Therefore, land 
management practice and abandoned fields as well as artificial landscapes directly influence 
areas favorable for Italian locust breeding. In this context, Sivanpillai et al. (2009) presented 
a case study for mapping Italian locust habitats in Northern Kazakhstan. The authors used 
an Advanced Wide Field Sensor (AWIFS) scene at spatial resolution of 56 m to discriminate 
active and abandoned fields to identify potential breeding areas. Furthermore, Liao et al. 
(2013) investigated three critical development stages for the Italian locust relevant to locust 
density—breeding stage, incubation stage and development stage—to assess a risk index 
in Xinjiang, China. The authors identified soil texture, vegetation species and geographic 
elevation as relatively temporal static geophysical properties and combined them with 
dynamic soil moisture, vegetation coverage, air temperature and rainfall variables. Finally, 
suitability index was derived for each development stage and combined to a locust plague 
risk index (LRI). 

Modelling-based habitat suitability mapping 

Another approach to identify habitats is based on spatial distribution models (SDM) or 
ecological niche models (ENM) by combining locust presence locations (derived from 
ground surveys) and different sets of environmental variables. ENM are usually based on 
machine learning algorithms to correlate a set of environmental conditions to species 
presence and absence records and thus predict its suitable habitats (Kimathi et al., 2020). 
The output of such models reflects habitat suitability by fitting a probability distribution for 
selected species over a specific region of interest. 

Aragón et al. (2013) estimated climatic favorable areas for different locust species 
distribution and outbreaks in Spain, utilizing bioclimatic variables derived from WorldClim 
data and historical outbreak records. The authors tested several SDMs and summarized 
that temperature annual range, precipitation of the coldest annual quarter and estimated 
Acrididae richness had the highest influence modelling historical outbreak results. 
Furthermore, the authors used the Global Land Cover 2000 product (based on SPOT-4 
imagery) to derive land use and assess the risk in economic important regions. Zhang et al. 
(2015) selected key habitat factors by intersecting field data with different environmental 
variables such as soil properties, MODIS NDVI, geomorphological parameters derived from 
digital elevation model (DEM) to finally map the potential occurrence of grasshoppers 
(Oedaleus decorus asiaticus) in the Inner Mongolia steppe. Relevant climate variables 
influencing oviposition, overwintering and incubation were considered within a fuzzy 
evaluation model (multi-objective linear weighted function). 

Malakhov et al. (2018) pointed out that their model is able to identify areas where, at a certain 
time, a successful development of locust eggs is most probable, rather than to predict the 
actual oviposition areas. For locust management, however, the question “which areas 
provide favorable conditions for egg survival” is even more critical. Based on their analysis 
for the Asian migratory locust in Ili river delta (Kazakhstan), the ambient air temperature; the 
temperature of the soil during the cold season of the year, soil moisture, and the presence 
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of reed vegetation which was classified from MODIS data were most important variables to 
map optimal oviposition areas. Similarly, Malakhov and Zlatanov (2020) developed an ENM 
for the Moroccan locust combining a total of 74 variables (including satellite-based NDVI 
and Soil Water Index) and this way identifying favorable condition for egg pods survival. The 
output reveals that 58% of key variables describe winter and spring conditions, which relates 
to most vulnerable life stage of this species (embryogenesis and nymph development). 

Recently, Kimathi et al. (2020) used maximum entropy model and desert locust field data to 
derive potential breeding areas across affected countries in East Africa. They used long-
term temperature and precipitation (based on 1970–2000 data from WorldClim2) to calculate 
the long-term mean for December, January, February and March as well as an average soil 
moisture and soil sand content (at a depth of 5–15 cm). Furthermore, they included a 10-
day composite vegetation greening onset product which is based on SPOT and MODIS data 
to assess vegetation development within modelled breeding areas. However, the authors 
stated that additional detailed assessment of temporal variation in vegetation prevalence 
and vegetation type could improve the accuracy of the model (Kimathi et al., 2020). 

3.3.3.2 Habitat monitoring studies 

In the following, we summarize studies which focused on the temporal monitoring of 
environmental conditions, which determine the phase change as well as the timing of 
hatching. In this way, those studies focus on information about temporal dynamics rather 
than a static habitat status or potential species distribution as described in the previous 
section. Another main difference to previous section is that following studies potentially 
contribute to operative service or enable immediate decisions as part of early warning 
system (e.g., sending field teams for on ground monitoring or control measurements). The 
majority of habitat monitoring studies were focusing on precipitation and soil moisture 
monitoring as well as assessing vegetation change. 

Early research conducted by Cherlet et al. (1991), Hielkema et al. (1990, 1986), Hielkema, 
Hielkema and Snijders (1994), Tucker et al. (1985) discussed different approaches on how 
Meteosat or AVHRR data can be utilized for monitoring desert locust habitats especially 
during recession periods as well as for the Senegalese grasshopper (Tappan et al., 1991, 
1990; Tappan and Moore, 1989). The geostationary Meteosat satellites provides data to 
monitor weather system over large areas at very high frequency. The identification of “cold” 
rain-bearing clouds, based on threshold approach in thermal infrared (TIR) channel, enables 
the location of areas where sufficient rainfalls and soil moisture can lead to egg hatching 
(Cherlet et al., 1991; Milford and Dugdale, 1990). In Hielkema et al. (1986) the potential 
breeding activity factor (PBAF) was introduced as a function of amount of pixels for four 
different NDVI ranges. Based on these research, remote sensing applications were 
implemented into FAO monitoring systems (Africa Real Time Environmental Monitoring 
Information System (ARTEMIS)) and build the base for instructions and guidance for 
national and regional desert locust management offices in affected countries. In this context, 
the estimation of precipitation has been the main aspect for locust and grasshopper 
monitoring. Dinku et al. (2010) evaluated and compared seven different satellite-based 
rainfall detection products, which are based on thermal infrared (TIR) observations and long 
microwave (LM) rainfall estimation. The authors concluded, that in arid and semi-arid areas, 
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a significant overestimation of rainfall occurrences turned out as the main weakness. 
Nowadays, 24-hours, 10 days and monthly rainfall cumulative products which are generated 
by Climate Prediction Center MORPHing (CMORPH) algorithm are used for operative 
monitoring (WMO and FAO, 2016). 

Recent research to monitor (i) vegetation, (ii) soil moisture, and (iii) studies which investigate 
combination of several ecological import variables are summarized in following three 
subsections. 

Monitoring vegetation change 

In the last 15 years, there was increased development in monitoring vegetation. Major focus 
was placed on temporal scale and relation of vegetation indices variability to locust 
development. 

Ceccato (2005) combined 10-day NDVI composites at 1 km spatial resolution from SPOT-
VGT with spectral bands to analyze favorable conditions of the desert locust for reproduction 
and development. They discussed the issues of significant commission and omission errors 
critically and recommended to add selected spectral bands (e.g., RED, NIR, SWIR) to 
reduce the commission error or to add MODIS data to detect sparse vegetation, which was 
omitted due to coarser spatial resolution of SPOT-VGT NDVI data. Furthermore, Ceccato et 
al. (2006) presented useful applications of decadal rainfall satellite products and MODIS 16-
day NDVI data to monitor the climate variability and its integration into early warning systems 
for desert locust management. 

Tratalos and Cheke (2006) found that in arid regions, coarse-scale NDVI rather correlates 
with precipitation than with locust population. Chen and Li (2008) analyzed LAI derived from 
Landsat images and presence of the Oriental migratory locust and stated a significant linear 
relationship between LAI and the occurrence of locust density. 

In Pekel et al. (2011), the authors addressed the previously stated issues with high omission 
and commission errors in arid regions and developed a more reliable multi-temporal 
approach based on MODIS data and a colorimetric transformation to identify vegetated 
areas in near real time. The color transformation projects the red, green, blue (RGB) bands 
to hue, saturation and value (HSV) where hue appears as a qualitative spectral index, and 
its temporal variations can be interpreted as land cover change. Cressman (2013) reported 
that the technology for green vegetation estimation is useful and accurate in terms of 
operation and usability in early warning system for desert locust monitoring. There, the 
operational use of NDVI and EVI 16-day composites from MODIS data seems to provide 
sufficient information to detect changes in ecological conditions, specifically greening and 
drying vegetation. Cressman (2013) also referred to a color space-transformed HSV product 
developed by Pekel et al. (2011), which is able to mirror the development of vegetation; 
moreover, he pointed out that 11 periods of 10-day composites correspond roughly to the 
length of one desert locust generation. The Pekel et al. (2011) approach is also used 
operationally for FAO early warning systems and daily locust control activities. Waldner et 
al. (2015) assessed the accuracy of the dynamic greenness maps and revealed a high 
accuracy in summer breeding areas of the desert locust (F-score of 0.64 to 0.87); however, 
they are less accurate in winter breeding areas (F-score of 0.28 to 0.40). Furthermore, the 
accuracy of the product depends on landscape fragmentation (R2 = 0.9). Therefore, the 
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MODIS spatial resolution is still too coarse to resolve complex landscape patterns, which 
were responsible for 60% of the error (Waldner et al., 2015). In this context, Waldner et al. 
(2015) further compared PROBA-V 100 m resolution data and found that the higher spatial 
resolution lowers the resolution bias in fragmented areas by 20% and increases the quality 
of the vegetation classification. Finally, Renier et al. (2015) tested the hypothesis that a 
reliable discrimination of the onset of vegetation senescence can be achieved by jointly 
implementing temporal NDVI trajectories and the Normalized Difference Tillage Index 
(NDTI), which is sensitive to both green and dry vegetation. The authors used MODIS SWIR 
band, which has shown to be effective to monitor dry vegetation. Based on these two indices, 
the authors calculated eleven different metrics, which should represent three phenological 
classes “growth”, “density reduction” and “drying”. In Mauritania, MODIS 10-day composites 
were applied to identify onset of drying as an indicator that a habitat becomes less attractive 
to the desert locust. The authors further state that higher spatial resolution may play a crucial 
role to improve vegetation classification in arid and fragmented areas. 

Additionally, Deveson (2013) reported that for the APLC model, using the relative NDVI (r-
NDVI) showed significant positive relationship between one-month change in r-NDVI and 
the presence of nymphs and nymph density for the Australian plague locust. Additionally, 
Wang (2014) quantitatively assessed that greening of Australian plague locust habitat is 
related to locust appearance and population density. 

Monitoring soil moisture 

Soil moisture plays a crucial role for locust development. Early studies on soil moisture 
showed its potential, but also the restrictions of applying satellite-based radar data to 
operational services due to low spatial and temporal resolution (Crooks and Archer, 2002). 
Liu et al. (2008) presented an approach exploiting MODIS-based soil moisture and its 
relationship with Oriental migratory locust plagues. They found that the soil moisture content 
was lower during a severe outbreak period. Moreover, they concluded that the severe 
outbreak was clearly impacted by reduced soil moisture during locust oviposition and 
incubation periods. 

Escorihuela et al. (2018) presented a first attempt to implement soil moisture products within 
operative desert locust management tools. Different user requirements and soil moisture 
algorithms were assessed to produce a soil moisture product at 1 km spatial resolution. 
Furthermore, they present an innovative approach to derive soil moisture at 100 m spatial 
resolution by synergizing Sentinel-1 with Soil Moisture and Ocean Salinity (SMOS) data. 
Gómez et al. (2018) investigated the relation between desert locust presence during the 
solitarious phase and soil moisture conditions based on European Space Agency (ESA) 
Climate Change Initiative (CCI) soil moisture product (spatial resolution 0.25°). The authors 
analyzed the relation between the presence of the desert locust and soil moisture change 
for different time intervals before the date of sighting. In conclusion, the shorter time intervals 
of six days performed the best result and indicating that most important time interval was 
between 95 and 72 days before desert locust nymph presence was detected in the field.  

Monitoring of Several Variables 

In this subsection, we summarize studies which presented monitoring strategies combining 
several variables of importance. Han et al. (2006) presented a remote sensing-based model 



3 Application of Remote Sensing Data for Locust Research and Management – A Review 

47 

including LST, soil moisture, NDVI, fCover, and LAI for monitoring the East Asian migratory 
locust based on three different locust life cycle stages. Similarly, Gornyy et al. (2006) stated 
that satellite monitoring enables the monitoring of ecosystem state as well as locust 
population. They investigated several land surface characteristics such as heat flow, 
evaporation rate and NDVI from AVHRR and MODIS data in relation with Italian locust 
density based on the fact that daily averaged evaporation rate of surface depends on the 
moisture supply on ground and on the possibility of vegetation to evaporate water. For the 
test region of southern part of West Siberia, the authors concluded that with higher soil 
moisture the locust population was less dense. 

Another alternative monitoring approach was presented by Propastin (2013) combining 
radar altimetry measurements with NDVI data (AVHRR and SPOT-VGT) to monitor the 
habitat of the migratory locust in Ili river, Kazakhstan. In these studies, the author found that 
the water level of lakes and rivers, which can be derived via radar altimetry, directly affect 
the distribution of common reed vegetation which influences potential habitats as well as 
areas for infestation. 

Li et al. (2014) presented a design for GIS-based monitoring and control for the migratory 
locust in China which also includes processing of NDVI, soil moisture and emissivity time 
series from MODIS data. Latchininsky et al. (2016) presented different remote sensing-
based applications to monitor the red locust in Madagascar using SPOT-4 and DEM data, 
the migratory locust in Amudarya river delta using Landsat data and the desert locust in 
Mauritania using MODIS data. 

Gómez et al. (2019) applied different machine learning approaches to create a species 
distribution model by integrating six environmental variables from two sensors: MODIS-
based NDVI and land surface temperature (LST) as well as Soil Moisture Active Passive 
(SMAP)-based soil moisture root zone, surface soil moisture, LAI and surface temperature 
data. Based on these variables in combination with locust presence field data, the authors 
modelled breeding suitability for the solitary desert locust. Within their analyses the authors 
identified surface temperature retrieved from SMAP as most important parameter. On the 
contrary, MODIS LST was not as relevant. Gómez et al. (2019) point out that for monitoring 
the time of temperature retrieval is crucial in semi-arid and arid regions with high day-night 
temperature range and explain the different performance for same physical variable from 
two different sources. In conclusion, the most relevant variables were surface temperature, 
NDVI, soil moisture at root zone under different time scenarios. By including all six 
environmental variables, the authors obtained high predictive performance (Kappa = 0.901; 
ROC = 0.986). 

Chen et al. (2020) used multiple satellite-based datasets (NDVI, LAI, soil moisture, rain fall 
between 2005 and 2020 and distribution to simulate potential geographic distribution of the 
desert locust for Africa, Asia and Europe for different months. They coclosed that LST 
(27.02%) and LAI (25.63%) were the main contributors to explain the achieved distribution 
results. Surprisingly, soil moisture was the weakest explanatory variable (2.7%). Recently, 
Wang et al. (2020) assessed whether China is also prone to desert locust invasion during 
the 2020 outbreak in East Africa, India and Pakistan. The authors, identified potential desert 
locust habitats in China by applying simple long-term thresholds for precipitation and 
temperature. Afterwards, they modelled windborne movements of the desert locust to those 
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identified potential habitats based on historical wind characteristics at different altitudes, 
concluding that significant invasion of potential habitats in China is very unlikely. 

3.3.3.3 Outbreak and hatching prediction studies 

In this section, we focus on studies which specifically target prediction of locust outbreaks 
or the beginning of hatching. Compared to monitoring studies from previous sections, the 
focus is on the future, although historical data, past measurements and monitoring are 
essential part of those studies. According to Rosenberg (1999), the focus of locust forecast 
has shifted from population dynamic-based prediction of swarm development and 
movement towards identification of rainfall and vegetation change that initiate the growth of 
existing locust populations and therefore may indicate beginning upsurges and plagues. 
Rosenberg (1999) reported that for locust forecast there are three main scales to be 
considered: the long-term forecast with up to 12 months is based on climate, historical data, 
derived anomalies and pest frequencies. One example is the FAO SWARMS (Schistocerca 
WArning Management System) which contains historical data back to 1930 and enables 
large-scale analysis for the entire desert locust distribution areas. The medium- to short-
term forecast with 1–2 months and 1–2 days are handled at a national scale, e.g., operating 
RAMSES (Reconnaissance And Management System for the Environment of Schistocerca) 
where different months can be compared with previous months and same months of other 
years (Rosenberg, 1999). 

First of all, Healey et al. (1996) introduced the requirements for a GIS to support desert 
locust operational forecasting and monitoring. The authors underlined the importance and 
further implementation of weather and habitat data derived from remote sensing sources. 
Burt et al. (1997, 1995) proposed the usage of Meteosat IR data to estimate rainfall from 
cloud temperature and support forecasting early season outbreak of the Senegalese 
grasshopper in West Africa. The authors conclude that this approach enables to spot areas 
of sufficient wetting, where the Senegalese grasshopper might hatch after 2–3 weeks. 

Todd et al. (2002) analyzed the impact of climate variability on brown locust outbreaks in 
southern Africa by implementing historical climate data. Brown locust outbreaks were 
associated with increased rainfall in December which is also related to La Nina events. Their 
results suggested that there is considerable scope for future development of models for the 
seasonal prediction of brown locust activity in which high-frequency variability is related to 
climatic indices (Todd et al., 2002). Ma and Dai (2005) utilized MODIS data including NDVI, 
LAI, soil moisture, LST and fCover within a Bayesian prediction network to forecast the 
evolution of these variables, which are responsible for Asian migratory locust outbreaks. 
Ceccato et al. (2007) analyzed the desert locust outbreak in 2003/2004 in West Africa and 
accompanying circumstances which favored the outbreak. They used rainfall predictions to 
forecast the risk of future desert locust outbreaks. Within their study, Ceccato et al. (2007) 
also reviewed the desert locust early warning system, and assessed the feasibility of new 
climate prediction methods to support forecasting desert locust life cycle development and 
locust movements. Here, the FAO SWARMS operates on a daily basis using RAMSES 
ground information, meteorological data and remotely sensed images (NDVI from SPOT-
VGT at 1 km and MODIS at 250 m spatial resolution for monitoring vegetation development) 
to conduct short- and medium-term forecasts indicating potential locust migrations and 
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breeding areas. Additionally, the International Research Institute for Climate and Society 
(IRI) is forecasting environmental conditions for desert locust development to accurately 
predict preferable conditions, and in this way increase the response time for further reaction 
and preparation of controlling steps if required. IRI specifically focuses on long-term 
prediction of rainfall, because it is critical to the locust outbreak forecast. In this context, 
Ceccato et al. (2007) also discussed that seasonal prediction of rainfall in North Africa is 
less clear due to the midlatitude storms, whose frequency and intensity are unpredictable. 
Long-term rainfall forecast results can be improved where oceanic conditions in the 
atmospheric circulation evolve relatively slowly. 

Vallebona et al. (2008) analyzed connections between large-scale climatic patterns and 
desert locust upsurges in West Africa between 1979 and 2005 using NCEP-DOE Reanalysis 
2 data at monthly resolution and 2.5° grid cells as well as desert locust population dynamics 
from multiple sources. 

Piou et al. (2013) presented a forecast method coupling historical field survey and NDVI 
data (MOD13Q1 NDVI 16-day 250 m product) to analyze the influence of vegetation change 
within desert locust habitat in Mauritania. They smoothed the NDVI time series with Savitzky-
Golay filter and derived in total 27 spatial and temporal vegetation metrics before the date 
of observation. NDVI values were extracted for different time intervals before field survey 
timing (16 days, 32 days, 48 days). The authors used logistic regression model to assess 
the relationship between all metrics and ground control points. Their analysis showed that 
temporal changes of NDVI between 32 and 48 days before a locust occurrence, provided 
the best prediction results. The results indicated that metrics describing vegetation change 
allow prediction of locust presence during remission periods. At local scale, Piou et al. (2013) 
identified a non-linear relationship between mean vegetation quantity and presence of the 
desert locust, even if they did not consider geomorphologic variables, which plays important 
role for breeding sites of the desert locust (e.g., wadis and areas with water accumulation). 
However, the maximum NDVI followed the topographical structures. Therefore, Piou et al. 
(2013) argued that locust population development follows vegetation development; they also 
state that rainfall, the time lag between the observed vegetation changes and locust 
presence is critical for locust prediction. The authors summarized, that tools transforming 
NDVI maps to predictive presence/absence maps are required to improve locust 
management. 

Cressman (2013) presented an overview for the role of remote sensing in FAO early warning 
systems for the desert locust which are conducted in collaboration with national locust 
management organizations. The DLIS constantly monitors weather, habitat conditions and 
desert locust population in recession areas. This holistic observation is further used to 
assess the current situation and to predict the locust developments. Nevertheless, 
Cressman (2013) stated that the spatial resolution and sensor characteristics of 
implemented MODIS data limit the detection of sparse vegetation that is critical for locust 
survival and reproduction. 

For the Italian locust, Tronin et al. (2014) introduced the locust hazard index (LHI), which is 
a linear combination between NDVI, an aridity index, and the number of sunspots. The 
authors also investigated LST and precipitation and concluded that there was a significant 
relation between droughts in 1986–1991 and 1996–2000 and Italian locust outbreaks in 
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1988–1991 and 1999–2001 in the Siberian study region. For both periods the LHI showed 
good results and therefore could be potentially used as a prediction tool. Following this 
conclusion, Tronin et al. (2014) suggested a threshold for the LHI to assess Italian locust 
outbreaks in the Siberian study region. In contrast, LHI did not provide reliable results for 
the European study region. The prediction reliability for both regions was assessed based 
on false alarms and missed outbreaks. They concluded that LHI did not perform well for 
European study region due to the larger size and its diverse landscapes, biomes and 
meteorological conditions. 

For eastern Australia, Veran et al. (2015) used MODIS data to estimate different proportions 
of woody and herbaceous vegetation, together with temperature and precipitation to model 
the spatial-temporal dynamics of the Australian plague locust. The spatial variability of 
outbreaks was best explained by rainfall and land cover predictors across eastern Australia. 
Furthermore, the authors summarized that their results show an improvement for locust 
outbreak forecast by implementing key environmental factors and migration in hierarchical 
spatial models. Zheng et al. (2015) introduced a GIS-based prediction model including 
monthly average temperature, monthly relative humidity, elevation, slope, NDVI (from 
SPOT-VGT) and soil PH data for Xinjiang province, China. They reached satisfying forecast 
results with a multi-criteria analysis (MCA). Weiss (2016) conducted detailed research on 
relationship between Australian plague locust adult abundance and greenness derived from 
MODIS-based vegetation indices composites (8-day GPP, 8-day FPAR, 16-day NDVI) at 1 
km spatial resolution. Applying a Bayesian hierarchical analysis, he concluded that all 
vegetation indices were weak predictors for adult locusts and investigated time period 
between 2000 and 2009 and therefore were no link between pests and vegetative 
conditions. In Mangeon et al. (2020), the authors present statistical model approaches using 
Generalized Linear Models (GLM) and Generalized Additive Models (GAM) to quantify 
relative strength of different variables influencing Australian plague locust population and 
estimate locust abundance. Their results indicate divergent relationship for NDVI with adults 
and nymphs. The prediction performance was best for nymphs (R²=0.461) underlining the 
local environment dependence of this life stage (Mangeon et al., 2020). 

Apart from using rainfall and vegetation as variables for locust forecast, soil moisture is 
another critical variable to be considered. For brown locust life cycle modelling, Crooks and 
Cheke (2014) assessed the usability of C-band SAR data (from RadarSat and ERS-2) for 
soil moisture retrieval as an alternative to rainfall estimation. They summarized that future 
application of SAR images will depend on the feasibility to acquire data on a spatial and 
temporal scale that is useful for forecasters.  

Meynard et al. (2017) analyzed ecological niche differences between South and North 
desert locust subspecies during the solitarious phase and possible future shifts in 
geographical distribution based on climate change scenarios. Using a set of SDMs and 
climate variables, the authors concluded strong niche conservatism between both 
subspecies. Piou et al. (2019) investigated temporal development for NDVI, soil moisture, 
rainfall and land surface temperature around survey points of desert locust presence in 
recession areas. The authors applied statistical analysis for all variables separately to 
assess their individual potential to explain and forecast desert locust presence. In this 
context, NDVI was the best explanatory variable (Area under the receiver operating 
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characteristic curve (AUC) = 0.7264), followed by soil moisture (AUC = 0.6280), LST (AUC 
= 0.6201) and rainfall (AUC = 0.5797). In terms of vegetation response, the period of 0–48 
days was found to be most important after NDVI value reaches 0.14 or higher. Additionally, 
very low NDVI values (below 0,10) between 160 and 80 days before locust presence, was 
also important. Furthermore, the analyses revealed higher chances to find locust nymphs 
70 days after soil moisture increased over a period of 20 days (above 0.09 cm3/cm3) and 
followed by consecutive decrease. Hereafter, the random-forest forecast model combining 
soil moisture data with NDVI showed promising results with high AUC value of 0.761 and 
out of the box error of 23.7%. The model validation for years between 2010 and 2016 
reached AUC between 0.583 and 0.709 and error between 27.6% and 39.7%. 

3.3.3.4 Damage and loss assessment studies 

Stressed or damaged vegetation is characterized by a difference in reflectance compared 
to healthy vegetation. Due to loss of chlorophyll stressed vegetation can be detected in red 
edge spectrum. Extreme loss of green vegetation is visible in VI (change in spectral 
reflectance) as well as in high-resolution SAR (change in canopy cover and structure). 
Studies focusing on damage assessment were conducted mainly for migratory locusts in 
China. These studies assessed vegetation patterns before and after a specific outbreak and 
thus identified affected areas. The information on whether there is a causal relation between 
damaged vegetation and locust swarms was mostly based on a priori knowledge and 
assumptions of the authors that no other factors contributed to the damage. All following 
reviewed vegetation damage studies can be considered as case studies at local scale and 
therefore with limited spatial coverage. For the East Asian migratory plague locust, Ma et al. 
(2005, 2002) performed a calibration and verification study for Landsat data to detect 
damage in reed habitats. In their experimental study, Ma et al. (2002) investigated whether 
field measurements of biomass and LAI and Landsat-based NDVI/ARVI (Atmospherically 
Resistant Vegetation Index) are related during locust presence (R2 = 0.6474). Ji et al. (2004) 
used MODIS NDVI time series to assess damage due to an Oriental migratory locust 
outbreak in Hebei Province, China. Zha et al. (2005) analyzed MODIS-based multi-spectral 
indices using temporal filtering and concluded that NDVI was the best index to assess 
damages caused by locust outbreaks. Liu et al. (2006) and Tian et al. (2008) calculated 
Landsat-based NDVI difference maps to assess the differences before and after outbreak 
event. With the focus on vegetation loss, Zha et al. (2008) introduced the Locust Density 
Index (LDI) which considers the initial state of vegetation as well as the destroyed vegetation 
after infestation. Singh et al. (2007) conducted measurements with a ground-based X-band 
Radar to assess the damage by Heiroglyphus nigrorepletus on sorghum. Furthermore, Song 
et al. (2020) estimated reed loss caused by the migratory locust using UAV-based data. 

Weiss (2016) also investigated the capacity of MODIS 1 km temporal composite products 
to map vegetation damage caused by nymph bands of the Australian plague locust. The 
extensive statistical analyzes between prior, during and post presence of bands showed no 
significant relation to area extent or intensity of damaged vegetation. In conclusion, Weiss 
(2016) stated that coarse spatial and spectral resolution as well as temporal compositing 
methodology of used products were the main reason why vegetation damage caused by 
nymph bands feeding was not detected. 
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Additional to satellite-based studies it is interesting to note that Hunter et al. (2008) analyzed 
Australian plague locust bands which were observed from an airplane. There, the 
accumulation of locust nymphs as well as damaged vegetation is clearly visible in RGB 
images. VHR satellite data (e.g., WorldView-3, GeoEye, SuperView) as well as data from 
UAV and very-high-spatial-resolution sensors should be capable of spatially resolving such 
accumulation of locusts and damaged vegetation.  

3.3.3.5 Review and general studies 

In our literature search, we found six review and four general discussion publications dealing 
with locust pests and remote sensing applications. Cracknell (1991) discussed general 
capacities of remote sensing detecting habitat changes and applicability for locust 
management. Hunter (2004) presented APLC activities and demonstrated that Australian 
plague locust bands can be spotted using airborne imagery with spatial resolutions similar 
to today’s VHR satellites. Maiga et al. (2008) review paper focused specifically on the 
ecology and management of the Senegalese grasshopper. The authors summarized also 
the potential of remote sensing and encouraging results for the Senegalese grasshopper 
from early studies on AVHRR NDVI and Meteosat IR data which demonstrated that suitable 
breeding areas can be identified with simple thresholding methods. 

Latchininsky and Sivanpillai (2010) presented an overview of existing EO sensors, their 
spatial and temporal scales as well the potential of GIS technologies for locust monitoring 
and risk assessment to promote these technologies for further usage. Further, Latchininsky 
(2013) gave a comprehensive state-of-art review showing that in 2013 most operative 
applications were conducted by FAO and APLC, focusing on vegetation and meteorological 
parameters. Additionally, Latchininsky (2013) provided details for other destructive locust 
species, their ecology and EO applications for their monitoring. 

Huang (2016) provided a review on EO application for locust and grasshopper plagues 
specifically in China focusing more on ongoing research in monitoring as well as risk and 
loss assessment. For risk assessment, Huang (2016) summarized that habitat mapping by 
multi-spectral land cover classification (Landsat, ASTER, HJ-1 CCD) was dominant. For 
monitoring, studies focused mostly on vegetation (MODIS time series), soil moisture and 
land surface temperature with high temporal resolution due to rapid changes of these critical 
variables. 

The review paper of Zhang et al. (2019) covered control measurements and locust ecology 
but also paid attention to EO as an important tool in modern locust management. This review 
provides a comprehensive overview of different locust species, historical outbreaks and 
existing locust and grasshopper operational management systems. Zhang et al. (2019) 
concluded that the knowledge about locust biology, ecology and the interaction with human-
made effects promoting outbreaks of locusts and grasshoppers must be improved; in this 
way, new and improved methods to forecast and monitor gregarious locust infestations are 
required. 

Recently, Abd El-Ghany et al. (2020) published a review dealing with EO application as a 
promising strategy for insect pests and diseases management. This review provides a short 
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technical overview of EO sensors and their potential to detect and monitor different insects 
and agricultural pests. 

3.4 Discussion  

3.4.1 Contribution of remote sensing to locust management  

In this section, we reflect on the main remote sensing contribution for improved locust 
management and recent trends. First of all, in regards to habitat mapping, recent approach 
has been shifted from single image land cover analyses (Bryceson, 1989; Sivanpillai et al., 
2006; Voss and Dreiser, 1997) towards implementing time series-based classification to 
generate results for different time steps and thus enable long term habitat and species 
distribution quantification (Löw et al., 2016; Zhao et al., 2020). 

Secondly, in terms of habitat monitoring, there was a district development. In 1991, 
Cracknell (1991) discussed that the prospect of direct detection of habitats changes are 
unrealistic or only possible with considerable time lag. In 2002, Crooks and Archer (2002) 
summarized that soil moisture dataset were not available or restricted to be used on 
operative base. Looking at the progress in 2008, Maiga et al. (2008) stated that the link 
between acridian risk and monitored ecological conditions was still relatively empirical at 
that time. Recent progress in satellite imagery and availability of new datasets in 
combination with advances in methodological approaches and computing power are about 
to overcome those restrictions and contribute to a new era in remote sensing-based locust 
management: using multiple variables at higher temporal resolution and increasing spatial 
resolution. The introduction of MODIS data and thereafter increase in spatial resolution 
(250–1000 m), spectral resolution (36 channels) while containing high temporal frequency 
(daily) and covering large areas contributed to a major boost and improvement in locust 
management. Since then remote sensing-based research focused on temporal scale and 
statistical relation of locust occurrence and prior conditions (Pekel et al., 2011; Piou et al., 
2013; Renier et al., 2015; Waldner et al., 2015). The observation of vegetation change 
(greenness maps) over time is one of the most important application in desert locust 
management (Cressman, 2013; Latchininsky et al., 2016; Piou et al., 2013). According to 
Piou et al. (2013), especially coherent construction of secondary metrics derived from NDVI 
time series provides good prediction of desert locust presence and in this way allow a better 
planning of field surveys (Latchininsky et al., 2016). Furthermore, based on MODIS data, 
additional vegetation parameters (e.g., EVI, GPP, FPAR, LAI) and variables (e.g., LST) and 
well-established Analysis-Ready Data (ARD) are provided which have enabled investigation 
on several important ecological variables and their relation to locust presence. Since then, 
together with improvement of rainfall estimation and weather prediction, this has been main 
remote sensing-based components for operative monitoring, early warning and prediction. 

Moreover, applications of remote sensing-based soil moisture data have been comparably 
rare despite the acknowledged fact that it is one of the most important variables defining the 
survival of locust eggs as well as for the timing of hatching. In 2014, Crooks and Cheke 
(2014) stated that application of SAR imagery in brown locust forecasting depends on 
reasonable access to data and useful spatial and temporal resolution for forecasters. In 
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recent years, the addition of soil moisture datasets has been possible due to progress in 
SAR technology and improved soil moisture algorithms. Recently, Gómez et al. (2019) 
published a promising approach stating the importance of soil moisture data. The future 
usage of 1 km soil moisture products in desert locust early warning system at national locust 
centers and at DLIS-FAO for the entire recession area of the desert locust (0–40 N/20 W-
80 E) was introduced by Escorihuela et al. (2018). Additionally, Piou et al. (2019) suggested 
that soil moisture shall become standard tool for preventive locust management. However, 
for species with very short incubation time, such as the desert locust, the availability of such 
datasets needs to be provided in near real time (NRT) to enable appropriate analysis and 
following measures. This is a challenging task especially regarding the vast areas to be 
monitored. 

In terms of prediction, recent progress utilizes machine learning approaches and establishes 
statistical relationship between all available and important variables (Gómez et al., 2019; 
Meynard et al., 2017; Piou et al., 2019). For preventive locust management, forecasting 
models have to be quickly updated with new satellite data (Piou et al., 2019). 

3.4.2 Potential of higher spatial resolution and temporal coverage 

Former studies using coarse satellite data stated that there was no significant relation 
between locust and vegetation indices. Rosenberg (1999) mentioned that by using coarse-
spatial-resolution data, it was not possible to identify changes in regions with very low (<5%) 
vegetation cover, which is typical for desert locust breeding areas. Despland et al. (2004) 
demonstrated that at continental scale (4° spatial resolution) forecast and outbreak areas 
are uncorrelated and therefore, they questioned the usefulness of NDVI for desert locust 
prediction at such a coarse spatial resolution and due to NDVI limitation in arid areas. 
Tratalos and Cheke (2006) could not identify any linear relationship between locust breeding 
areas and NDVI (from AVHRR 8 km). Those studies using NDVI at low and medium spatial 
resolution showed restrictions especially in semi-arid regions and highly fragmented 
landscapes. Studies utilizing MODIS-based VI at 250 m spatial resolution and temporal 
relationship proved that there was significant relationship. Nevertheless, despite the 
improvements introduced by MODIS some restrictions have remained as stated in 
Cressman (2013), Escorihuela et al. (2018), Renier et al. (2015) and Waldner et al. (2015). 
There, the authors discuss that satellite data with higher spatial resolution will provide further 
improvements especially for vegetation detection in arid and semi-arid regions where 
fragmented vegetation leads to higher commission and omission errors when using coarse 
resolution data. Waldner et al. (2015) demonstrated an improvement of 20% when 
comparing MODIS data at 250 m with PROBA-V data at 100 m spatial resolution. The 
potential of higher-spatial-resolution data has been shown in many other disciplines (e.g., 
agriculture, forestry, urban development). The utilization, e.g., of Sentinel-1 (available since 
2015) and Sentinel-2 (available since 2016) data for monitoring can improve spatial scale 
and the detection frequency. Peer-reviewed publications which use these data sources for 
locust research are with one exception (Escorihuela et al., 2018) not available. In addition, 
a combination of Sentinel-2 and Landsat data can improve the temporal and cloud free 
observation frequency. The question arises as to whether such datasets can contribute to 
further significant improvements. Nevertheless, in terms of locust management, one has to 
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keep in mind the usability and feasibility for vast areas in limited resources especially in 
developing countries. On the one hand, a possible improvement alongside higher spatial 
resolution needs to be contrasted with time management, reliability and additional required 
resources and also justify the needs of locust managers. On the other hand, further research 
can demonstrate improvements and enable operation with further technical and economic 
development. 

Furthermore, using Landsat, and eventually Sentinel data, the detection of damage 
assessment has been proven to be feasible. Nevertheless, economical loss assessment 
caused by locust plagues and outbreaks from remote sensing data is still rare (Weiss, 2016). 
The Landsat archive with data over more than 40 years offers unique opportunities to 
perform further long-term analysis. For example, systematic damage assessment, 
vegetation development and quantification related to past large-scale outbreaks can benefit 
from this data source, although the temporal resolution of Landsat is limited. Long-term 
analysis and quantification of vegetation structure dynamics as well as land cover and land 
use change and their relation to locust population dynamics and outbreaks are still rare 
(Figure 3-6). This fact can be related to high data costs and limited availability before satellite 
archives were accessible free of charge. Furthermore, locust outbreaks are irregular events 
and therefore, several studies mostly focus on these specific outbreak years. Nevertheless, 
research with long-term character is important to investigate the entire range between 
derived parameters and solitarious and gregarious locust presence. For example, in Tratalos 
and Cheke (2006), the authors analyzed long NDVI time series to understand whether NDVI 
is related to different locust phases and population densities or rather to precipitation 
variability only. Therefore, additional studies covering longer time periods providing a 
connection between different environmental factors and locust populations might provide 
new insights. 

Finally, the potential and possible benefits of VHR satellites are basically unexplored. 
Additional studies need to provide a better understanding of how VHR data can be exploited 
for early warning and detection of early instar activity (e.g., locust bands) and damage 
assessment. EO data and archives provide the required specifications to tackle these 
challenges and investigate benefits and restrictions. 

3.4.3 Discrepancy between research origin and region of interest  

The majority of publications focus on the desert locust and migratory locusts affecting large 
parts of the African continent, the Arabian Peninsula, India and Pakistan. The third foremost 
species is the Australian plague locust. For the migratory locust and the Australian plague 
locust, we found a clear relation between investigated regions of interest and the countries 
of affiliation of the authors (Figures 3-8 and 3-12). However, there seems to be a gap for 
desert locust-affected regions as well as for other locust species. One reason is the absence 
of English-speaking studies despite a wide existing knowledge in affected countries. 
Additional research is probably available in other languages (e.g., Chinese, French, 
Russian, Spanish) but is less visible within the English-speaking literature. Furthermore, the 
absence of English-speaking scientific publications may also be due to the periodic 
occurrence of locust plagues combined with the fact that many countries and regions have 
not dealt with these challenges for several decades (Meynard et al., 2020). Moreover, as 
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locust outbreaks are not limited by country borders, more multi-national research on EO 
applications would contribute to further understanding of locust–human inter-connections as 
well as for improvement in locust management. Another reason may be the absence of 
funding to promote further research because locust management is rather pragmatic with 
the overarching goal in an effective control of outbreaks and not academic publications. 
Nevertheless, there is still a lack of English-speaking, peer-reviewed literature and studies 
conducted by organizations or universities located in affected regions. Involving local 
stakeholders with their knowledge and experience, would definitely contribute to a further 
development and to an improved exploitation of EO capacities for locust management and 
research. 
 

 

Figure 3-12. Country of origin of authors’ affiliation. 

3.4.4 Overall lack of remote sensing application for locust and grasshopper 
species 

Despite the progress been made for the desert locust, the migratory locust and the 
Australian plague locust (shared total of 74%), there is a lack of studies for other pest locust 
species (Figure 3-7). This lack has been documented in previous studies and is also related 
to less advanced or absent organized preventive locust management (Latchininsky et al., 
2016; Latchininsky, 2013). In our review, we quantify the actual rate of conducted studies 
which reveals the unequal distribution for other species not only because of absence of 
operative management but also in conducted research. Since Latchininsky’s review in 2013 
(Latchininsky, 2013) the progress and investigation for other locust species remained minor. 
Therefore, the question arises as to whether remote sensing datasets and applications might 
be insufficient to map and monitor variables of importance due to more complex environment 
or is the lack of studies because of restricted funding or academic resources dealing with 
other locust species? Based on developments and encouraging results for the desert locust, 
the migratory locust and the Australian plague locust, research and management for other 
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species could benefit from further remote sensing-based applications. Studies over the last 
four decades provide a good foundation. Nevertheless, field observations and extended 
species-specific ecological and biological knowledge are crucial to achieve meaningful 
results when applying remote sensing. 

3.4.5 Potential of alternative methods and analysis 

Recent studies focus on comprehensive analysis of several essential ecological variables. 
This is due to the availability of more and more ARD. In this way, scientist can focus on the 
relation and individual importance of variables rather than dealing with extensive raw data 
preprocessing. Reviewed studies have been applying mostly NDVI to assess the risk of 
gregarization, to predict hatching and outbreaks, or simply use the technique as a metric for 
land cover classification. However, the capacity of NDVI in arid areas has been 
controversial. Therefore, at the background of new options and cloud computing 
possibilities, the benefit of additional indices or variables can be explored and compared. 
For example, Cherlet et al. (1991) concluded that results achieved using PVI were most 
reliable. However, the operative usability at a large scale was not feasible at that time. Here 
the question arises as to whether application of other indices can provide significant 
improvement or not. At the background of previous discussion and findings following 
investigations focusing on additional strategies to prove improvements or limitations can be 
addressed: 

 Further research on geomorphological variables for the desert locust as suggested 
by Lazar et al. (2015). 

 Application of sensor fusion/combination to minimize restrictions of sensor 
characteristics (Knauer et al., 2016; Orynbaikyzy et al., 2019).  

 Application of hyperspectral data to enable more detailed classification of vegetation 
types, stressed vegetation or damage (Bradley, 2014; Holzwarth et al., 2020).  

 Time-series analysis focusing on phenology (Eklundh and Jönsson, 2015; 
Stanimirova et al., 2019; Verbesselt et al., 2010). 

 Other indices and metrics, e.g., Soil Adjusted Vegetation Index (SAVI) (Despland, 
2003) or Perpendicular Vegetation Index (PVI), which specifically consider ‘noise’ 
caused by soil (Jensen, 2008). The question is, can other approaches or indices 
overcome restrictions which are observed in arid regions when using NDVI? 

 As shown by Propastin (2012, 2013) altimetry data in combination with VI show high 
potential for monitoring migratory locust habitats along rivers and lakes. In this 
context the new Surface Water and Ocean Topography (SWOT) mission as well as 
other altimetry datasets can contribute to further monitoring improvement for 
migratory locust species. 

 Systematic and large-scale detection of damage and remote sensing-based 
economical loss assessment studies to evaluate economic impact and production 
loss on large scale. Remote sensing applications have received comparable little 
attention (Weiss, 2016). Red edge channel, e.g., from RapidEye satellites which was 
developed specifically to identify damaged or stressed vegetation could provide 
improved results for loss assessment of green vegetation (Kross et al., 2015). The 
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question is, can remote sensing-based damage assessment contribute to economic 
loss estimation on larger scale? 

 Usage of VHR resolution imagery and machine learning approaches (Hoeser et al., 
2020; Hoeser and Kuenzer, 2020; Kattenborn et al., 2021; Ye et al., 2020) to 
investigate the benefit in early locust damage and locust band detection. The 
question is, can dense locust bands be identified in VHR imagery? 

 Further inclusion of remote sensing in ENM and HSI modelling, where all important 
static and dynamic environmental parameters are combined with species specific 
preferences (Geng et al., 2020; Walz et al., 2015; Warren et al., 2016; Zajac et al., 
2015). 

 The importance and potential of UAV-based systems for locust management 
supporting ground teams requires standardized analysis and investigation for 
automatic image processing. The advantages of UAV-based monitoring are 
promising (Radoglou-Grammatikis, 2020; Tsouros et al., 2019). However, scientific 
evidence of benefits within locust management and research are still rare. Monitoring 
of vegetation state, damage assessment as well as monitoring of locust bands are 
possible fields for investigation. The question here is, how can UAV-based 
monitoring applications contribute to operative locust management? 

 Finally, locusts and grasshoppers strongly depend on climate conditions such as 
temperature, precipitation and humidity (Tronin et al., 2014). Further research to 
analyze the influence of climate and environmental change to different locust species 
distributions and outbreak risk are therefore required (Meynard et al., 2020). 

Mentioned suggestions for further research have to prove their benefit and outline practical 
contribution towards locust management. Therefore, from a locust management 
perspective, one has to consider all important factors within operational services (e.g., 
internet connection, access to data and applicability, area to be monitored, reliability vs. 
spatial precision) and contrast it with possible improvements. 

3.5  Conclusions 

In this review, we provided an extensive overview of 110 English-speaking, EO-related 
research articles with respect to destructive locust/grasshopper pest species. On the one 
hand, our focus was to quantify different aspects of reviewed studies. Therefore, we 
categorized the studies covering (i) investigated species, (ii) areas of interest, (iii) sensor 
types employed, and (iv) variables used. On the other hand, we aimed to point out main 
research foci and reflect on the development. We categorized specific research foci, namely 
(A) habitat mapping, (B) habitat monitoring, (C) outbreak/hatching prediction, (D) damage 
and loss assessment, and (E) review and general studies. By looking at the quantified results 
and methodological progress, the following findings can be summarized: 

 Investigated species: The majority of studies focused on the desert locust (33%), the 
migratory locust (27%) and the Australian plague locust (14%). Remote sensing 
applications for other harmful locust species such as the brown locust (4%), the 
Central and South American locusts (1%), the Italian locust (5%), the Moroccan 
locust (1%) or the red locust (1%) are still very rare. 
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 Areas of interest: Areas of interest were mostly located in China (24%), Australia 
(14%) and Mauritania (11%). Despite a high risk of outbreaks from different species, 
there is a lack of English-speaking studies for the Arabian Peninsula (none), the 
Middle East and Pakistan (none), India (1%), South-East Asia (1%), North and South 
America (2%) and Russia (2%). 

 Employed sensor types: Optical EO data were most frequently used. Here, 57% of 
all studies solely used optical data. Whereas, AVHRR, MODIS, SPOT-VGT and 
Landsat sensors were mostly employed. Following optical sensors, radar (6%) and 
TIR (3%) were the second and third most used sensor types, respectively. However, 
both were mostly applied in combination with others (optical/radar 10%, 
optical/radar/TIR 5%, radar/TIR 5%, optical/TIR 3%). No peer-reviewed publication 
was found using VHR (e.g., Quickbird, IKONOS, WorldView) or Sentinel-2 data; only 
one study is available using Sentinel-1 SAR data. 

 Used variables: The majority of studies applied NDVI, land cover information, LAI or 
fCover for analysis (39%, 13%, 5%, 4%), referring to the importance of vegetation 
as a key parameter affecting population density and phase change of locusts. 
Despite the high importance of soil moisture for locust development, there are only 
few studies focusing on EO-based soil moisture retrieval (9%). However, recent 
development indicates that remote sensing-based soil moisture data will be an 
essential part in further research and eventually in desert locust management. 

 Research foci: The majority of studies focused on habitat monitoring (39%), followed 
by habitat mapping (25%), outbreak/hatching prediction (17%) and general review 
publications (10%). Few damage assessment studies were conducted (9%); most of 
these studies are feasibility cases carried out for the migratory locust in selected 
geographic areas. 

 Most articles reveal test case studies covering small study regions and short time 
periods. Overall, only 18 studies were long-term covering ten or more years. 

 Furthermore, we found fewer English-speaking, peer-reviewed literature and studies 
conducted by organizations or universities located in locust-affected regions (except 
Australia and China). 

The role of remote sensing for locust management and research has increased over the 
past 40 years and nowadays can be considered as irreplaceable. Well-operating monitoring 
and prediction systems for the desert locust (by FAO) and the Australian plague locust (by 
APLC) document the success and the advantage of implementing EO data to save time and 
resources once outbreaks occur. Summarizing, most EO applications focus on the 
monitoring of vegetation changes and precipitation patterns in locust habitat areas to 
determine potential gregarization, to stratify field surveys and to assess the risk of locust 
population increase (Deveson, 2013). In recent years, scientific attention was paid to soil 
moisture retrieval as well as modelling approaches combining several important variables. 
In terms of vegetation and land cover monitoring, the trend shows more time-series 
applications focusing on phenology and replace single image analysis. Overall, this review 
underlines further needs for EO-based research to either fully exploit the potentials of EO 
data and approaches or proof their limits. There is a lack of studies using available open 
source EO data archives over entire habitats and long time periods. Moreover, the sensors 
of the Sentinel fleet are still rarely applied. Here, experience from other disciplines, e.g., 
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agriculture and forestry, may be adopted to improve results and eventually contribute to 
locust management. Feasibility and test case studies have played a crucial role to contribute 
to nowadays operative services. Applications which were unimageable a few decades ago 
have become operative along with technological development in terms of sensor 
characteristics, methodologies and computing power. Many countries launch and operate 
environmental and industrial satellites. Fusion and combination of available data sources 
might enable to detecting the Earth at very high spatial, spectral and temporal resolution. 
Today, the Earth is covered by VHR data from different satellites sources. Therefore, 
detection of locust bands might become more feasible in future. Nevertheless, extensive 
knowledge of considered species and geography remains a key factor in further locust-
related remote sensing applications. Therefore, more inter- and multi-national research 
funding utilizing the full capacity of remote sensing data is required. 
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CHAPTER 4 

4 Predicting suitable breeding areas for different 
locust species – A multi-scale approach accounting 
for environmental conditions and current land cover 
situation  

Abstract 

In this study, we present a fused multi-scale approach to model habitat suitability index (HSI) maps 
for three different locust species. The presented methodology was applied for the Italian locust 
(Calliptamus italicus, CIT) in Pavlodar oblast, Northern Kazakhstan, for the Moroccan locust 
(Dociostaurus maroccanus, DMA) in Turkistan oblast, South Kazakhstan and for the desert locust 
(Schistocerca gregaria) in Awash river basin, Ethiopia, Djibouti, Somalia. The main novelty is based 
on implementing results from ecological niche modelling (ENM) with time-series analyses of high 
spatial resolution remote sensing data (Sentinel-2) and further auxiliary datasets in a fused HSI 
model. Within the ENM important climatic variables (e.g. temperature, rainfall) and edaphic variables 
(e.g. sand and moisture contents) are included at a coarse spatial resolution. The analyses of 
Sentinel-2 time-series data enables mapping locust breeding habitats based on recent remotely 
sensed land observation at high spatial resolution and mirror the actual vegetation state, land use, 
land cover and in this way identify areas with favorable conditions for egg survival and breeding. The 
fused HSI results for year 2019 were validated based on ground field observation and reach area 
under curve (AUC) performance of 0.747% for CIT, 0.850% for DMA and 0.801% for desert locust. 
The innovation of this study is a multi-scale approach which accounts not only for climatic and 
environmental conditions but also for current vegetation and land management situation. This kind of 
up-to-date spatial detailed information on breeding suitability could enable area prioritization for risk 
assessment, monitoring and early intervention of locust pests. 

4.1 Introduction 

Since the beginning of land cultivation locust outbreaks, and plagues have been a danger 
to the human population worldwide and often brought devastation, hunger and death (Zhang 
et al., 2019). All continents except for Antarctica have been infested by different locust 
species, which are capable to affect the livelihood of approximately 10% of the global 
population (Latchininsky and Sivanpillai, 2010). Recently, swarms of desert locusts 
(Schistocerca gregaria) endanger food security across East Africa, the Arabic peninsula, 
India and Pakistan (Meynard et al., 2020). Other species e.g. Italian locust (Calliptamus 
italicus, CIT) and Moroccan locust (Dociostaurus maroccanus, DMA) can also cause 
massive devastation at regional and local scales (Kambulin, 2018; Latchininsky, 1998; Le 
Gall et al., 2019; Reuters, 2019; Toleubayev et al., 2007). In gregarious phase, locusts can 
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damage crops and pasture massively, since they eat an equivalent of their  body mass in 
green vegetation every day (Steedman, 1990; Uvarov, 1957). The loss of biomass is not 
only of economic importance, but also endangers food security, livestock and other fauna 
species. Furthermore, plants themselves are harmed and inhibited in natural regeneration 
due to the consumption of seeds and sprouts by locust bands (Kambulin, 2018). 
Nevertheless, in solitary phase, locusts are a beneficial part of an ecosystem by facilitating 
nutrient cycling and playing an important role in the food chain (Tsychuyeva et al., 2017). 
Unusual weather conditions, subsequent droughts and scarcity of plant food force the 
insects to aggregate, initiating the gregarious phase in which locusts create bands and form 
highly mobile flying swarms of adult insects (Kimathi et al., 2020; Meynard et al., 2020). 
Locust population densities or states are commonly distinguished by the definitions of 
outbreak, plague or pest, decline and recession (Cressman, 2016).  

Countries at risk of locust outbreaks usually possess regional and national monitoring 
systems. The Australian Plague Locust Commission (APLC) operates successfully by 
implementing weather forecast, remote sensing and ground observation (Hunter, 2004; 
Hunter et al., 2008). The Food and Agriculture Organization (FAO) of the United Nations 
operates the Desert Locust Information Service (DLIS) in close cooperation with involved 
countries (FAO, 2009). Furthermore, similar efforts are made for Central Asia and the 
Caucasus region where Italian, Moroccan and Asian migratory locusts have to be monitored 
and controlled (FAO, 2021a). One of the major goals of locust monitoring is assessing the 
geographic extent of possible breeding areas, highlighting gregarization hotspots, 
evaluation of population parameters and accordingly initiating control activities. Despite the 
danger of gregarious locusts for food security, the ability to predict and manage locust 
outbreaks is still insufficient (Latchininsky, 2013). Detailed spatial knowledge about locust 
habitats and suitable breeding areas with high probability of eggs surviving are of major 
importance for regional and national plant protection and locust monitoring organizations 
because it demands a lot of financial means, manpower and time. In this context, remote 
sensing data and applications proved great potential as an additional source because they 
perform efficient, more economical, with less manpower and are regardless of national 
borders (Kambulin, 2018). Since the 1970s remote sensing data are used e.g. for locust 
habitat mapping mainly for the desert locust, migratory locust and Australian plague locust 
but with only very few studies for CIT and DMA (Klein et al., 2021; Latchininsky et al., 2016; 
Latchininsky, 2013). Sivanpillai et al. (2009) applied IRS-S WiFS data with 56 m spatial 
resolution for a habitat model of CIT in the north-east of Kazakhstan. The results were 
promising and the authors identify the benefit of higher spatial resolution satellite data. 
Latchininsky (2013) states the importance of model development for habitat mapping of CIT 
and DMA but saw the research still in the initial phase. Recent modelling applications on 
locust species distribution, ecological niche and habitat suitability present continuous 
development (Aragón et al., 2013; Gómez et al., 2018, 2019; Kimathi et al., 2020; Malakhov 
and Zlatanov, 2020; Piou et al., 2013, 2019; Veran et al., 2015). Availability of new datasets 
(e.g. soil moisture (Escorihuela et al., 2018; Piou et al., 2019)), methods and technological 
progress contribute to this steady improvement.  For example, Ecological Niche Models 
(ENM) are based on machine learning algorithms to predict suitable habitats from datasets 
describing environmental conditions and species presence and absence records. Within the 
ENM important climatic variables such as temperature, rainfall and edaphic variables such 
as sand, moisture contents are included at a coarse spatial resolution from up to 1 km. The 
modelled results provide suitable areas at a larger geographic scale but usually do not 
discriminate higher spatial detail or account for land cover related characteristics. 
Nowadays, open source remote sensing data and cloud computing provide additional 
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opportunities for modelling and monitoring of locust risks. Especially the use of temporally 
dense and high spatial resolution satellite data (e.g. Sentinel-1 and -2, Landsat) in 
combination with climate and environmental data can enable prediction in vulnerable areas 
with a high level of detail.  

In this study, we present an approach based on habitat suitability index (HSI) model which 
takes advantage of different environmental variables, including ENM results, time-series 
analyses of satellite data and species-specific knowledge to better discriminate areas 
providing optimal locust breeding and egg-pod incubation conditions. For the ENM we 
utilized up-to-date data from TerraClimate to account for recent climate conditions of last 20 
years. Current vegetation state and land management conditions are targeted by the 
analysis of Sentinel-2 data. Additionally, unique species-dependent favorable and excluding 
conditions were considered. We applied the approach for three different locust species to 
demonstrate the advantages and challenges and, in this way, contribute to further 
development in this field. The study is conducted for CIT in North Kazakhstan (Pavlodar 
oblast), for DMA in South Kazakhstan (Turkistan oblast) and for desert locust in the Awash 
river basin (ARB), Ethiopia, Djibouti, Somalia. The results are validated with ground truth 
data collected by local organizations. 

4.2 Background information on locust species and study areas  

4.2.1 The Italian locust and Pavlodar oblast 

The Italian locust was the first of all locust species recorded as a great pest in Russia in the 
year 1008 (FAO, 2021a). The species’ distribution area stretches from Western Europe 
across meadow steppes in Central Asia, Mongolia and West Siberia (Kambulin, 2018; 
Latchininsky, 2013). Although CIT is on the red list of endangered species in northern 
Europe, it is a threatening pests in Russia, Central Asia and the Caucasus (Latchininsky, 
2013; Sergeev and Van’kova, 2008). Generally, the species can be found in arid steppes 
and semi-deserts, preferring vegetation such as wormwood and sagebrush (Artemisia spp., 
Monard et al., 2009). In addition, human-affected areas such as field borders, fallow fields 
and road edges can provide favorable conditions (Kambulin, 2018; Latchininsky, 2013; 
Sergeev et al., 2016). In such areas, CIT as herbivore inhabits fallow fields, field borders, 
waste lands and neglected orchards or Lucerne meadows, sometimes with saline soil 
(Sergeev et al., 2016; Sergeev, 2021). The insects are also common close to irrigated crops 
and tolerant to a wide range of semi-arid soils and climate conditions. CIT as an ecological 
plastic species is generally not as fastidiously as other locusts and can occupy a wide range 
of habitats, especially during outbreaks (Monard et al., 2009). It disappears completely if 
land is plowed since plowing leads to mechanic destruction of egg-pods. The occurrence of 
CIT is not only related to food preferences, but also to physical soil properties. Moderate 
compact sandy soils are more favorable than very loose or compact soils and facilitate 
oviposition (Toleubayev et al., 2007). Breeding, mating and egg-laying occur in the period 
between June and September. Since temperature drops during the winter period, the egg-
pods lie dormant in diapause. Once moisture is introduced during the warming period in 
spring, the incubation period starts. Finally, hatching occurs from late April to June, with 
higher temperatures and lower precipitation during this period generally resulting in higher 
populations. Once ecological conditions are highly suitable over a multiple-year period, a 
high density of egg-pods and strong survival rates can lead to higher density of adult 
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individuals, potentially leading to phase change, and thus to outbreaks (Sergeev and 
Van’kova, 2008).  

The first study area is the administrative area of Pavlodar oblast, located in the North-East 
of Kazakhstan (Figure 4-1A) with a total area of 125,000 km². Winters are long (5.5 months) 
and summers are short (3 months). About 70 to 85% of annual precipitation (200 to 400 
mm) falls over the winter period. Characteristically for steppes and semi-desserts, large 
areas of Kazakhstan are dominated by herbaceous vegetation and sparse shrubs or 
herbaceous vegetation. Between 1953 and 1964 vast areas of untouched steppe in Northern 
Kazakhstan were converted to agricultural fields which led to far-reaching consequences 
and was one of the major land use changes worldwide during the 20th century (Frühauf and 
Meinel, 2007). Due to the climatic conditions in Kazakhstan, it can take up to 25 years for 
fallow land to return to its original grassland state (Latchininsky, 2013). After the break down 
of the USSR in 1991, formerly cultivated land was abandoned, since Kazakhstan lost its role 
of grain producer for the USSR (Monard et al., 2009) and areas for cereal production 
decreased from about 25 to 12 million ha (Toleubayev et al., 2007). Those fallow lands 
became perfect habitats for CIT and have led to a population increase starting in 1996 and 
leading to the great plague in 1998-2000 (Toleubayev et al., 2007). 

4.2.2. The Moroccan locust and Turkistan oblast 

The Moroccan locust occurs in many parts of the Mediterranean and Central Asia. Within 
the steppe, DMA has rather specific requirements for suitable breeding habitats. They prefer 
habitats located in elevated regions and foothills (Kokanova, 2017; Latchininsky, 1998, 
2013; Monard et al., 2009). In such an environment, hard and dry soils with a high clay 
content are preferred for egg-laying (Latchininsky, 1998; Uvarov, 1957). Especially areas 
with a mosaic of steppe vegetation and dry bare soil are preferred, because vegetation 
clumps protect the egg-pods with shade and provide food for nymphs after hatching 
(Baldacchino et al., 2012; Monard et al., 2009; Uvarov, 1957). Such mosaics are often found 
in overgrazed fields, which form threatening breeding hotspots for DMA (Latchininsky, 1998; 
Monard et al., 2009; Uvarov, 1957; Zhang et al., 2019). Comparable to the Italian locust 
disturbed soils (i.e. regularly plowed soil in active agricultural fields) are highly unsuitable for 
DMA’s breeding, because the egg-pods are destroyed there (Latchininsky, 1998; Monard et 
al., 2009). Areas that are relatively wet or moist, highly vegetated or have no vegetation at 
all are rather unsuitable habitats for DMA (Baldacchino et al., 2012; Latchininsky, 1998). In 
terms of climatological conditions, DMA occurs in regions that receive 300-500 mm of yearly 
precipitation (Latchininsky, 2013; Monard et al., 2009) and spring precipitation of 
approximately 100 mm (Kokanova, 2017; Uvarov, 1957). The mean annual temperature in 
their breeding habitats is around 16°C (Kokanova, 2017). Although DMA was considered as 
one of the most dangerous agricultural pests in the Mediterranean and Central Asia, the 
species’ population has decreased during the last century, especially due to industrial, 
agricultural and urban developments (Latchininsky, 1998). Land cultivation has a negative 
impact on DMA breeding habitats and many populations have disappeared because of 
intensive agricultural developments (Monard et al., 2009). However, in Central Asia the 
danger is still serious. New agricultural development of formerly virgin dry steppes in 
Azerbaijan, Turkmenistan, Uzbekistan and Kazakhstan resulted in the vicinity of DMA 
breeding areas and newly-grown crops, which severely increased the risk of crop damage 
caused by DMA (Monard et al., 2009). Same as CIT, the DMA is an univoltine species (one 
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generation per year), with winter egg diapause. After winter diapause, egg hatching occurs 
from February to April.  

The second study area is the administrative area of Turkistan oblast, located in the South of 
Kazakhstan (Figure 4-1B) and a total area of 117,000 km². Turkistan oblast is characterized 
by a semi-arid climate and consists mainly of sparsely vegetated grass-, shrub- and 
croplands. The area has a high range of altitudes, with 120 m of elevation in the lower areas 
and 3800 m in the mountainous regions in the south-east. Annual precipitation usually 
ranges from 100 to 500 mm, with more rainfall especially at higher altitudes and during the 
winter period. The region serves as a suitable habitat for DMA because of the many semi-
arid dry grass- and shrublands. Infestations have occurred regularly, especially with 
relatively hot and dry spring seasons (Latchininsky, 1998).  

4.2.3. The Desert locust and Awash river basin 

The desert locust is the most dangerous of all migratory pest species in the world 
(Cressman, 2016). In solitarious phase, desert locust are found in deserts of North Africa, 
the Middle East and Southwest Asia covering approx.16 Mio km² of so-called recession area 
(Cressman, 2016). Within these regions there are summer and winter-spring breeding 
areas. Gregarization of desert locust highly depends on sporadic and unusual heavy rains 
in the recession area. On the contrary to CIT and DMA, the desert locust does not have a 
diapause during a cold season and several successive generations can follow one after 
another when ecological conditions are optimal. 

The third selected study area is the Awash river basin (ARB) which extends over its riparian 
countries Ethiopia, Djibouti, and Somalia with a size of approx. 108,000 km² (Figure 4-1C). 
In general, the climate in ARB is closely linked to elevation (Bretzler et al., 2011). The rainfall 
distribution is bimodal in the middle and lower basin and unimodal in the upper basin. The 
mean annual rainfall is 850 mm over the western part and 465 mm over the eastern part of 
the basin. Annual rainfall is related to Intertropical Convergence Zone (ITCZ) and surface 
temperature variation over the Indian Ocean and is therefore highly variable resulting in 
extreme events such as floods or droughts (Dessu and Melesse, 2012; Edossa et al., 2010). 
The ARB is located within recession area of desert locust and areas of primary breeding can 
be found here. In 2019, eight tropical cyclones developed over the Indian Ocean resulting 
in heavy rains over the ARB, which led to suitable conditions for desert locust breeding (Salih 
et al., 2020). 
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Figure 4-1. LCC and locations of three tests sites. A) Pavlodar oblast for Italian locust, B) Turkistan 
oblast for Moroccan locust, C) Awash river basin for desert locust. 

4.3 Materials and methods  

In this section, we introduce the methodological concept, used data and justification at the 
background of each species and their preferable conditions. The approach is based on three 
main steps. First, based on literature review, environmental conditions and corresponding 
geospatial datasets essential for selected locust species breeding suitability were identified. 
Second, we apply ENM using climatic, static edaphic and vegetation variables to generate 
the distribution of ecological niche for each species. ENM is usually conducted on a larger 
scale using climatic data with a spatial resolution of 1 km or coarser. In such modelling 
efforts, small-scale spatial details which can be quite heterogeneous are not considered. 
Therefore, in a third step, we fuse the ENM results and additional variables representing 
higher spatial detail and recent land surface conditions within an HSI model to gain higher 
spatial detail and addressing current landscape heterogeneity.  
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The HSI is a methodological approach to model environmental preferences or limitations for 
organisms and is an estimator of habitat support (Walz et al., 2015). HSI models were 
developed by the United States Fish and Wildlife Service in 1981 (Wakeley, 1988) as a cost-
effective, powerful and dynamic management tool (Zajac et al., 2015). Literature reviews, 
expert knowledge and field data can be used to measure different indices for habitat 
variables, which are then ranked in a HSI model. After Warren et al. (2016) expert knowledge 
based models perform similarly to empirical models and can be optimized with input of field 
data to improve their predictive power. The identification of key variables is the most crucial 
element in HSI modeling (Hirzel and Le Lay, 2008). A schematic overview of the entire 
workflow including relation of different datasets and models is presented in Figure 4-2.  

 

 
Figure 4-2. Schematic workflow of the presented approach. 
A) ENM, B) Sentinel-2 based analysis of land surface conditions, C) Additional static variables which 
can be used as excluding factors depending on species, D) Final HSI model. (ISRIC = International 
Soil Reference and Information Centre; ENMTML = Ecological Niche Model R package (Andrade et 
al., 2020); TCT = tasseled cap transformation) 

4.3.1 Datasets and variables for ecological niche and habitat suitability 
index models 

4.3.1.1 TerraClimate 

Climate data includes fundamental descriptors for almost every species’ niche. A commonly 
used dataset for species modeling is WorldClim (Kimathi et al., 2020; Malakhov and 
Zlatanov, 2020), that comes with averaged monthly information based on long term data 
between 1970 and 2000 (Fick and Hijmans, 2017). In this study, we decided to utilize 
TerraClimate (Abatzoglou et al., 2018) dataset to account for the more recent time period at 
a spatial resolution of 1/24th of a degree (approx. 4.6 km at the equator). Besides usual 
variables such as maximum and minimum temperature, vapor pressure, precipitation 
accumulation, solar radiation and windspeed, the dataset includes further variables such as 
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reference evapotranspiration (ASCE Penman-Montieth), runoff, actual evapotranspiration, 
climate water deficit, soil moisture, snow water equivalent, Palmer Drought Severity Index, 
and vapor pressure deficit. We calculated the bioclimatic variables (bio2, bio3, bio4, bio7, 
bio15) using the processing methodology of the WorldClim dataset and the TerraClimate 
input variables for the time between 2001 and 2019 within the Google Earth Engine (GEE) 
application (Gorelick et al., 2017). The main reasons to utilize TerraClimate were the 
availability of consistent soil moisture data and more recent data in general, which allowed 
considering an eventual change in climate variables over the last two decades for mapping 
an up-to-date breeding habitat. 

4.3.1.2 Additional static datasets 

While soil moisture information is retrieved via the TerraClimate dataset, several static soil 
properties have to be considered. Therefore, variables from SoilGrids 2.0 dataset, which is 
provided by the International Soil Reference and Information Centre (ISRIC), were included. 
The ISRIC SoilGrids 2.0 provides information on six standard depths (up to 2 m) with a 
spatial resolution of 250 m for soil type, density, and other soil properties (Poggio et al., 
2021).  

Additionally, we included seasonal Net Primary Productivity (NPP) product to benefit the 
ENM (Leitão and Santos, 2019). The MODIS-NPP dataset for 2001-2019 is available at 500 
m spatial and 8-day temporal resolution and was aggregated and processed into four 
seasonal composites (Jan-Mar, Apr-Jun, Jul-Sep, Oct-Dec).  

Furthermore, we included a landscape texture/heterogeneity dataset (Tuanmu and Jetz, 
2015). It is calculated as an average over the period of 2001 until 2005, using 30 m 
Enhanced Vegetation Index (EVI) input data at a spatial resolution of 1 km.  

4.3.1.3 Water accumulation layer 

This layer is based on topographic features and was created by detecting small scale runoff 
areas, that include seasonal watercourses, which are also known as Wadis. The Wadis 
become suitable for desert locust breeding when a sufficient amount of rainwater 
accumulates (Lazar et al., 2015). The processing was based on the Python package 
pysheds (Bartos 2020), which enables deriving flow accumulation areas from DEMs (ALOS 
World 3D - 30m (AW3D30), (Takaku et al., 2020)).  

4.3.1.4 Sentinel-2 multi-spectral data 

The primary dataset that was used to derive actual land surface conditions was optical 
satellite imagery from Sentinel-2A and -2B. Sentinel-2 images were selected covering the 
entire study areas of Pavlodar oblast (in total 24 Sentinel-2 tiles), Turkistan oblast (in total 
24 Sentinel-2 tiles) and ARB (in total 28 Sentinel-2 tiles) for the years 2017 to 2020. The 
Sentinel-2 raw data was downloaded and corrected for atmospheric effects with sen2cor 
software (Pflug et al., 2020) and cloud masking was conducted with the Fmask algorithm 
(Zhu et al., 2015). Images with a cloud cover larger than 50% were excluded from the 
analysis. For all three regions, a total of 4,946 single images (6.76 TB) was downloaded and 
pre-processed for further analyses. Top of Atmosphere (TOA) reflectance was converted to 
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Bottom of Atmosphere (BOA) reflectance. Additionally, an automatic classification included 
several classes (water, clouds, shadow, ice, no data). Based on BOA data, Tasseled Cap 
Brightness (TCB), Greenness (TCG) and Wetness (TCW), as well as the Perpendicular 
Vegetation Index (PVI) which required a regional definition of soil line (Jensen, 2008), was 
derived. Since, the application of NDVI in semi-arid regions comes along with restrictions 
and saturation effects (Cherlet et al., 1991; Despland et al., 2004; Pekel et al., 2011), we 
used PVI as an alternative. The PVI uses the perpendicular distance to the soil line as an 
indicator of plant development while considering noise caused by soil (Jensen, 2008). Soil 
properties influence the radiometric response of canopies or vegetation detected by indices 
since the soil is the last background. Especially for sparsely vegetated areas, which are 
typical habitats of several locust species in steppe or semi desert, a vegetation index 
considering the influence of soil is advantageous (Baret et al., 1993).  

 

𝑃 𝑉 𝐼 =  
𝑁𝐼𝑅 − 𝑎 ∗  𝑅𝐸𝐷 − 𝑏

√1 + 𝑎²
 

with NIR as near infrared reflection, RED as red reflection, a as slope and b as intercept of 
the soil line. The soil line concept builds on a linear relationship between red and near 
infrared reflectance of bare soil and aims to remove most of the effects of soil reflectance 
for vegetation applications (Baret et al., 1993). The input of this regression is soil reflectance, 
which is extracted from several parts of bare soil samples within the respective study area 
as soil reflectance varies from region to region mainly depending on the soil type. Despite 
all efforts to determine a global soil line, it is advised to delineate study site-specific 
parameters. Therefore, bare soil samples were manually extracted for each study region to 
account for their specific soil conditions.  

4.3.1.5 Pre-processing for spatial and temporal aggregation 

Since most used datasets are characterized by different spatial and temporal resolution, 
pre-processing steps aiming spatial and temporal aggregation were necessary. The 
datasets which are used for ENM require identical spatial extent and resolution (Figure 4-
2A, (Andrade et al., 2020)). Here, the dataset with the coarsest pixel is taken as reference 
and all other datasets were upscaled by the means of bilinear interpolation approach. Since 
all dataset used for the ENM are available on global scale, a subset for each study domain 
was possible. Furthermore, the temporal frequency of all datasets had to be considered. 
Here, all datasets with higher temporal frequency were aggregated to monthly, seasonal 
and annual composites (e.g. bio2, bio3, bio4, bio7, bio15). The time-series analysis and pre-
processing of Sentinel-2 data is described in section 3.1.4. In regards to spatial resolution 
within the HSI model, the original Sentinel-2 pixel size and projection are maintained. 

4.3.1.6 Reference data 

Reference data for CIT and DMA breeding locations were acquired in field surveys by 
regional authorities and provided within the Locust-Tec project for the years 2016-2020. In 
this study, we consider only location of detected early instar hoppers which mirror successful 
egg incubation and nymph hatching. In total, 2,985 locations of DMA and 671 locations for 
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CIT were registered by local locust monitoring offices. Besides coordinates, the offices 
usually record different quantitative and qualitative parameters. However, for this study only 
geolocations of early hopper stages were used as points of occurrence.  

For desert locust, we used free accessible data published by FAO in the Locust Hub (FAO, 
2021b). Here, only breeding locations as well as sightings of early nymph instar were 
selected for the entire available time period (1985-2020) resulting in a total of 238 
occurrence points within ARB and 3,617 for the larger domain of East Africa and the Middle 
East. Symmons and Cressman (2001) state, that the first four instar levels of desert locust 
hopper development have a duration of approx. six to seven days. Depending on the 
weather conditions and the vegetation cover, the daily displacement distances of desert 
locust hoppers during the first instar vary between 25 and 100 meters (Symmons and 
Cressman, 2001). Because of the low displacement distance during this early phase of 
locust development, the underlying assumption is that the actual location of hatching was in 
the close surrounding (Ellenburg et al., 2021). The combination of early instar hopper 
sightings and actual breeding locations is a reasonable method to increase the number of 
observations for further training and validation. The reference data for each species were 
then randomly split for training the ENM (70%), and for validation (30%). Pseudo-absence 
points were generated within ENM process (section 3.2).  

4.3.2 Ecological niche modelling 

According to (Peterson, 2006), environmental (or ecological) niche modelling is the 
characterization of the distribution of a species in ecological space, which can be used to 
determine the potential distribution of a species in geographic space. In this context, known 
occurrences of a species can be related to landscape features and climatic conditions to 
predict unknown occurrences. Generally, the environmental niche of a species is considered 
to consist of three components: abiotic conditions (e.g. temperature, humidity, soil type), 
biotic conditions (e.g. species interactions, predation, invasion), and accessibility which 
describes non-biotic conditions limiting the actual dispersion of a species within its potential 
range (Peterson, 2006). For this study, the R software package ENMTML was used to 
construct the ENMs for three species of interest (Figure 4-3). The ENMTML package 
considers a wide variety of parameters and modelling algorithms that have been identified 
as highly influential to the process of ENM by leading scientists in the field (Andrade et al., 
2020). In fact, choosing different model algorithms has been shown to have a minor effect 
on model outcome than adjusting assumptions and their related parameters such as 
pseudo-absence selection (Senay et al., 2013). The package includes a selection of up to 
13 algorithms for the correlation of input variables to presence and pseudo-absence records 
(e.g. Boosted Regression Trees, Domain, Generalized Additive Models, Bayesian Gaussian 
Process, Generalized Linear Models, Maximum Likelihood, Maximum Entropy default, 
Maximum Entropy simple, Random Forest, Support Vector Machine). In case collinearity 
reduction methods are chosen, corresponding variables are removed with a high degree of 
collinearity. The selected collinearity reduction approach was the widely used Variance 
Inflation Factor (VIF). Second, using the provided occurrence data, also called ‘presence’ 
records, the input variables were extracted at the locations of the presence points. The 
occurrence points were ‘thinned’, by removing points which occur within a specified distance 
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to one another to reduce spatial autocorrelation effects (Aiello-Lammens et al., 2015). In 
order to further mitigate the effects of spatial auto-correlation, a spatial portioning method 
was chosen for model training. This ensures that training and validation points are not 
located in immediate vicinity. The method of generating pseudo-absence points was a 
random selection outside a geographic buffer of 10 km. The final model output is based on 
an ensemble of all available and applicable algorithms as it usually provides the best 
performance compared to single approaches. The weighted mean (W-MEAN) was used as 
a model ensemble method, which incorporated the True Skill Statistic (TSS) measure of 
model performance as weights. 

 

 
Figure 4-3. Modelling process in the ENMTML R package. 
Adapted from Andrade et al. ( 2020). Green rectangles highlight applied settings in this study. 

4.3.3 Habitat suitability index 

HSI models are a quantitative approach to describe the habitat requirements of a species 
on a continuous scale from 0 (unsuitable) to 1 (suitable) (Wakeley, 1988). For the 
implemented HSI model, selected variables are aggregated using an additive priority 
function extended by the multiplication with eliminating factors and was based on the 
approach presented by (Ahmadi-Nedushan et al., 2006; Oldham et al., 2000): 

𝐻𝑆𝐼 = (𝑉ଵ ∗ 𝑉ଶ ∗ … ∗ 𝑉)ଵ ⁄ ∗ 𝐸 

Where HSI is the habitat suitability index score scaled from 0 to 1, V is an input variable 
scaled from 0.01 to 1, n is the total number of input variables and E represents the excluding 
factors, which are always determined at either 0 or 1. The excluding factors (E) were 
incorporated by setting several of the input variables to 0 (which always results in an HSI of 
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0). Specifically, excluding factors are areas covered by permanent water and 
imperviousness or for some species dense vegetation (e.g. forest). Furthermore, since we 
aim to derive habitat suitability for breeding conditions active agricultural practice is used as 
excluding factor because egg-pods are mechanically destroyed if the land is plowed. The 
final HSI model including ENM results and species-specific variables for three species of 
interest are described as following equations: 

𝐻𝑆𝐼ூ் = (𝐸𝑁𝑀ூ் ∗ 𝐹𝑎𝑙𝑙𝑜𝑤 𝑓𝑖𝑒𝑙𝑑𝑠 𝑎𝑛𝑑 𝑒𝑑𝑔𝑒𝑠)ଵ ଶ⁄ ∗ 𝑇𝐶𝑇 ∗ 𝐿𝐶𝐶 ∗ 𝐴𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑒𝑙𝑑𝑠 

𝐻𝑆𝐼ெ = (𝐸𝑁𝑀ெ ∗ 𝐷𝐸𝑀 ∗  𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦)ଵ ଷ⁄ ∗  𝑇𝐶𝑇 ∗ 𝐿𝐶𝐶 ∗ 𝐴𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑒𝑙𝑑𝑠 

𝐻𝑆𝐼 = (𝐸𝑁𝑀 ∗ 𝑊𝑎𝑑𝑖𝑠 ∗ 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑛𝑠𝑖𝑡𝑦)ଵ ଷ⁄ ∗  𝑇𝐶𝑇 ∗ 𝐿𝐶𝐶 ∗ 𝐴𝑐𝑡𝑖𝑣𝑒 𝑓𝑖𝑒𝑙𝑑𝑠 

4.4 Results 

4.4.1 Ecological niche and habitat suitability index for breeding sites 

The results of the ENM and HSI models for the CIT, DMA and desert locust are presented 
in Figures 4-4 to 4-6. The breeding suitability of HSI model was calculated for the year 2019. 
For a better interpretation, the continuous HSI values can be ranked into discreet categories. 
Generally, the ranking is objective and varies from source to source (Wakeley, 1988; Walz 
et al., 2015). In following, we use six categories for breeding and egg-pod surviving 
suitability: not suitable (0), very low suitability (0.01-0.20), low suitability (0.21-0.40), medium 
suitability (0.41 - 0.60), high suitability (0.61-0.80) and very high suitability (0.81-1). 

4.4.4.1 Italian locust 

Due to climatic condition and wide ecological tolerance of the CIT, the results of ENM are 
quite homogenous at high suitability level (Figure 4-4). Therefore, the advantage of 
additional variables and analyze of actual vegetation condition and land management 
activity is clearly visible within the HSI output. Because CIT is known to prefer vegetation 
growing on fallow fields and edges of roads and fields, the high-resolution Sentinel-2 reveals 
higher detail and increases the breeding suitability in those areas. The results for CIT 
indicate that areas not suitable for breeding and egg survival are marked by the Irtysh River 
and flood plains characterized by dense vegetation, as well as detected active fields, which 
are dominant in the northern part of Pavlodar oblast. Figure 4-4 demonstrates that wide 
areas of suitable climate and soil conditions can be further discriminated according to actual 
land use and land cover conditions. In contrast to ENM, the areas with high probability for 
growing sagebrush/wormwood are characterized by the highest HSI, whereas ploughed 
land as well as wetlands are characterized by the lowest HSI. High HSI between 
approximately 0.65 and 0.75 indicate natural steppe. 
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Figure 4-4. Italian locust ENM and breeding HSI for Pavlodar oblast. Red crosses: field presence 
locations. 

4.4.4.1 Moroccan locust 

The ENM and HSI results for DMA in Turkistan oblast show a clear distinction in highly 
unsuitable and highly suitable breeding areas (Figure 4-5). The South-West and North of 
the region reveal highly unsuitable breeding areas due to arid conditions and the absence 
of vegetation. Hilly areas with steppe vegetation show the most suitable conditions and 
ploughed land and bare areas are characterized by lower index. The difference between 
ENM and HSI can be seen West and East of Syrdarya river and Koksaray reservoir. Large 
areas with suitable climate, soil and elevation in the South-East become unsuitable for 
breeding due to active agriculture. Figure 4-5 shows the spatial upgrade between ENM and 
HSI within the study area. Similar to CIT in Pavlodar oblast, active land management, lakes 
and rivers are excluded from areas of possible breeding. Furthermore, including high-
resolution DEM within HSI model accounts better for changes in elevation as DMA is 
sensitive to altitude and has a narrow range.  
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Figure 4-5. Moroccan locust ENM and breeding HSI for Turkistan oblast. Red crosses: field presence 
locations. 

4.4.4.1 Desert locust 

According to ENM output, most of the ARB is highly suitable for desert locust breeding. Only 
in the South-West region, a narrow strip in the West and South show unfavorable conditions. 
These regions receive higher precipitation and are dominated by agricultural land and forest 
(Figure 4-6). Higher suitability values for river reaches, wadis and sinks underline that a 
certain vegetation density is required for breeding and feeding. Areas with no vegetation or 
highly dense vegetation are characterized by a lower suitability index compared to ENM 
outcome. Figure 4-6 highlights this improvement and introduced heterogeneity. 
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Figure 4-6. Desert locust ENM and breeding HSI for Awash river basin. Red crosses: field presence 
locations. 

4.4.2 Validation 

The main validation metric for this study was the Area Under the Curve (AUC) of the 
Receiver Operating Characteristic (ROC) (Fielding and Bell, 1997; Hanley and McNeil, 
1982). ROC-AUC is a common assessment method for ENM and HSI results, as it does not 
rely on a classified, dichotomous output such as presence/non-presence (Fielding and Bell, 
1997). It is a ‘threshold-independent’ metric and the performance of a model is estimated by 
creating a plot of all sensitivity values (the fraction of true positive outcomes) against the 
corresponding 1-specificity (the fraction of false positive outcomes) (Fielding and Bell, 1997). 
The AUC ranges from 0.5 to 1.0 and is often used as a single model performance 
measurement, because it represents the probability if a presence and an absence location 
are randomly modelled. The presence location will have a higher predicted value than the 
absence location (Raes and ter Steege, 2007). Accordingly, an AUC score of 0.5 indicates 
that the tested model has no predictive capabilities, while a model with a score of 1.0 has a 
100% chance of predicting higher values at presence locations than at absence locations 
(Raes and ter Steege, 2007). However, the AUC does not indicate to which extent the 
predicted outcomes are higher in value than the absences. In addition, when using pseudo-
absences the maximum value the AUC can reach in practice is dependent on the true 
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distribution of the species in relation to the selected extent of the area of interest (Barbet-
Massin et al., 2012; Raes and ter Steege, 2007). Therefore, it is not possible to set a fixed 
threshold as measure for an accurate model according to its performance as estimated 
through the AUC. In order to get a robust estimation of the AUC for each output of the ENM 
and HSI, we selected random background points as so-called pseudo-absences, while the 
validation occurrence locations were used as presence locations (30% split of all occurrence 
points within each ROI). First, for the calculation of the AUC for each study region, a pre-
selection of 20,000 random background points was made (NA values excluded). In a second 
step, 10,000 points were selected from this pool, in order to obtain a representative 
distribution of non-NA background values. Finally, using the package pROC in R software, 
stratified bootstrapping was applied, in which a random stratified fraction of presence and 
background points were selected 5,000 times for the AUC calculation, after which the mean 
AUC value returned, as well as a 95% confidence interval (Robin et al., 2011). 

Figure 4-7 presents the AUC results for CIT, DMA and desert locust based on ground truth 
data that was independent of the training dataset (section 3.1.5). The Y-axis represents the 
sensitivity, or the fraction of true positives, while the X-axis represents the specificity, or the 
true negative rate. It is important to note that the AUC cannot be compared across studies 
with different modelling extents and constraints, as the AUC is sensitive to the set-up of the 
sampling design (Barbet-Massin et al., 2012; Raes and ter Steege, 2007). According to 
computed AUC values, the prediction of the ENM model for CIT was 0.835, for DMA 0.886 
and for desert locust 0.693. The reason for the lower performance within ARB can be found 
in the fact that the majority of the basin is quite homogenous and only a few validation 
occurrence points were available. The AUC result for entire East Africa and the Middle East 
domain was 0.951. The lower AUC for smaller ARB domain can be explained by the fact 
that the ARB region is more homogenous and fewer validation points were available 
compared (Iturbide et al., 2015). Additionally, the spread of presence points is more 
homogeneous within smaller AOIs compared to the spread of presence points throughout a 
large heterogeneous study area. Therefore, a larger extent results in a higher model 
accuracy (Allouche et al., 2006; Raes and ter Steege, 2007). 

 

 
Figure 4-7. AUC for ENM results. Left) CIT in Pavlodar oblast; middle) DMA in Turkistan oblast; 
right) desert locust in Awash river basin. 
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The performance for HSI results (Figure 4-8) shows different outcomes which can be 
explained by the occurrence points availability and distribution as well as by the different 
index ranges within the areas. For CIT, the AUC of HSI output for 2019 was 0.747. 
Compared to coarse resolution ENM results the prediction performance of suitable breeding 
sites decreased by 0.088. The AUC for DMA in Turkistan was 0.850 and decreased slightly 
by 0.037. On the contrary, HSI results for desert locust in ARB are higher with 0.801 and 
increased by 0.108. 

 

  
Figure 4-8. AUC for HSI results. Left) CIT in Pavlodar oblast; middle) DMA in Turkistan oblast; 
right) desert locust in Awash river basin. 

4.5 Discussion 

Ground-based surveillance demand great manpower of trained researchers to examine vast 
recession areas (van Huis et al., 2007). Millions of hectares have to be investigated within 
a narrow time window of only a few weeks (Latchininsky et al., 2016). Therefore, up-to-date 
habitat suitability maps with high spatial resolution and detail can contribute to improve the 
efficiency and focus on relevant suitable breeding areas (Cressman, 2013; Sivanpillai et al., 
2009). The ENM represent the niche of species at coarse spatial resolution mirroring mainly 
climatic and edaphic conditions on a large scale. However, several studies have shown that 
land management such as grazing (Le Gall et al., 2019) or land plowing (Malakhov and 
Zlatanov, 2020) play essential role for locust-human linkage. Therefore, we further fused 
ENM results in a HSI model. This approach provides several advantages and refinements 
such as adding more species-related parameters (e.g. edges of fields for CIT), mirroring 
actual land cover by using the latest satellite data at high spatial resolution (e.g. to map 
abandoned fields or active cultivation) (Latchininsky, 2013). In this study, we modelled a 
map of breeding and egg incubation suitability for three locust species. Mapping areas 
suitable for egg incubation and survival at a high level of spatial detail and higher frequency 
can provide year-to-year alterations and an improved information for locust management. 
This is of special importance for species which breeding area preferences are highly 
dependent on land management (e.g. CIT and DMA), or sudden soil moisture and 
vegetation density changes (e.g. desert locust).  The presented approach and derived 
results account for the ecological niche of the species defined by climatic and edaphic 
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conditions but also for species-specific features such as fallow fields, field edges in the case 
of CIT or Wadis and terrain sinks with moisture accumulation in case of desert locust.  

The high HSI AUC for DMA and desert locust shows that the presented approach is capable 
to perform a selective and accurate distinction in suitable and unsuitable breeding areas at 
a higher spatial resolution of 10 m. In the study regions for DMA and desert locust, there are 
limiting factors for their successful breeding such as the presence of deserts, mountains and 
cultivated areas. Therefore, the HSI is heterogenic, and artificially generated absence points 
are distributed equally over suitable and unsuitable areas. On the contrary, the situation in 
Pavlodar oblast is very homogenous and suitable for CIT breeding. Only wetlands, water 
bodies and a minor portion of regularly active fields contribute to a low HSI. Furthermore, 
CIT has a wide range of preferred habitats in general, while DMA has rather niche habitat 
preferences and its distribution is limited to particular environments (Monard et al., 2009). 
Therefore, given that these suitable environments can be accurately modeled, the habitats 
of DMA can be easier delineated from unsuitable environments than those of CIT. Artificially 
generated absence points are distributed across larger suitable areas and the results of 
AUC are less clear as random points show a higher probability in higher suitable areas. To 
overcome this and other restrictions related to the fact that only occurrence points are 
collected, ground truth absence locations are required (Fielding and Bell, 1997; Lobo et al., 
2008). In general, both, selectiveness and accuracy are important for practical applications 
of the presented approach, because it can improve the targeting for surveys as well as for 
preventive locust chemical pest treatments which might be needed to limit costs and 
environmental damage. The accuracy depends on the species and environment of the study 
area. Usually, accuracy assessment for species distribution modeling leads to higher 
accuracies in more heterogeneous study areas, while in homogeneous areas such as 
Pavlodar oblast the accuracy is lower. Large study areas with easily distinguishable 
unsuitable habitats (e.g. high altitudes, water bodies) will lead to higher model accuracies. 
Nevertheless, statistical accuracy assessments of species distribution models are known to 
have limitations, especially when presence-only reference data is the only mean for 
validation (Fielding and Bell, 1997; Lobo et al., 2008). Furthermore, effects of spatial- and 
temporal auto-correlation likely still influenced the results, despite the split of the 
observational data and the spatial partitioning strategy used in the modelling process. When 
splitting the observational data into training and testing sets, it is assumed these are 
independent (Bahn and McGill, 2013). However, it is known that the surveyors often revisit 
sites of which it is known surveys were taken in previous years (Zaniewski et al., 2002). In 
addition, the surveyed areas are also often closer to roads due to their increased 
accessibility. 

For further research, the availability of more reference data including absence points and 
more accurate environmental variables will reveal more opportunities to improve modeling 
with a more data-driven parameter tuning. A species-specific analysis and research of 
relevant variables and favorable conditions will improve the final results. Future investigation 
could adapt presented approach on larger scale and combine it with migration paths to 
assess the connectivity between separated habitats. Furthermore, in the context of global 
climate change and shifting climate zones (Mahlstein et al., 2013) as well as the alteration 
in land-use practices, locust habitats are also affected. This can result in more often and 
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more intense outbreaks due to unusual rainfalls (Meynard et al., 2020; Salih et al., 2020; 
Stone, 2020; Tratalos et al., 2010; Zhang et al., 2019). Changing climate will also have 
effects on univoltine species such as CIT and DMA (one generation per year) because of 
the importance of winter egg diapause and weather conditions which determine the survival 
as well as timing of hatching. In combination with actual land management (e.g. land plowing 
and overgrazing) and favorable conditions suitable areas for breeding are changing 
throughout the time (Malakhov and Zlatanov, 2020). Therefore, monitoring efforts and 
international collaboration between affected countries as supported by FAO (FAO, 2021a, 
2021b, 2009) have to be maintained and strengthened. 

4.6 Conclusions 

The goal of this research was to explore whether ecological niche modelling (ENM) and a 
habitat suitability index (HSI) model can be combined to refine results for actual breeding 
areas of three different locust pests. With the application of ENM as part of HSI, the 
information value based on climatic and soil preference components defining locust species’ 
ecological niche are maintained. In addition, up to date land surface parameters, vegetation 
development and other species relevant environmental parameters were incorporated in the 
HSI model. Moreover, human interaction and actual land surface dynamics play a crucial 
role for locust outbreaks and influence and define suitable breeding areas. Therefore, 
modelling based only on climatic and edaphic variables provides only the ecological niche 
of a species without considering actual changes of the landscape or situation. In this study, 
we demonstrated a way to account for this issue by implementing different variables derived 
from Sentinel-2 time-series analysis, which describe the actual state of the land and in this 
way further narrow suitable breeding areas within an HSI model. The presented approach 
for mapping egg-pod incubation and breeding suitability was tested for Italian locust in 
Pavlodar oblast (Kazakhstan), for Moroccan locust in Turkistan oblast (Kazakhstan), and for 
desert locust in the Awash river basin (Ethiopia, Djibouti, Somalia). Results show high 
potential to enable a better prioritization and spatial focus for field monitoring to improve 
planning and control outbreaks without a significant loss in accuracy but an improvement in 
spatial detail: 

 The AUC measure of the HSI maps for 2019 showed good prediction performance 
of 0.747 for CIT, 0.850 for DMA and 0.801 for desert locust.  

 the areas of “very high breeding suitability” (0.8-1.0) and “high breeding suitability” 
(0.6-0.8) for Italian locust in Pavlodar oblast were 3.97% (4,970 km²) and 60.71% 
(75,912 km²), for Moroccan locust in Turkistan oblast 16.20% (18,765 km²) and 
7.37% (8,535 km²) and for desert locust in Awash river basin 2.82% (3,045 km²) and 
36.79% (39,733 km²).  

 Compared to ENM alone, the area characterized by “very high breeding suitability” 
and “high breeding suitability” reduced by 22,1% (27,633 km²), 10,68% (12,372 km²) 
and 22,45% (24,246 km²) respectively.  

 Therefore, presented approach could enable to account for actual land cover and 
consider where eggs will survive and therefore contribute to prioritize areas for locust 
management activities from year to year. 
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Historical and recent locust outbreaks around the world underline the urgent necessity for 
further improvement of monitoring and prediction technics. The potential of remote sensing 
applications has received a boost over the past few years. Improved datasets, large 
historical archives and cloud computing opportunities will further contribute to improve locust 
management to timely assess risks of infestations and take preventive and more 
environmentally friendly measures by treating only areas which are actually affected. In this 
context, it is important to consider all relevant variables and species-environment-climate-
human interaction nexus to better interpret and understand data and results. The innovation 
of this study is a multi-scale approach which accounts not only for climatic and environmental 
conditions but also for current vegetation and land management situation. In this way, more 
explicit information can be used for risk assessment and early intervention to reduce 
monitoring costs, overuse of chemical insecticides (Malakhov and Zlatanov, 2020) as well 
as allow spatial prioritization in case of emergency or limited budgets. 
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CHAPTER 5 

5 Outbreak of Moroccan Locust in Sardinia (Italy): A 
Remote Sensing Perspective   

Abstract 

The Moroccan locust has been considered one of the most dangerous agricultural pests in the 
Mediterranean region. The economic importance of its outbreaks diminished during the second half 
of the 20th century due to a high degree of agricultural industrialization and other human-caused 
transformations of its habitat. Nevertheless, in Sardinia (Italy) from 2019 on, a growing invasion of 
this locust species is ongoing, being the worst in over three decades. Locust swarms destroyed crops 
and pasture lands of approximately 60,000 ha in 2022. Drought, in combination with increasing 
uncultivated land, contributed to forming the perfect conditions for a Moroccan locust population 
upsurge. The specific aim of this paper is the quantification of land cover land use (LCLU) influence 
with regard to the recent locust outbreak in Sardinia using remote sensing data. In particular, the role 
of untilled, fallow, or abandoned land in the locust population upsurge is the focus of this case study. 
To address this objective, LCLU was derived from Sentinel-2A/B Multispectral Instrument (MSI) data 
between 2017 and 2021 using time-series composites and a random forest (RF) classification model. 
Coordinates of infested locations, altitude, and locust development stages were collected during field 
observation campaigns between March and July 2022 and used in this study to assess actual and 
previous land cover situation of these locations. Findings show that 43% of detected locust locations 
were found on untilled, fallow, or uncultivated land and another 23% within a radius of 100 m to such 
areas. Furthermore, oviposition and breeding sites are mostly found in sparse vegetation (97%). This 
study demonstrates that up-to-date remote sensing data and target-oriented analyses can provide 
valuable information to contribute to early warning systems and decision support and thus to minimize 
the risk concerning this agricultural pest. This is of particular interest for all agricultural pests that are 
strictly related to changing human activities within transformed habitats. 

5.1 Introduction 

The recent outbreak of the Moroccan locust (DMA), Dociostaurus maroccanus (Thunberg), 
in Sardinia (Italy) is the worst in over 30 years (Reuters, 2022). The outbreak had already 
begun in 2019 and multiplied from year to year, with growing locust population and affected 
areas, which have increased from about 2500 ha in 2019 to 30,000 ha in 2021 and an 
estimated 60,000 ha in 2022 (Reuters, 2022, 2019). Historically, the Moroccan locust has 
been considered one of the most dangerous agricultural pests in the Mediterranean region 
(Latchininsky, 1998), and the first report of DMA outbreaks goes back to about 2000 years 
ago, when Pliny reported mandatory campaigns against locusts in Cyrene (Pantaleoni et al., 
2004). In Central Asia, Caucasus, and North Africa, DMA is still a major threat for crop and 
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pasture land, requiring regular monitoring and control activities by phytosanitary 
organizations. The habitat of this locust species is heavily fragmented (Malakhov and 
Zlatanov, 2020) and distributed from the Canary Islands in the west to Afghanistan in the 
east, with occurrences within the Mediterranean zone, central Europe, the Middle East, 
Caucasus, and Central Asia (Figure 5-1). DMA breeding sites are usually found in foothill 
zones and valleys approximately 400–800 m above sea level in semi-arid steppes and semi-
arid deserts with a presence of abundant spring ephemeral vegetation and annual 
precipitation of 300–500 mm (FAO, 2021; Latchininsky, 1998). However, spring precipitation 
with an optimum of 100 mm is the most critical factor affecting the population dynamics. 
Unusual dry spring periods in consecutive years stimulate population increase and can lead 
to DMA outbreaks, causing economic losses and affecting rural livelihoods (Latchininsky, 
1998). 

 

 

Figure 5-1. Overview of Moroccan locust distribution (adapted from FAO, 2021): (a) band of 1st and 
2nd nymph stages of DMA on 26.04.2022 (40.252103 N, 8.960806 E); (b, c) mating and oviposition 
on 02.05.2022 (40.244172 N, 8.983378 E). Photos © Arturo Cocco. 

Larger-scale damages caused by DMA in the European zone have become rare due to 
anthropogenic activities, such as the conversion of grassland into agricultural land. On the 
other hand, deforestation and overgrazing can promote the population dynamics of DMA 
(Latchininsky, 1998). Overall, it is well-known that land management is one of the most 
important driving factors for DMA population dynamics (Aragón et al., 2013; Kambulin, 2018; 
Latchininsky, 1998; Malakhov and Zlatanov, 2020), especially economic or political 
constraints, which result in increasing abandoned, fallow, and untilled areas (Latchininsky, 
1998; Showler and Lecoq, 2021). Therefore, small-scale outbreaks in Spain, France, 
Hungary, and Italy have been documented and can occur when ecological conditions are 
favorable. Furthermore, climate change is expected to have significant impacts on its 
distribution area and population dynamics, being particularly exacerbated by several 
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consecutive drought years (especially during spring and summer) and temperatures higher 
than average, as reported for Sardinia over the past years (Latchininsky, 2013; Ortu and 
Prota, 1989). In this context, outbreaks of locust pests in Sardinia are not uncommon and 
can be related to drought periods in combination with changing land management activities. 
For example, about 81,000 ha in 1988/1989, 75,000 ha in 1951, 1,500,000 ha in 1946, and 
400,000 ha in 1933 were infested by DMA in Sardinia (Ortu and Prota, 1989). 

In this context, remote sensing applications are an important asset contributing to locust 
preventive management strategies that includes mapping and monitoring vast areas of 
locust habitats (Cressman, 2013; Klein et al., 2021; Latchininsky, 2013; Zhang et al., 2019). 
Preventive locust management (Hunter, 2004; Magor et al., 2008; Zhang et al., 2019) is 
proactive and aims to detect the hazard of a locust population upsurge and control it at a 
smaller scale before it evolves to a large-scale plague (Latchininsky, 2013). It includes a 
better understanding of the species biology and ecology, more effective monitoring, early 
warning systems, and different control strategies. The monitoring of vast areas, which 
provide favorable conditions for successful breeding and potential for locust population 
increase, is of especially high importance for preventive locust management. This kind of 
geospatial risk assessment benefits highly from the availability and quality of geospatial and 
remote sensing datasets. Therefore, the role of remote sensing data for locust management 
has been growing over the past decades (Cressman, 2013; Latchininsky, 2013). The first 
remote sensing applications based on Landsat data were introduced by (Hielkema, 1977; 
Pedgley, 1974). Later, Advanced Very-High-Resolution Radiometer (AVHHR), Moderate-
Resolution Imaging Spectroradiometer (MODIS), and Satellite Pour l’Observation de la 
Terre VEGETATION (SPOT–VGT) were applied to detect vegetation development at a 
higher temporal frequency, as well as Meteosat cloud imagery to estimate intense rainfall 
over desert locust habitats (Bryceson et al., 1993; Ceccato et al., 2006; Hielkema and 
Snijders, 1994; Pekel et al., 2011; Piou et al., 2013). In addition, soil moisture acquired from 
remote sensing data has been an important input for different habitat modelling and forecast 
efforts (Crooks and Cheke, 2014; Escorihuela et al., 2018; Gómez et al., 2018; Piou et al., 
2019).  

In this paper, the recent outbreak in Sardinia was analyzed with the application of remote 
sensing data to provide additional information that can contribute to support monitoring, risk 
assessment, and forecast efforts. The relation between recent DMA records from 2022 and 
abandoned/fallow or unplowed lands was quantified to demonstrate the value of up-to-date 
information on the actual state of the land surface derived from open-source remote sensing 
data. For this purpose, we applied time-series analyses of the Sentinel-2 data archives 
(2017–2021) with a specific focus on deriving relevant land cover and land use (LCLU) 
classes as well as their evolution over time. 
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5.2 Materials and Methods 

5.2.1 Study Area 

The study area is the island of Sardinia (40.000556 N, 9.115833 E), in the middle of the 
western Mediterranean Sea, with a total area of about 24,000 km2 (Figure 5-1). Sardinia is 
characterized by a typical Mediterranean climate, with mild winters and hot and dry 
summers. Most of the island falls into the Mediterranean pluviseasonal oceanic 
macrobioclimate, whereas the inner mountain areas above 800–1000 m a.s.l. are best 
described by temperate oceanic macrobioclimate (Canu et al., 2015; Rivas-Martínez et al., 
2011). Generally, rainfalls are concentrated from October to May, whereas the dry season 
spans from June to September. However, the dry season can last from July to September 
at higher altitudes and from May to October in dryer southern areas. Mean annual 
precipitation is highly variable, depending on latitude, altitude, and local conditions, and 
ranges from 381 mm in south-eastern Sardinia to 1343 mm in north-eastern mountains 
(Secci et al., 2010). 

5.2.2 Classification of actual state of LCLU with focus on DMA relevant land 
characteristics 

LCLU information on the actual state of the land surface and its changes derived from 
satellite-based Earth observation (EO) data has played and continues to play an important 
role for different applications and disciplines (e.g., modelling, assessment of environmental 
changes, deforestation, desertification, etc.). Various global LCLU products are available at 
a medium spatial resolution, representing the state of the land surface at a certain time 
period (Bartholomé and Belward, 2005; Friedl et al., 2010; Winkler et al., 2021). The 
technological progress and availability of open-source satellite data at high temporal and 
spatial resolution has enabled improvement of LCLU accuracy as well as the level of detail 
by utilizing time-series analysis in combination with machine learning approaches (Pekel et 
al., 2016; Zanaga, et al., 2021). Nevertheless, available global products sometimes do not 
include the required information for specific use cases. Therefore, there are many regional 
LCLU products and adaptations that account for user-specific class discrimination or target 
explicit land cover classes of interest (Gessner et al., 2015; Klein et al., 2012; Leinenkugel 
et al., 2013; Pickens et al., 2020). In the context of locust outbreaks, it is well known that the 
current and previous land management plays an essential role (Latchininsky, 2013, 1998; 
Le Gall et al., 2019; Sivanpillai et al., 2009). The characterization of the land surface, 
specifically focusing on habitats of different locust pests, has been part of research efforts 
to support preventive locust management (Bryceson, 1989; de Miranda et al., 1994; 
Latchininsky et al., 2007; Lazar et al., 2015; Löw et al., 2016; McCulloch and Hunter, 1983; 
Shi et al., 2018; Zhao et al., 2020). Abandoned and fallow fields or untilled land can provide 
ideal breeding habitats for some locust species, thus increasing the possibility of a 
population upsurge and outbreaks (Latchininsky et al., 2011; Latchininsky, 2013, 1998; 
Monard et al., 2009; Sergeev, 2021; Sivanpillai et al., 2009). On the contrary, regular 
mechanical treatment of fields and pasture (plowing) usually destroys locust eggs and hence 
contributes to population decrease (Sergeev et al., 2022).  
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To quantify the relation between the current DMA outbreak in Sardinia and land 
management and abandonment, we derive LCLU information with specific requirements. 
First, the required LCLU has to include the class “abandoned land, fallow fields, or not tilled 
land” to provide information on whether land has previously been plowed or not. This 
requirement can be fulfilled by applying time-series analyses of satellite data archives. Due 
to the unique phenology of agricultural land (plow, sow, growing, harvest), it is possible to 
distinguish between cropland and natural rangeland vegetation (Estel et al., 2015; 
Orynbaikyzy et al., 2020; Prishchepov et al., 2013; Verbesselt et al., 2010; Zeng et al., 2020). 
Using such seasonal characteristics and comparing years of interest with each other, the 
evolution of agricultural land or fallow fields can be derived. Furthermore, it is also very 
important to identify the time since the land was last plowed. Therefore, the second 
requirement is that the derived “abandoned land, fallow fields, or not tilled land” class should 
contain a “time-stamp” indicating when it was last tilled. This information can provide an 
indication of the vegetation composition and succession of the area (Benjamin et al., 2005), 
which is also important for locust habitats. Finally, the actual state of 
abandoned/fallow/untilled areas is also of high interest to assess whether it fulfills the habitat 
requirements of the locust species. Ephemeral grasslands with patches of bare soil are ideal 
for the egg laying and breeding of DMA (Latchininsky, 1998). On the other hand, dense 
vegetation (e.g., forest) or saline soils are avoided. Therefore, the third requirement is to 
provide the up-to-date land cover state of formerly tilled land to assess where DMA has laid 
eggs over the past upsurge years. 

Figure 5-2 illustrates the entire workflow to achieve the discussed requirements. Since 
recent mapping efforts, such as the ESA WorldCover (Zanaga, et al., 2021), already provide 
a high level of detail and accuracy at a reasonable spatial resolution, we implement certain 
land cover classes that are not the focus of the presented use case (settlements, wetlands) 
to avoid confusion and improve the accuracy of the classes of interest. For detection of all 
other land cover classes and their evolution, training points were collected according to the 
class specifications. The assignment of sampling points was based on the visual 
interpretation from very high-resolution data within Google Earth Engine (GEE) in 
combination with time-series composites of vegetative seasons. To ensure temporal 
transferability of the classification model, we collected training samples for a 
meteorologically dry year (2017), a wet year (2018), and a normal year (2021) (ARPAS, 
2021). In total, 200 training points were collected per class and year. As depicted in Figure 
5-2, training points were gathered for the classes water, cropland, sparse vegetation, dense 
vegetation, and bare soil. The sampling database was partly used to train (75%) the random 
forest model that was applied on different time-steps as well as for the validation of the 
results (25%). Moreover, the annual Sentinel-2 composites between 2017 and 2021 were 
calculated on GEE platform. To mask clouds, the cloud probability data on GEE was applied. 
Next, the variance and 95th percentile of the normalized difference vegetation index (NDVI) 
was calculated at an annual scale covering the months from March to November. The annual 
image composites were calculated using the median value of a year, and afterwards, the 
median of the additional spectral indices NDVI, modified normalized difference water index 
(MNDWI), normalized difference built-up index (NDBI), and salinity index (SI) were derived. 
Seasonal images for spring, summer, and autumn were included as additional features as 
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well. The seasonal features include the median values and the variance and 95th percentile 
of the NDVI.  

 

 
 

Figure 5-2. Workflow for regional land cover classification with regards to land cover classes of 
interest and specification to detected abandoned land. 

Based on all features and training points, a random forest (RF) classification model was 
trained for the year 2021. Here, RF (Breiman, 2001) was selected as classifier as it is widely 
applied for land cover classifications and reported to be one the superior machine learning 
algorithms (Dirscherl et al., 2020; Dubertret et al., 2022; Phan et al., 2020). Next, an 
additional classification model was trained to retrieve binary cropland layers for the annual 
composites between 2017 and 2021. Finally, based on these annual layers, spatio-temporal 
information on the development of fallow fields was extracted based on an intersection with 
the cropland class in 2021. This spatio-temporal layer includes the information of which year 
an area was plowed for the last time.  
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As illustrated in Figure 5-2, an accuracy assessment was conducted by means of the 
collected point samples. To this aim, a confusion matrix was calculated for the classes water, 
sparse vegetation, dense vegetation, and bare soil. Due to the binary classification of 
croplands, this class was validated separately. In order to assess the accuracy of the 
classifications, the overall accuracy and Cohen’s kappa coefficient (Cohen, 1960) were 
calculated based on the confusion matrix. 

Apart from the described process and used datasets for classification, 15-day NDVI median 
composites were calculated for the period between March and July 2022 to analyze the 
relation between temporal vegetation development and different locust nymphs’ states. 
Furthermore, we used a 30 m spatial resolution digital elevation model dataset (DEM GLO-
30) for additional interpretation of the role of elevation for breeding conditions within the 
study region (Copernicus, 2022). 

5.2.3 Moroccan locust records locations 

DMA infestation in 2022 included two separate areas in central Sardinia and spanned overall 
from north (40,4821623 N, 9,1214687 E) to south (40,1067563 N, 8,9625105 E) and from 
east (40,2966785 N, 9,181988 E) to west (40,2488991 N, 8,8236914 E). The two infested 
areas extended for about 100,000 ha and 12,000 ha, respectively. Within the largest area, 
an abandoned industrial area and a photovoltaic solar power plant rise over about 400 ha. 
The majority of record locations were distributed within a plain area with small hills on hard 
soil (untilled) and exposed south, being an area well known to have been a hotspot and ideal 
habitat of previous DMA outbreaks in Sardinia (Molinu et al., 2004; Ortu and Prota, 1989). 
The University of Sassari (Italy) together with LAORE (Regional Agency for Agriculture 
Development) have been closely observing the ongoing outbreak and collecting different 
information on the DMA infestation, including coordinates of infested locations, altitude, and 
DMA developmental stage. For locust management purposes and preventive control 
measurements, it is important to detect locations where locust has hatched successfully and 
is present at high density. A total of 814 locations with different DMA development stages 
were recorded between March and July 2022 and classified into the following categories: 
young nymphs (1st–2nd instars) (113 locations), mature nymphs (3rd–5th instars) (435 
locations), feeding/moving adults (181 locations), and breeding sites (85 locations). Infested 
locations were detected by field surveys carried out by LAORE extension agents and 
researchers of the University of Sassari in the areas infested by DMA in the previous year. 
The DMA developmental stage was determined by visual observations of specimens by a 
sweep net. Locations were defined as breeding sites when adults were observed breeding 
or female’s oviposition.  

Sites characterized by young nymph bands can be also considered as locations where 
breeding was successful in the previous year because young locust insects cannot move 
far at this stage. Nevertheless, locust nymphs at early-stage development are capable of 
moving up to 100 m or even 150 m per day depending on species, weather conditions, and 
green vegetation availability (FAO, 2021; Symmons and Cressman, 2001). In order to 
account for possible daily displacement from original breeding locations and uncertainties, 
a 100 m buffer was created around young nymph and breeding record locations. 
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5.2.4 Combination of nymph locations with data from remote sensing 

The geographic coordinates and dates of detected DMA locations from 2022 were utilized 
for further analysis in terms of land cover situation and ongoing DMA outbreak. The data 
was intersected with the results of LCLU mapping results from 2021 as well as with 15-day 
composites of NDVI. In this way, this analysis provides a quantitative and qualitative 
assessment of DMA locations with regard to actual land surface conditions, the vegetation 
development during instar stages, and possible previous land management activities. 
Finally, differences in the distribution of DMA development stages among LCLU were 
evaluated using a χ2 test for independence (p < 0.05), followed by the calculation of 
Pearson’s standardized residuals. 

5.3 Results  

5.3.1 Relation of DMA locations with previous and actual land cover 

Out of 814 detected DMA records from 2022, 43% (347) were found on land classified as 
“abandoned, fallow, or not tilled” in the year 2021 (Figure 5-3). A further 29% (236) were 
located on sparse vegetation/grassland. A total of 5% were located in other classes (2, 16, 
and 26 in the dense vegetation, built-up, or bare soil land cover classes, respectively). 
Finally, 23% (187) were found on land classified as cropland. At this point, it is important to 
consider two facts. First, classification from remote sensing comes along with some 
uncertainty and misclassifications (compare Section 3.3), which depend mainly on the 
accuracy and definition of the training data, input data quality (e.g., data gaps, clouds, 
viewing angles), input data characteristics (e.g., temporal, spatial, and spectral resolution), 
and applied methodology. Secondly, the detection of nymph locations also differs from the 
actual origin where egg pods where laid and nymphs actually hatched (compare Section 
2.2). Both factors are of relevance for the interpretation of derived information from Sentinel-
2 data at a spatial resolution of 10 m. Therefore, we also considered the buffered area to 
examine whether abandoned/fallow land is found in the direct vicinity of reported locations. 
This assessment shows that 23% of breeding spots located in classified active agriculture 
are within 100 m of untilled land. Therefore, two conclusions can be made. Either locust 
nymphs have dislocated to cropland areas and were detected there by the ground teams, 
or cropland was misclassified, because mechanical plowing of soil would usually lead to the 
destruction of eggs. 
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Figure 5-3. Land cover land use classification for 2021. Zoom areas for region of interest with majority 
of detected DMA locations. 

Statistical differences in the distribution of DMA development stages among LCLU were 
found (χ2 = 43.46, df = 12, p < 0.05). In particular, the occurrence of younger DMA nymphs 
was significantly higher than expected in locations identified as untilled lands. Moreover, the 
occurrence of feeding/moving adults was significantly higher than expected in areas with 
sparse vegetation and grassland and lower than expected in untilled lands (Table 5-1). 

A more detailed consideration and distribution of locations with regard to different detected 
DMA life stages is provided in Table 5-1. In the following, we assume that young nymphs of 
the first and second stages are found close to their breeding sites and consider them as one 
group. Therefore, the total of 113 (young instar) and 85 (oviposition) represent precise 
locations where egg pods were actually laid. Out of these locations, 73% (144) were located 
within the class “sparse vegetation/grassland”. In addition, 53% (104) of these breeding 
locations were also classified as formerly active agriculture or pasture land (Figure 5-4). A 
total of 48 records (24% out of the total breeding sites) were found on active agriculture land. 
Only four records were found on bare soil, and two on other land cover classes (3% in total). 

The older instar stages and adults, which have a higher capacity to move and have had a 
longer time period to dislocate from their origin of breeding, show only a slightly different 
picture. Out of a total of 616 locations, 71% (437) were located within the class sparse 
vegetation/grassland, whereas 39% (241) were also classified as formerly active agriculture 
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or pasture land. Another 23% (139) of the total older instar stages and adult records were 
found on active agriculture land. 

Besides the identification of land that has been used for active agriculture, we also derived 
the time when this land was last tilled or actively used. This evolution of abandoned, fallow, 
or not tilled/plowed land is presented in Figures 5-4 and 5-5 and Table 5-1. The majority 
(88%, 307) of the 347 positions are found on land that has been fallow or untilled since 2020. 
This suggests that DMA has found perfect conditions on this relatively “young” untilled land, 
which is in line with observations and documentations of previous DMA upsurges 
(Latchininsky, 1998; Monard et al., 2009). Compared to the years 2017, 2018, 2019, and 
2020, the year 2021 is characterized by less agricultural activity (Figure 5-4). Among all 
locations that were found to be fallow or untilled since 2020, 97% (338) were classified as 
sparse vegetation/grassland in 2021 (Figure 5-6, Table 5-1). 

 

 

 
Figure 5-4. NDVI variance for vegetative period (Mar–Nov) for 2017–2021 as an indicator for 
agricultural activities. Zoom in to both regions with high density of DMA locations in 2022 (compare 
2.2). Black dots = recorded DMA locations in 2022. 
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Table 5-1. Distribution of DMA locations among different classes of 2021 and untilled land evolution1. 
Pearson standardized residuals measuring the deviation from expected values are reported in 
brackets (+ = positive deviation; − = negative deviation). 

 LCLU 2021 Untilled Since Untilled LC 2021 

DMA Stage C S B O U 2017 2018 2019 2020 S B 

N1-N2 (113) 23 25 0 1 64 (+) 1 2 0 61 62 2 

N3+ (435) 103 119 21 9 183 5 20 1 157 178 5 

Feeding/moving  

adults (181) 
36 77 (+) 3 7 58 (-) 1 7 3 47 56 2 

Oviposition (85) 25 15 2 1 42 0 0 0 42 42 0 

Total (814) 187 236 26 18 347 7 29 4 307 338 9 

1First and second nymph stages (N1-N2), third or older nymph stages (N3+), cropland (C), sparse 
vegetation and grassland (S), bare soil (B), other classes (O), untilled land (U). 

 

 

Figure 5-5. Abandoned land evolution 2017-2020. Zoom areas for region of interest with majority of 
detected DMA locations. 
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Figure 5-6. Abandoned land transformation and state in 2021. Zoom areas for region of interest with 
majority of detected DMA locations. 
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5.3.2 Accuracy assessment 

The generated LULC map for the year 2021 resulted in an overall accuracy of 96.4% and a 
kappa coefficient of 0.951. As listed in Table 5-2, the binary cropland layers have an overall 
accuracy and kappa coefficient of 96.75% and 0.898 for 2021, 92.37% and 0.747 for 2018, 
and 96.34% and 0.867 for 2017. 

 
Table 5-2. Results of the accuracy assessment for the binary cropland classification in 2017, 2018, 
and 20211. 

Classes Cropland Non-cropland Both 

Accuracy 
Measure 

EO 
[%] 

UA 
[%] 

EC 
[%] 

PA 

[%] 

EO 
[%] 

UA 
[%] 

EC 
[%] 

PA 

[%] 

OA 
[%] 

K 

2017 14.29 85.71 7.69 92.31 1.47 98.53 2.90 97.10 96.34 0.867 

2018 34.55 65.45 0.00 100.00 0.00 100.00 8.92 91.08 92.37 0.747 

2021 15.09 84.91 0.00 100.00 0.00 100.00 3.98 96.02 96.75 0.898 

Average 21.31 78.69 2.56 97.44 0.49 99.51 5.23 94.73 95.15 0.837 

1 For each year the accuracy measure Error of Omission (EO), User’s Accuracy (UA), Error of 
Commission (EC), Producer’s Accuracy (PA), Overall Accuracy (OA), and Kappa coefficient (K) is 
provided. 

5.3.3 Relationship of DMA locations with vegetation development and 
elevation 

Besides the outcome of actual land cover as a discrete classification, remote sensing data 
can provide more detailed temporal information that is of higher relevance to assessing and 
understanding locust outbreaks and life cycles. In general, locust development and 
population dynamics depend highly on vegetation cover and its development over time 
(Cisse et al., 2013; Despland, 2003; Deveson, 2013; Pekel et al., 2011; Piou et al., 2013; 
Renier et al., 2015; Waldner et al., 2015). Therefore, we also performed NDVI of biweekly 
and monthly composites to present the relation in this regard for the outbreak of 2022. 

The results demonstrated a clear pattern between NDVI development and detected DMA 
life stages (Figure 5-7). The young nymphs (N1-N2) were detected in April within the peak 
of the vegetative period. In May and June, when older nymph stages (N3+) and adults were 
detected, the NDVI around these locations has already decreased. Oviposition took place 
in July and June, when vegetation subsidence has already occurred. In general, it seems 
that there is no implication that older nymphs or mature insects were moving towards 
greener areas. However, it should be considered that untilled, fallow, and abandoned land, 
as well as pasture and grassland, are not irrigated, and plants tend to dry out from the end 
of May onward due to rain scarcity and high temperature. 
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Figure 5-7. Bi-weekly NDVI development for different stages of detected DMA locations between 
April and July 2022. 

Additionally, we also extracted the elevation from a DEM to provide any indication related to 
relief as described by Ortu and Prota (1989) (Figures 5-8 and 5-9). The relation between 
elevation and detected locations for different Moroccan locust life stages shows a slight 
increase in height with proceeding time until the end of May. DMA was reported between 
137 and 680 m above sea level (a.s.l.), with the majority of records (647 records, 79%) 
between 137 and 250 m, although preferred habitats are restricted to foothills and valleys at 
a range of 400 and 1200 m a.s.l. (Latchininsky, 1998; Zhang et al., 2019). This difference 
could be due to peculiar microclimatic conditions characterized by wide temperature 
excursions in spring that could promote optimal DMA development at lower altitudes. 
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Figure 5-8. DEM at 30 m spatial resolution (source: Copernicus-DEM derived from Tandem-X DEM). 
Zoom areas for region of interest with majority of detected DMA locations. 

 

 
Figure 5-9. Relation between elevation and time for different stages of detected DMA locations 
between April and July 2022. 
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5.4 Discussion 

Land cover classification and potential habitat mapping in the context of locust outbreaks 
have been mainly performed based on Landsat and MODIS datasets for the migratory locust 
(Locusta migratoria, LMI), whose habitats are associated with reed vegetation in temporarily 
inundated areas along rivers and within deltas (Geng et al., 2020; Latchininsky et al., 2007; 
Löw et al., 2016; Shi et al., 2018; Sivanpillai and Latchininsky, 2007; Zhao et al., 2020). Land 
cover transformation due to overgrazing, deforestation, flood plain drainage or agriculture 
abandonment plays an important role for other locust pests, such as Moroccan locust 
(Dociostaurus maroccanus, DMA) and Italian locust (Calliptamus italicus, CIT) (FAO, 2021; 
Latchininsky, 1998). Approaches utilizing modern open-source remote sensing datasets 
(e.g., Sentinel-1, Sentinel-2) with a specific focus on locust requirements concerning actual 
land cover situation and its evolution still have to be developed and optimized for different 
species. In this study, we demonstrated that specific land cover classification and its 
consideration over time can provide valuable information as to where potential areas are 
experiencing land cover transformation and, in this way, becoming favorable for further 
locust breeding. Sentinel-2A/B Multispectral Instrument (MSI) datasets provide an ideal 
foundation for monitoring potential territories and detecting habitat transitions. The recent 
DMA outbreak in Sardinia, as well as local outbreaks in other countries, emphasize that 
DMA is a serious agricultural pest in places where ecological conditions and human activities 
are changing. Concerning the European part of the DMA habitat, Latchininsky (1998) 
reported that the economic importance of its outbreaks was vanishing during the second 
half of 20th century due to the high degree of agricultural industrialization and other human-
caused habitat transformations. However, due to climate change causing recurrent drought 
periods, and in combination with less anthropogenic pressure(Latchininsky, 1998), DMA 
outbreaks might become more serious again. Since Moroccan locust and other locust 
species outbreaks are also closely related to human activities, it has to be kept in mind that 
locust outbreaks might become a major threat in Europe and elsewhere again once 
conditions change (Latchininsky, 1998; Lecoq and Cease, 2022; Showler and Lecoq, 2021). 
Therefore, we consider the presented approach using Sentinel-2 data and adjustments on 
land cover classification and temporal analyses for specific locust pest to have a high 
potential to support future risk assessment and preventive locust management. First, this is 
because it can be done independently and comparably quickly, and in an economical way. 
Secondly, remote sensing provides information on a large scale and thus also for areas that 
have not suffered any locust outbreaks recently but might become important due to climate 
change, land management alterations caused by institutional changes, political programs, 
crises, and wars (Kraemer et al., 2015; Prishchepov et al., 2012; Winkler et al., 2021). With 
regard to food security, it is crucial to monitor land cover and other relevant parameters more 
closely for the specific requirements of different agricultural pests. 

Analysis of the distribution of different DMA development stages among different land uses 
showed that younger nymphs were mainly located in untilled lands (Table 5-1). Since 
locations where young nymph bands occurred were considered as sites in which breeding 
was successful in the previous year, our results confirmed that DMA breeding sites are 
mainly represented by abandoned and/or untilled lands, where the most favorable conditions 
for egg survival and development occur (Ortu and Prota, 1989). On the other hand, the 
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occurrence of adults was recorded more often in areas with sparse vegetation and 
grassland, whereas the occurrence of adults was significantly lower in untilled lands (Table 
5-1). In fact, adults feed more than those in the juvenile stages because they need to 
accumulate energy for flight and dispersion, so they move onto vegetation-covered land. 
However, these results should be interpreted with caution due to potential spatial 
autocorrelation among DMA records. Although younger nymphs have a low dispersion 
ability, so that their distribution over the area is more likely due to small-scale ecological 
processes, adults have a high dispersion ability. This makes it possible that locations where 
adults occurred were not spatially independent from each other (Legendre, 1993). Additional 
field data collection (including absence locations) and availability over several years would 
enable further analyses of the spatio-temporal dynamics of locust populations and also 
reduce possible impacts of spatial autocorrelation in the evaluation of the relation between 
locust locations and land surface conditions. 

In the future, detailed analyses of different relief variables and more detailed plant and 
vegetation type discrimination derived from remote sensing data might contribute to 
additional improvements in terms of remote-sensing-based monitoring of locust population 
dynamics. Furthermore, post-locust-infestation damage assessment and the question of 
whether vegetation and crop loss can be quantified from remote sensing data can be 
explored. To address this objective, field data with specific information on ground detected 
vegetation damage and timely coupled satellite data at higher spatial, temporal, and spectral 
resolution are required. Previous investigations utilizing MODIS data showed that optical 
moderate-resolution sensors might be insufficient to detect vegetation damage related to 
locust infestation (Adams et al., 2021; Weiss, 2016). 

5.5 Conclusions 

In this study, we quantified the relation between detected DMA locations from 2022 field 
campaigns with actual land cover situation and development over previous years. As stated 
by Ortu and Prota (1989), DMA oviposition occurs mostly in compact (untilled) soil exposed 
to the south. The relation between recent DMA outbreak and land surface under human 
influence is as follows: 

 43% were located on land that was previously used for agriculture purposes (fallow 
or previously tilled land); 

 23% were located on cropland within a radius of 100 m to abandoned, fallow, or 
untilled land, due to possible displacement after hatching as well as possible 
inaccuracy of land cover classification; 

 The majority of locations detected on abandoned, fallow, or untilled land were 
occupied by active agriculture until 2020, which indicates that DMA occupied this 
territory immediately; 

 Considering the transformation of abandoned, fallow, or untilled land, the majority of 
locations are found on the sparse vegetation/grassland land cover class (97%). 
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Moreover, we quantified the hatching time and DMA life cycle development according to 
vegetation development and elevation. Based on those analyses, the following conclusions 
can be made: 

 Young nymphs were detected in April within the peak of the vegetative period; 
 Older nymphs and adults were found in areas with significantly decreased vegetation 

greenness; 
 In terms of altitude, the majority (79%) of DMA locations were found between 137 

and 250 m a.s.l. 

This study demonstrates that valuable up-to-date information from remote sensing data can 
be derived for DMA upsurges. Such information can contribute to early warning systems and 
decision support to localize regions of high risk concerning different agricultural pests. 
Abandonment of agricultural land, overgrazing, reed drainage, and other land-changing 
activities have to be monitored and updated regularly and considered under the aspect of 
known habitats of dangerous locust types. Nowadays, open-source remote sensing data 
and cloud computing possibilities provide multiple opportunities for regular monitoring of vast 
affected regions. In combination with additional information about soil types, relief, and 
meteorological situation, experts could exploit the information provided by remote sensing 
data analyses as additional support for preventive management.  
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CHAPTER 6 

6 Application of geospatial and remote sensing data to 
support locust management 

Abstract 

Negative impacts on agricultural activities by different locust species are well documented and have 
always been one of the major threats to food security and livelihoods, especially for local 
communities. Locust management and control have led to less frequent and intense plagues and 
outbreaks worldwide. However, political insecurity and armed conflicts affect locust management, 
and can as well as changing climate, and land use management contribute to new outbreaks. In the 
context of the increasing world population and higher demand for agricultural production, locust pests 
will remain of high concern. Geospatial and remote sensing data have become an important source 
of information for different applications within locust research and management. However, there is 
still a gap between available information and actual practical usage. In this study, we demonstrate 
the importance of geospatial and remote sensing data and how this information can be prepared for 
a straightforward application for stakeholders. For this purpose, we use the h3-hexagonal hierarchical 
geospatial indexing system to simplify and structure spatial information into standardized hexagon 
units. The presented concept provides decision makers and ground teams with a simplified 
information database that contains area-wide information over time and space and can be used 
without detailed geospatial knowledge and background. The concept is designed for the use case of 
Italian locust management in the Pavlodar region (Kazakhstan) and based on actual practices. It can 
be extrapolated to any other study area or species of interest. Our results underline the importance 
of actual land management on locust presence. Up-to-date land management information can be 
derived from time-series analyses of remote sensing data. Furthermore, essential meteorological 
data are used to generate locust-specific climatic characteristics within the h3-system. Within this 
system, areal prioritizing for locust management can be achieved based on the included spatial 
information and experience from ongoing practices.  

6.1 Introduction 

Locust plagues, upsurges and outbreaks around the world have always been one of the 
major threats to agriculture and food security (Gay et al., 2021; Kietzka et al., 2021). The 
history of reported damages affecting humans from large-scale, long-lasting plagues and 
upsurges of desert locust (Schistocerca gregaria) in Africa and Asia to country-wide and 
regional outbreaks of many other locust species (e.g. Australian plague locust (Chortoicetes 
terminifera), migratory locust (Locusta migratoria), Italian locust (Calliptamus italicus), South 
American locust (Schistocerca cancellata), Moroccan locust (Dociostaurus maroccanus)) is 
long and goes back to ancient times (Cullen et al., 2017; Latchininsky, 1998; Trumper et al., 
2022; Zhang et al., 2019). 
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Since the 1960s, the development of preventive locust control strategies and usage of 
chemical treatments has enabled handling of outbreaks and plagues more effectively (Gay 
et al., 2021). Within these preventive locust control strategies satellite remote sensing has 
become an important data source for forecasting and monitoring favorable ecological 
conditions for locust development, as well as for mapping and assessment of locust habitat 
states (Cressman, 2013; Deveson, 2013; Hunter et al., 2008; Klein et al., 2021; Latchininsky, 
2013; Piou et al., 2019; Zhang et al., 2019). Nowadays, different satellite sensors provide a 
tremendous amount of data which offer cost-effective options to derive geospatial 
information and use them to describe environmental changes and their causes. They are 
also used as input data for modelling in earth and environmental sciences (Chaminé et al., 
2021). Especially the recent improvements in remote sensing (e.g., open access, increased 
spatial and temporal resolution, analysis-ready data, and big data applications) allow 
continuous and more detailed monitoring of complex environmental systems such as 
habitats of locust species and their dynamics in relation to environmental changes. 
Estimation of spatial distribution and habitat suitability has become possible by coupling 
geospatial data (e.g. remote sensing, climate, soil, relief data) with presence and absence 
in situ information (Aragón et al., 2013; Gómez et al., 2021; Klein et al., 2022; Malakhov and 
Zlatanov, 2020; Piou et al., 2013). Additionally, geospatial and remote sensing data are 
highly essential for locust management and for analyzing the impact of climate change on 
locust spatial distribution and potential future outbreaks (Meynard et al., 2020, 2017; Popova 
et al., 2016; Tratalos et al., 2010; Wang et al., 2019). One of the main goals of locust 
management is the assessment of outbreak risk, by continuous monitoring of affected 
regions and state of the locust population, and the prioritization of exposed areas in terms 
of required measurements. 

Despite increased usage in applied geoscience and growing business services (e.g., 
agriculture, forestry, rapid mapping), there is still a gap between academic state of the art, 
technical possibilities and actual application of remote sensing and geospatial data with 
respect to locust management. The activities of the Australian Plague Locust Commission 
(APLC) and Food and Agriculture Organization of the United Nations (FAO) in the context 
of Australian plague and desert locusts, are two prominent examples demonstrating that the 
utilization of geospatial and remote sensing data effectively support locust management 
(FAO, 2022; Mangeon et al., 2020; Matthews, 2021). Managing various geoscientific data 
and understanding the corresponding specifications including data format, projection, spatial 
and temporal resolution, as well as data accuracy and limitations, usually requires several 
years of practice and experience. Since locust ground teams and decision makers undergo 
a different education compared to geospatial data analysts, there is often a discrepancy 
between available information from geoscientific data and possibilities and “real-life” practice 
of locust management. At the same time, a lack of ground data or poorly collected 
information affects locust management decisions and might even seize up the whole 
management chain (Gay et al., 2021). Therefore, it is of significant importance to prepare 
spatial information in a way that enables a straightforward application for a targeted group 
of users within locust management. 

In this study, we use locust management, which requires knowledge of multiple 
environmental disciplines (e.g., entomology, meteorology, agronomy) as a use case to 
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demonstrate how geospatial information can be processed to allow for an improved 
implementation and provide additional information sources. For this purpose, we use the h3-
system to simplify spatial information, and prioritize areas by means of decision trees and 
thus support decision making (Bousquin, 2021; Kang et al., 2021; Uber Technologies Inc., 
2018). The h3-system has been proven to be of advantage when combining a complex set 
of information in the framework of a regular Discrete Global Grid (DGG) which is unbiased 
concerning spatial patterns and allows the development of simple and efficient algorithms 
(Li, et al., 2022; Sahr et al., 2003). In this study, different spatial information relevant for 
locust management are processed and presented in a stepwise approach to provide 
additional information for decision-making and field monitoring. Within the presented 
approach, complex information derived from various geoscientific datasets, including remote 
sensing imagery and climatic variables, are summarized at simplified hexagon levels which 
can be exploited by diverse set of rules according to current situation and severity of 
increase in locust population.  

This paper is structured as follows. First, we provide background information on the typical 
life cycle of locusts. In addition, fundamental details with respect to the monitoring and 
management of the Italian locust are illustrated using the example of Pavlodar region, 
located in north-eastern Kazakhstan. Second, we recap which kind of information can be 
derived or is available from remote sensing data and other geospatial information sources. 
In the third and fourth section, we introduce how these datasets are pre-processed using 
the h3-system and how they can be used by ground teams to receive relevant and 
understandable information, thus allowing them to take fast decisions on a spatially 
aggregated level. Finally, the importance of geoscientific data for locust management is 
discussed in the light of climate change and applied control measurements. 

6.2 Background information 

6.2.1 Italian locust ecology and life cycle  

Locusts are grasshoppers in the family Acrididae which are characterized by the so-called 
phase polyphenism (Trumper et al., 2022). At low density, the locusts behave as solitarious 
individuals and are an important part of their ecosystem (Cullen et al., 2017; Latchininsky et 
al., 2011). The phase change is initiated by a combination of different ecological conditions 
which benefit increasing locust population. During this, so-called gregarious phase, locusts 
behave in groups which leads to band formation of nymphs and later migrating swarms of 
adults (Trumper et al., 2022). Also, many locust species appear even in different colors and 
sizes during gregarious phase (Uvarov, 1957). 

The CIT is an intermediate form between typical gregarious and solitarious acridid species 
(Sergeev, 2021). It is a univoltine species with egg diapause during autumn and winter. Its 
habitats are found in dry steppes and semi-desserts with preferable plants such as 
wormwood and sage-brushes (Artemisia spp.) and moderately compact, sandy soils 
(Sergeev, 2021). Potentially, CIT can be found up to 2700 m altitude and prefers abandoned 
or fallow land, pasture, active agricultural field borders and is also found along infrastructure 
tracks such as roads and railways (Kambulin, 2018; Sergeev et al., 2022). Generally, CIT is 
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a highly elastic species and tolerates a wide range of semi-arid climate and soil types 
(Sergeev et al., 2022). After winter diapause, the hatching starts in late spring depending on 
local meteorological conditions. Higher air temperatures and less precipitation, which affect 
local edaphic situation lead to an earlier hatching start. On the contrary, cool temperatures 
and unnormal high rain amounts, at the location of egg-pods, lead to a later start as well as 
decreased population due to higher egg mortality. Once the nymphs hatch, they undergo 
five instar states whereas each state lasts for 3-7 days. The duration and population size, is 
again, controlled by meteorological conditions and food availability. Higher temperatures 
favor a faster development (Sergeev et al., 2022). Nymph bands of CIT can move up to 155 
m per day. Once the locusts reach adult state and are capable to fly, their location is less 
predictable. With wind, large CIT swarms are capable of flying more than 200 km per day, 
while smaller swarms fly up to 20-40 km (FAO, 2021). After the pairing period which takes 
place around July and August (Figure 6-1), the female locusts lay up to six egg-pods 
(containing 20-60 eggs, mostly 30-35) and a new life cycle of the next locust generation 
begins (Sergeev et al., 2022). 
 

 

Figure 6-1. Italian locust; left: mating, middle: oviposition, right: egg-pod. Photos from 27.07.2022 
(50.3 N 75.44 E). 

6.2.2  Locust management in Pavlodar region, Kazakhstan 

The major CIT outbreak in 1999/2000 caused a total damage of 220,000 ha grain crops and 
an estimated economic cost of 15 Mio. US$ (Latchininsky, 2013). Within this period almost 
10 Mio. ha land (approx. 8 Mio. in Kazakhstan) were treated with pesticide (Kambulin, 2018). 
The reason for such a large-scale and intense outbreak was a lack of preventive locust 
management at that time combined with a change of land use practices during the 1990s 
(Kambulin, 2018; Sivanpillai et al., 2009). Vast areas of former agricultural and pasture land 
were abandoned and developed into a perfect habitat for CIT which led to an increasing 
locust population over several years. Land management can change very fast due to 
different driving factors (e.g. political programs, economic profits, security, climate change) 
and can create perfect conditions for locusts breeding and population increase (Zhao et al., 
2020). Therefore, up-to-date information on land cover and land use considering different 
locust pests have a high potential to support locust management. 
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After this outbreak, preventive management has been reestablished and has become a key 
component in controlling and avoiding locust outbreaks and related damages. In 
Kazakhstan, preventive management is done by regional offices under the coordination of 
a state inspection committee in the agricultural sector of the ministry of agriculture. The 
“Pavlodar regional branch of SD Republican Methodological Center of phytosanitary 
diagnostics and forecasts” is responsible for field monitoring, reporting and forecast of the 
CIT development in Pavlodar region (Figure 6-2). This branch provides forecasts and 
assessments which are the base for annual preventive area treatment to avoid an increase 
in locust population and keep it under control. Field officers are using Global Positioning 
System (GPS) and standardized protocols to monitor qualitative and quantitative parameters 
of locusts four times a year (spring egg-pods control, spring nymphs hatching, summer 
pairing and egg-laying, autumn egg-pods control). For this study, a total of 1515 presence 
locations indicating CIT breeding spots collected between 2016-2021 was used to analyze 
favorable LCLU situation where egg-pods were laid and hatching occurred.  
 

 

Figure 6-2. Overview of study area and Italian locust distribution (based on Fig. 14 from Sergeev et 
al., 2022). Photo: Typical habitat (from 27. July 2022, 50.3 N 75.44 E). Climate diagram for Pavlodar 
(source: meteoblue.com). 
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6.3 Methods 

6.3.1 Remote Sensing Data and Geospatial Information for Locust 
Management 

Since locust development is highly dependent on the state of its ecosystem, meteorological 
conditions and land use practices, there is a vast number of existing datasets which can be 
used for locust management. First of all, locust presence and abundance locations from field 
data in combination with spatial information data can be applied to analyze and estimate 
species richness and spatial distribution as well as potential habitats and their suitability 
(Klein et al., 2021; Lazar et al., 2015; Piou et al., 2017; Youngblood et al., 2022; Zhang et 
al., 2019). Second, the monitoring of the actual situation and the forecast of the hatching 
begin and possible outbreaks which are based on meteorological data, soil conditions as 
well as vegetation state are the most important components for early warning (Cressman, 
2016, 2013; Lecoq, 1995; Lecoq and Cease, 2022; Liu et al., 2008). Based on a literature 
review of relevant studies, we use a selection of the most important variables for CIT 
presence and development which are summarized in Table 6-1. 

In detail, we used Sentinel-2 and Landsat imagery to derive a land cover and land use map 
(Figure 6-3). The processing and classification of remote sensing imagery was conducted 
on the Google Earth Engine (Gorelick et al., 2017). Due to the limited availability of Landsat 
imagery over this region, we generated median composites covering a 5-year period 
between 1984 and 2020 (i.e. 1984-1989, 1990-1994, 1995-1999). Besides the spectral 
bands, the spectral indices normalized difference vegetation index (NDVI), modified 
normalized difference water index (MNDWI), salinity index (SI), and normalized difference 
built-up index (NDBI) were included. Using the Random Forest classifier (Breiman, 2001), 
agricultural areas were mapped in each of the Landsat composites. Likewise, a median 
composite was created using Sentinel-2 imagery for the year 2021. Here, all Sentinel-2 
bands were resampled to 10 m spatial resolution. The resulting classification map covers 
the classes agricultural land use, bare soil, sparse as well as dense vegetation, and for 
completeness built-up areas. At this, agricultural and built-up areas were extracted from the 
ESA WorldCover classification (Zanaga, D. et al., 2021). Based on the temporal evolution 
of agricultural land use from the Landsat composites and the recent classification of 
agricultural land use in 2021 from the Sentinel-2 imagery an intersection was performed to 
retrieve abandoned land. Next, the Landsat-based abandoned land class is resampled to 
10 m spatial resolution to match the Sentinel-2 classification. 

Furthermore, the employed meteorological variables are gathered from the ERA5-Land 
reanalysis (Hersbach et al., 2020; Muñoz-Sabater et al., 2021) and the TerraClimate dataset 
(Abatzoglou et al., 2018). Temperature data at daily temporal resolution was required to 
calculate the sum of effective temperature (SET). In this regard, hourly ERA5-Land 
temperature was aggregated to daily temporal resolution (Figure 6-3). In addition, 
precipitation, soil moisture, and temperature at monthly temporal resolution were retrieved 
from TerraClimate due to its comparatively high spatial resolution. In the context of Central 
Asia, both ERA5 and TerraClimate data are widely applied (e.g. Hao et al., 2022; Hou et al., 
2022; Hu and Han, 2022; Li et al., 2021; Shi et al., 2020; Zheng et al., 2021). 
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Figure 6-3. Workflow including classification steps and spatial aggregation to achieve harmonized 
data within hexagon grid system. 
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Table 6-1. Important variables for CIT and used open source geospatial and remote sensing datasets. 
 

Variable 
Spatial 

res. 
Temporal res. Source/Reference 

Abandoned land, 

agriculture, 

natural vegetation 

(bare, sparse, 

dense) 

10 m Annual 

Classified based on annual Sentinel-2 

time-series phenology analyses of the 

year 2021 compared to long-term 

phenology of 1984-2020 (Landsat archive) 

 

Temperature 10 km Hourly 
ERA5-Land (Hersbach et al., 2020; 

Muñoz-Sabater et al., 2021) 

Temperature 4.6 km Monthly 
TerraClimate (Abatzoglou et al., 2018) 

 

Precipitation 4.6 km Monthly 
TerraClimate (Abatzoglou et al., 2018) 

 

Soil Moisture 4.6 km Monthly 
TerraClimate (Abatzoglou et al., 2018) 

 

CIT nymph 

presence 
Lat, Lon Annual (2016-21) Pavlodar regional branch 

 

6.3.2 Data harmonization workflow 

In order to enable a joint analysis of the collocated geospatial data, a harmonization in terms 
of their spatial resolution is required. In this section, we demonstrate the spatial aggregation 
based on a hexagon-system and how it can simplify the interpretation and decision-making 
without detailed background knowledge of each individual dataset characteristics (e.g. data 
formats, temporal or spatial aggregations, reprojections, etc.). Nevertheless, despite 
introduced simplification of handling geospatial datasets, all potential users shall be 
informed and aware about existing range of uncertainties and possible errors coming along 
with geospatial and remote sensing datasets. DGGs such as the hierarchical geospatial 
index h3-system allow simplified and effective data combination and spatial interpretation 
(Sahr et al., 2003; Uber Technologies Inc., 2018). In this study, we apply the h3-system 
which offers a quick aggregation at different levels across disparate datasets independent 
from precision and data specification (spatio-temporal resolution, projection, format). 
Furthermore, the hexagon system enables grid-based algorithm development focusing on 
spatial relation between grids. Compared to triangles or squares grid systems, hexagons 
have the same topological relation and are in equidistance between all neighbors (Uber 
Technologies Inc., 2018; Ma et al., 2021). In addition, due to the hexagonal shape, a smaller 
number of grids is required to represent the raster data, reducing the processing time and 
storage space (Duszak et al., 2021). Regarding locust management, which requires a lot of 
different parameters as described in the previous section, the application of such systems 
has three main advantages. First, different dataset characteristics and data pre-processing 
do not have to be done by ground teams and end users. Second, simple spatial analysis 
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assessment and interpretation can be done straightforwardly based on defined conditions 
and expert knowledge for specific applications at different hierarchical levels. Third, existing 
spatial relationships between grid cells (e.g., distances- and nearest neighbors-based 
conditions) can be exploited for more complex assessment. Figure 6-4 shows the h3-system 
for the Pavlodar region at three levels with moderate area size.  

 
Figure 6-4. Pavlodar region in three different spatial resolutions with approximate individual hexagon 
areas of: level-5 (top left), level-6 (top right), and level-7 (bottom left). 
 
After the selection of an appropriate level and hexagon area for the use case based on the 
h3-py python software package, all geospatial data are spatially aggregated to the hexagons 
using the average function of zonal statistics. At this point, the geospatial and remote 
sensing datasets are harmonized to the same spatial unit and geographic projection. From 
here on the end-user and experts can apply their regular data analysis on large scales and 
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entire territory of interest or define and develop new rulesets and algorithms by exploiting 
the full range of available geospatial information. In this study, we demonstrate an exemplary 
working process based on essential characteristics of CIT in the Pavlodar region. Figure 6-
5 presents a schematic stepwise workflow which combines different exemplary parameters 
to exclude areas of minor risk as well as prioritize hotspot regions based on highly favorable 
bio-climatic, edaphic and land surface conditions. 

 

 

 
Figure 6-5. Schematic exemplary stepwise workflow to use h3-polygons at various levels to prioritize 
hotspot areas (Th = threshold). Variables, appropriate levels, and conditions shall be defined based 
on individual specifications of species and application tasks. 
 

6.3.3 Use-case for Italian locust 

As described in section 2, the development of CIT depends highly on four main influencing 
factors. First, the local meteorological conditions (temperature and precipitation) which 
determine egg mortality, survival of young nymphs within first locust instar phases, as well 
as the duration of development phases. Furthermore, meteorological conditions also 
determine the beginning of hatching and availability of green vegetation for feeding. Second, 
human land management directly affects the presence or absence of locusts. Active land 
management and ploughing lead to mechanical destruction of egg-pods and reduce the 
locust population (Latchininsky, 2013, 1998; Sergeev et al., 2022). On the other hand, fallow 
and abandoned land become an ideal habitat for further distribution and increase of locust 
population. The information on land cover land use (LCLU) can be derived by time-series 
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analyses of remote sensing data and annual comparison of vegetation development 
because most cultivations are characterized by distinct phenological cycles (sowing, 
growing, harvesting). Therefore, active agricultural fields differ from rangelands and natural 
vegetation. Third, the mid- and long-term climate conditions affect the biological increase or 
decrease of locust populations. Drought years (high temperature and low precipitations) 
usually favor the development resulting in population increase. Cold and wet years decrease 
the population (Kambulin, 2018; Tronin et al., 2014). Finally, static environmental conditions 
such as soil type and relief must be considered as well. All four influencing factors are 
independent of locust management and must be put in logical context for monitoring and 
forecast purposes. Furthermore, one has to keep in mind that the locust population 
dynamics are highly influenced by active ongoing control measurements and their 
effectiveness. Favorable meteorological conditions over several years can be counteracted 
by extensive monitoring and pesticide treatments to avoid exponential population increase.  

In the Pavlodar region, the meteorological conditions can be described based on 
Selyaninov’s hydrothermal coefficient (HTC) (Selyaninov, 1928). The HTC has been applied 
in different studies related to drought determination (Dabrowska-Zielinska et al., 2020; 
Ryazanova and Voropay, 2019; Vlăduţ et al., 2017), as well as to assess the favorability of 
climate for the development of cultivations and natural plants (Evarte-Bundere and Evarts-
Bunders, 2012; Kwiatkowski 2015; Leblois and Quirion 2013). The HTC during vegetation 
period (HTCVP) is calculated based on the following formula: 

𝐻𝑇𝐶 =  
10 ∑ 𝑃


ୀଵ

∑ 𝑇

ୀଵ

 

where n is the length of the period (months) when mean temperatures exceed 10 °C, Pi is 
the precipitation amount (mm) of the ith month, and Ti is the average air temperature (°C) 
for the ith month.  

Furthermore, the SET is another important indicator to access meteorological conditions 
which influence locust population increases or decreases. The SET is calculated based on 
the following formula: 

𝑆𝐸𝑇 =   𝑇 > 10°𝐶





 

where i - n is the period between January 1st to December 31st and T > 10°C mean daily 
temperature above 10°C.  

 

A population increase of CIT is expected to be favored in dry and hot years without 
exceptionally high precipitation amounts in spring. We summarized optimal conditions and 
logical rules based on (Kambulin, 2018; Sergeev et al., 2022) (Table 6-2, Figure 6-6). 
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Table 6-2. Logical rules for CIT population dynamics in the Pavlodar region based on ongoing 
meteorological conditions1. 

Conclusion HTCVP SET 
Annual 

Precipitation 
Seasonal Condition 

Highly favorable 

years 
0.3-0.5 2800-3100°C 150-200 mm spring precipitation is within LTA 

Generally 

favorable years 
0.5-0.7 2250-2800°C <250 mm spring precipitation is within LTA 

Population 

decreasing years 
> 0.5 <2800°C > LTA 

exceptionally wet and cold years, 

especially during springtime as it 

negatively affects the survival of the 

eggs and nymphs, spring 

precipitation >LTA, spring 

temperature <LTA 
1LTA=long term average based on 1991-2021 data. Conditions should be considered within a 
logical “&” function. 
 

In conclusion, a population increase begins with hot and dry years and its progression 
depends on the meteorological conditions of the following years. In this context, (Tronin et 
al., 2014) presented the dependency on drought years for CIT in West Siberia. Comparable 
assumptions are also formulated for Northern and Western Kazakhstan (Kambulin, 2018). 
In this regard, it has to be mentioned that different authors postulate that drought years and 
locust outbreaks are related to the solar cycle (Cheke et al., 2020; Kambulin, 2018; Sergeev 
et al., 2022; Tronin et al., 2014).  

Additionally, based on SET during the spring and early summer period, the start of hatching 
(SoH) can be estimated. Here, the accumulation of SET starts after the daily mean 
temperature reaches above 0°C in five consecutive days, whereas only those temperature 
values are summed up which are above 10°C. The hatching is assumed to begin once the 
SET threshold reaches 90°C. In praxis, the field officers already start monitoring the egg-
pods when the threshold reaches 70°C. Around that time the embryonal state of eggs is 
examined by field experts which enables more accurate start of hatching estimation. 

 

𝑆𝑜𝐻ூ் =   𝑖𝑓 𝑇 > 10°𝐶 𝑡ℎ𝑒𝑛 + 𝑇 − 10
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Figure 6-6. Highly favorable meteorological conditions for potential CIT population increase. 
For Pavlodar region based on (Kambulin, 2018; Sergeev et al., 2022), including SoH forecast. 
(LTA=long term average based on 1991-2021 data, A=abandoned land, C=recently or currently used 
for agriculture, B+S=bare soil and sparse vegetation mosaics. 

 

The population dynamics correspond to the effects of seasonal meteorological conditions 
on the life cycle of CIT. During rainy and cold springs, the egg mortality is high, and hatching 
is delayed. In contrast, dry and hot conditions secure egg survival and accelerate hatching. 
During long, hot, and dry summers multiple mating is favored which also contributes to 
population increase. On the other hand, high precipitation during autumn in combination with 
low temperatures endanger newly laid eggs by fungi and mold (Kambulin, 2018). 

Usually, the field officers receive weather information from local stations and plan their 
monitoring according to the actual situation which varies from year to year in terms of timing 
as well as region. The defined conditions are based on experts' knowledge and their daily 
practices from the “Pavlodar regional branch of SD Republican Methodological Center of 
phytosanitary diagnostics and forecasts” and detailed information from the FAO report which 
was written by leading entomologists and CIT experts (Sergeev et al., 2022). The ruleset 
can be adjusted in any way and extended by additional parameters and conditions.  
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6.4 Results 

6.4.1 The importance of land cover for breeding locations 

The CIT ecology is more complicated compared to other locust species (Latchininsky, 2013; 
Sergeev, 2021; Tronin et al., 2014). There are no specific ecosystems which represent the 
natural habitat of CIT and this is one of the main reasons why remote sensing-based 
monitoring of spatial distribution and locust population density is more difficult. However, 
one of the most crucial factors for CIT breeding sites and population increase are the state 
of the land surface and its management. It is well documented that different locust species, 
especially CIT, find perfect conditions on abandoned land or fallow fields (Kambulin, 2018; 
Latchininsky, 2013; Sergeev et al., 2022; Sivanpillai et al., 2009; Zhao et al., 2020). In this 
study, we quantified the relationship between the occurrence of abandoned land and the 
presence of CIT based on time-series analyses using Landsat and Sentinel-2 data. An up-
to-date land cover and land use map of 2021 was generated (Figure 6-7a). Besides the 
actual state of the land surface in 2021, Figure 6-7 includes spatial and temporal information 
on abandoned land and fallow fields evolution (Figure 6-7b) and indicates the transformation 
of these areas (Figure 6-7c). In combination, the derived information provides, whether 
areas were used for agricultural purposes in the past and the time when agriculture activity 
stooped, as well as its recent land cover situation. The generated LCLU map based on 
Sentinel-2 imagery for the year 2021 resulted in an overall accuracy of 86.02% and a Kappa 
coefficient of 0.824. The binary cropland classification has an overall accuracy of 96.48% 
and a Kappa coefficient of 0.877. 

The intersection of field data locations with derived LCLU information shows that 63% of CIT 
presence data were found on land which was classified as formerly or recently used for 
agriculture (36% abandoned land; 27% cropland). Another 36% are distributed across bare 
to sparse vegetation mosaics (13% sparse; 23% bare). Most breeding locations found on 
abandoned land were detected in areas which became abandoned or fallow in the period 
2016-2020 (62%) and 2011-2015 (15%). This underlines the hypothesis that annual 
changes in land use and land cover directly influence locust population dynamics because 
of changes in nutrient availabilities (Cease et al., 2012; Le Gall et al., 2019; Youngblood et 
al., 2022). Furthermore, it is not only important to derive the age of abandoned land to 
assess its succession state but also the present land surface situation which means, 
whether the fields have turned to bare soils, sparse or dense vegetation mosaics. In this 
regard, 38% of CIT breeding locations were found in sparse vegetation and 62% in bare soil 
mosaics. These results are in line with descriptions from literature about preferable land 
cover and bare soil-vegetation mosaics for egg laying of CIT and young fallow fields 
(Sergeev et al., 2022).  

6.4.2 The importance of meteorological conditions for breeding locations 
and population dynamics 

As discussed in the previous section meteorological conditions are the most important 
variables which define the timing of the life cycle as well as locust population dynamics. 
Therefore, climatic conditions determine whether locusts are in the solitarious or gregarious 
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phase. Figure 6-8 illustrates the results of relevant meteorological variables at h3 hexagon 
level-7 for the year 2021. The annual SET provides valuable information about which areas 
have experienced ideal thermal conditions over the year of interest (Table 6-2). Therefore, 
the dark orange areas (Figure 6-8a) experiences highly favorable thermal conditions to 
promote locust population increase over the year 2021. In 2021 central and south Pavlodar 
regions as well as the region east of Irtysh river show higher spring temperature (Figure 6-
8b) and dryer conditions (Figure 6-8d). This is critical especially for the areas east of Irtysh 
river which are well known contain hotspots for CIT breeding (Kambulin, 2018; Sergeev et 
al., 2022). Despite the conditions during spring period, the annual precipitation (Figure 6-8c) 
also affects the development of locust. Furthermore, extreme rain events negatively affect 
young nymphs. Additionally, each hexagon contains both, the climatic history and ongoing 
conditions which enable a comprehensive view in terms of locust situation in the past. Figure 
6-9 presents climatic characteristics over the past 30 years for four selected hexagons with 
regards to CIT-relevant parameters. In fact, recent population increases within the study 
area are also mirrored by climatological variables. For example, there was drier period with 
significantly less annual precipitation (6-9e) and HTC (6-9a) lower than 0.5 the years before 
the 1999-2001 outbreak, as well as before 2011-2012 and 2018 population upsurges in 
Pavlodar. These actual years with higher locust population are characterized by higher than 
average spring temperature (6-9f) slightly above average soil moisture and spring 
precipitation (6-9c, 6-9h). 

In general, locust managers are monitoring all relevant variables in combination to assess 
whether the situation based on recent climate, ongoing meteorological conditions and actual 
land cover situation provide higher risk for population increase. Spatial data preprocessing 
within presented h3 hexagonal system provides an easy to use database at different spatial 
levels. Based on hexagonal units, locust managers can access and assess all necessary 
information in a standardized way. The different variables are spatially harmonized so that 
current areas with favorable or less favorable conditions can be easily identified.  
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Figure 6-7. LCLU classification and derived parameters for abandoned land evolution and 
transformation. Including two detailed views and detected nymph locations 2016-2021 (circles). 
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Figure 6-8. Climatic characteristics with regards to CIT relevant information aggregated at level-7 
hexagons (5.16 km²). 
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Figure 6-9. Exemplary climatic characteristics for four selected hexagons (polygon identification, PID) 
with regards to CIT relevant information (dashed lines= long-term average for 1990-2020). 

6.5 Discussion 

6.5.1 Importance of prioritization and hotspots 

Gay et al. (2021) stated that the knowledge and prioritization of hotspot breeding sites is 
highly important to improve the capability to maintain plagues or outbreaks. In this way, 
attention and efforts shall be concentrated in time and space to enable highly effective 
preventive locust management. Therefore, it is crucial to reduce the area which has to be 
monitored by excluding areas where locust breeding and hatching are unlikely and to 
prioritize areas with different levels of urgency to allow stepwise actions and urgent 
intervention. Gay et al. (2021) conclude that any tool which supports guidance in this regard 
is helpful to reduce plagues and outbreaks. Besides historical ground data collection, 
consistent monitoring of ecological and meteorological conditions with remote sensing and 
geospatial datasets is inevitable. The presented approach demonstrates, how different 
geospatial and remote sensing datasets can be pre-processed for end-users so that they 
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are simply applicable for locust management in a straightforward way. This allows 
assumptions from daily practices and fast decisions to either exclude or prioritize areas when 
time and resources are critical.  

In this context, Boedeker et al. (2020) estimated that worldwide there are approx. 385 Mio. 
annual accidental poisoning cases including around 11.000 mortal cases related to pesticide 
usage. Despite improved practices and guidelines for pesticide treatment for locust control 
and outbreak fighting, the risk of poisoning is always present. Therefore, if preventive locust 
management works effective in terms of time and space, less pesticides under lower time 
pressure will be used during recessions and depressions phases to keep the locust 
population low and in its solitarious form. However, if locusts are already in gregarious phase 
the control measurements should occur during the nymph development phase before it is 
capable to fly and migrate. During this phase, locusts are in groups and bands and can be 
localized according to the positions of egg-laying from previous field monitoring. If locust 
management is functioning well, the ground teams are aware of locations with potential 
increasing locust density and the state of the locust life cycle (hatching, instar phase). 
Nevertheless, the treated areas against locust nymphs can be still exceptionally large 
(Figure 6-10). Despite ongoing research projects and developments for applying bio-
pesticides, the ground control teams often use chemical pesticides which proved to be 
effective and affordable. The presented approach of identifying areas of high risk and 
prioritizing them for monitoring and treatment could thus contribute to an aerial assessment 
of ecological conditions and in this way improve health safety and reduce the usage of 
pesticides. This becomes of higher relevance when active locust management does not 
exist (e.g., due to insufficient funding, insecurity due to political conflicts, absence of locust 
outbreaks over decades) or locust swarms reach regions which usually are not affected and 
therefore not prepared. The most important component of preventive locust management is 
a functioning system with locust field officers operating in the field on daily basis (Gay et al., 
2021). This is also of high importance for future efforts to improve modelling and remote 
sensing-based locust breeding mapping and damage assessment as it depends on 
availability and accuracy of ground data (e.g., correct species identification, precise 
geolocation, abundance and absence). However, this depends highly on the existing budget, 
accessibility to affected areas and security (Showler and Lecoq, 2021). Meynard et al. 
(2020) concluded that socio-political instability in the Middle East and East Africa contributed 
to the 2019-2021 outbreak of desert locusts. Lecoq and Cease (2022) summarized that the 
locust problem, associated measurements and research are a cycle of repeated events with 
increased interest of media and opportunistic scientific publications during and shortly after 
major outbreaks. 

In regards to food security and the fact that locusts are a nutritious food source, historically 
and currently being consumed by humans (Kietzka et al., 2021), future outbreaks and 
plagues might become a valuable source of additional food as occurred during the last 
desert locust upsurge at a local scale (van Huis, 2021). However, in this case the insects for 
consumption should not be contaminated by pesticides. 
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Figure 6-10. Treated cumulative area between 2010-2021 against Moroccan locust (DMA), Italian 
locust (CIT) and Asian Migratory locust (LMI) in Caucasus, Central Asia, and Russia (Information 
extracted from monthly FAO reports). 

6.5.2 Geospatial data and accuracy 

An accuracy assessment is conducted to provide the user with information on the error and 
uncertainty of the resulting output products (Lyons et al., 2018). These accuracy measures 
are crucial for using and interpreting the data (Brovelli et al., 2015; Stehman and Foody, 
2019). In this regard, it is important to keep in mind that geospatial datasets and outputs 
derived from remote sensing data are only a generalization of the reality (Foody, 2002) and 
might come along with uncertainties. Due to this fact, users and decision makers need to be 
aware and have to understand that the derived information have to be considered critically 
and carefully in the light of the provided accuracy measures. 

6.5.3 Future studies for climate change effects on locust species 

Insect pests might destroy 10-25% more crops due to climate change (Deutsch et al., 2018). 
This is partly because climate change reshuffles northern and southern species within their 
niches (Antão et al., 2022; Çiplak, 2021; Youngblood et al., 2022). Apart from temperature 
changes, also the precipitation trends determine future occurrences of compound hot–dry 
events (Bevacqua et al., 2022) while increased frequency of global precipitation extremes 
with its influence on locust life cycles (Thackeray et al., 2022). For example, for desert 
locusts, the influence of climate change on tropical cyclone heavy rainfall is evident (Utsumi 
and Kim, 2022). As future climate will bring more droughts and more intense precipitation 
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events (IPCC, 2019), it is also of high concern for many other locust species around the 
world (Cressman, 2016; Kimathi et al., 2020; Latchininsky, 2013; Meynard et al., 2020, 2017; 
Wang et al., 2019; Youngblood et al., 2022). However, as stated in Lecoq and Cease (2022) 
there is still a lack of detailed understanding of how different locust species will be affected 
by climate change. Therefore, further assessment of the impacts of climate change on locust 
habitats and population dynamics and adjustments to locust management and control are 
of high importance not only for the most dangerous species such as desert locust, migratory 
locust, or Australian plague locust but also for other species with regional or even local 
relevance. The recent outbreaks of Moroccan locust (Dociostaurus maroccanus) in Sardinia, 
Italy and Tajikistan, migratory locust (Locusta migratoria) in Romania, or brown locust 
(Locustana pardalina) in South Africa are only few of many examples that locust pests can 
become a devasting factor for rural population due to change in climate and land 
management. 

Regarding the overall importance of locust impact all over the world, we propose to generate 
a standardized database for all locust pest species with special focus on species-relevant 
conditions. Such a database could support areal planning, includes all necessary 
information and may be an important backup for urgent interaction independent in the case 
that ground monitoring and management is missing or restricted. The variability of different 
climatic, edaphic and landscape parameters influence the population dynamics even of 
adjacent local CIT population in their long-term dynamics (Sergeev, 2021; Sergeev and 
Van’kova, 2008). Therefore, additional holistic research focusing on spatial and temporal 
variability of all parameters under consideration of local population dynamics within the 
habitats is necessary. Geospatial and remote sensing data provide an ideal base to conduct 
more complex spatial distribution modelling and contribute to further understanding of 
population upsurges which lead to locust outbreaks. 

6.6 Conclusions 

Locust management is a multi-disciplinary challenge and requires the understanding and 
handling of diverse information and datasets. Decision support systems for locust 
management at various levels using the interpretation of available geospatial and remote 
sensing data are still lacking for many dangerous locust pests. In this study, we introduce a 
concept towards a comprehensive usage of geospatial and remote sensing data. The 
concept simplifies complex datasets with different spatial and temporal characteristics into 
reasonable spatial units which can be used by stakeholders to improve monitoring, control 
efficiency and contribute to more sustainable planning practices. Furthermore, being aware 
of areas of higher or lower risk and being able to predict hatching and outbreak timing can 
contribute to timely sustainable control and minimize the “over-usage” of pesticides in large 
areas. The presented use case for Italian locusts in the Pavlodar region shows that spatial 
data can effectively be integrated for practical applications of locust management.  

Furthermore, the application of geospatial and remote sensing datasets within a simplified 
h3-system may close the discrepancy between users experience and available information. 
Information within the h3-system can be easily exploited by locust experts without the need 
for additional pre-processing steps and detailed knowledge of data formats and 
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specifications. Meteorological variables were calculated in standardized hexagons, 
containing CIT-relevant climatic and land cover characteristics and can be utilized for expert-
defined rule-sets and provide additional information for monitoring and areal planning. This 
can contribute to preventive locust management by prioritizing areas for locust control 
measurements based on historical and ongoing favorable conditions as well as by predicting 
hatching and outbreak times. 

The application of geoscientific data provides additional opportunities which can be used 
independently from funding, political programs, or security situation. Especially, because 
locusts can inhabit vast areas during favorable conditions, it is vital to monitor and map areas 
of potential risk for all locust pests around the world in collaboration with regional locust 
experts. Therefore, the application and development of remote sensing and geospatial 
datasets regarding different locust species do not only support locust management but also 
provide a back-up database for periods with less funding or socio-political conflicts. 
Nevertheless, operating field officers will remain the most crucial factor. 
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  CHAPTER 7 

7 Synthesis and outlook 

7.1 Overall conclusions 
Plagues and outbreaks of locusts have caused famine, harvest failures and negative 
impacts on grazing livestock ever since mankind became sedentary. Due to significant 
economic and social consequences of plagues and outbreaks, national and international 
preventive locust management and regular ground surveillance activities have been 
established to control locust population for many dangerous species around the world 
(Lecoq and Cease, 2022). In some cases, satellite data and remote sensing-based 
approaches are used operationally to map and monitor locust habitats and forecast locust 
upsurges and possible outbreaks. 

In this context, the goal of this dissertation was to investigate current remote sensing 
applications for locust management and research as well as the development of new 
approaches for three dangerous locust species. In a first step, the conducted literature 
review highlighted that there are only few studies and methods exploiting remote sensing 
data for locust pests, besides of the desert locust, Australian plague locust and migratory 
locust. Second, this thesis presented modelling approaches utilizing remote sensing and 
geospatial datasets for Italian locust, Moroccan locust, and desert locust which are three 
species with high capability to damage crops, pasture and natural vegetation on large 
territories. The combination of different datasets was used to extract habitat suitability at 
higher spatial detail and provide spatial information about areas where successful locust 
breeding can be expected. Third, based on the 2022 outbreak of the Moroccan locust in 
Sardinia (Italy), the potential of Sentinel-2 data to provide fast and valuable information was 
demonstrated. A clear relation between land surface changes and breeding locations was 
quantified. Finally, the usage of the standardized h3 polygon system was examined as a 
tool to simplify different geospatial datasets thus contributing to straightforward applications 
within locust management. Furthermore, both presented case studies of the Italian locust 
and the Moroccan locust demonstrate that breeding locations were situated on previously 
transformed land for either pasture or agriculture. Therefore, continuous monitoring based 
on remote sensing data can be a valuable asset to characterize areas for possible population 
upsurges in the present and in the future. 

The main objectives of this dissertation, formulated in Chapter 1, are discussed in detail in 
Chapter 3 to 6. In addition, the following paragraphs provide a short summary in relation to 
each objective and formulated research questions. 
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Objective 1: “Conduct a comprehensive review on international studies which have used 
remote sensing data in the context of locust distribution, monitoring and forecast”  

 

 

 

In Chapter 3, a comprehensive review about the role of remote sensing for locust 
management and research is presented. The review reveals that based on a total of 110 
publications on remote sensing application for destructive locust/grasshopper pest species, 
the majority is conducted for desert locust (33%), the migratory locust (27%) and the 
Australian plague locust (14%). All other species such as brown locust (4%), the Central and 
South American locusts (1%), the Italian locust (5%), the Moroccan locust (1%) or the red 
locust (1%) received comparatively very little attention. In this regard, the regions of interest 
are correlated with the species’ presence and its distribution of natural habitats focusing on 
China (24%), Australia (14%) and Mauritania (11%) with almost no studies for other regions 
which are prone to locust outbreaks: Arabian Peninsula (none), the Middle East and 
Pakistan (none), India (1%), South-East Asia (1%), North and South America (2%) and 
Russia (2%). Also, Central Asia, Caucasus, Europe, South-East Asia and South America 
and their species have been rarely examined applying remote sensing data and methods.   

Most of remote sensing data applications focused on optical sensors (57%), radar (6%) and 
TIR (3%), where radar and TIR were mostly part of fused or combined applications with 
other sensors: optical/radar (10%), optical/radar/TIR (5%), radar/TIR (5%), optical/TIR (3%). 
Applications based on VHR data were still not existing. In terms of variables, a high ratio of 
studies is based on vegetation and land cover characteristics such as NDVI, land cover 
information, LAI or fCover (39%, 13%, 5%, 4%), referring to the importance of vegetation as 
a key parameter affecting population density and phase change of locusts. Soil moisture 

 Which locust species have been investigated by means of remote sensing 
applications?  

 Where were remote sensing-based analyses for locust management and 
research conducted?  

 Which satellite sensor types were used for locust management and research 
studies? 

 What kind of remote sensing-based variables and indices were applied for 
locust management and research studies? 

 What time periods are covered by remote sensing-based locust 
management and research studies? 

 What are the thematical foci of the existing studies? 

Research Questions 1: 
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studies (9%) have received higher attention due to recent developments in technology and 
open source radar data availability. 

Another important aspect of the review was the categorization of applications which revealed 
the following foci: habitat monitoring (39%), followed by habitat mapping (25%), 
outbreak/hatching prediction (17%) and general review publications (10%) with very few test 
studies on how vegetation damage caused by locust can be quantified.  

Furthermore, the analyses of origin of reviewed studies indicates that, with the exception of 
China and Australia, most research was conducted outside the regions prone to locust 
outbreaks. Studies based on long-term data and large regions (e.g. entire habitats of a 
certain species) are still highly required. This is necessary to improve our understanding of 
temporal dynamics of locust outbreaks, the relation to large scale climatology, as well as our 
understanding about spatial distribution of different species.  

Objective 2: “Use different remote sensing and geospatial datasets to demonstrate the 
advantage of data combination and higher-resolution datasets such as Sentinel-2” 

 

 

 

The Italian locust, Moroccan locust, and desert locust within their vast habitats are 
dangerous species which can outbreak and lead to damage in agriculture and pasture during 
favorable conditions. In this study, ENM and HSI models were combined to improve results 
regarding the localization of the spatial distribution of potentially highly suitable breeding 
areas. Relevant ecological parameters favoring locust presence and population increase 
were derived from literature review and expert knowledge to account for specific species 
preferences. Moreover, human interaction and actual land surface characteristics play a 
crucial role for locust outbreaks. Therefore, modelling based on climatic and edaphic 
variables alone provides only information about the ecological niche of a species without 
considering actual changes and current state of the landscape. Within this objective, a HSI 

 How can unique locust species characteristics be included in modelling 
approaches?  

 What kind of up-to-date climate and geospatial datasets can be used to 
conduct Ecological Niche Modelling (ENM) and Habitat Suitability Index (HSI) 
modelling for selected locust species? 

 How can suitable conditions for locust breeding and potential population 
upsurge be better differentiated?  

 What are the advantages of improving spatial resolution of modelled results? 

Research Questions 2: 
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based method was presented which includes the actual state of the land cover to further 
narrow suitable breeding areas. Results highlight high potential to enable a better 
prioritization and spatial focus to support rapid field monitoring, and controlling outbreaks. 
The AUC measure of the HSI maps for 2019 showed good prediction performance of 0.747 
for CIT, 0.850 for DMA and 0.801 for desert locust. The areas of “very high breeding 
suitability” (0.8-1.0) and “high breeding suitability” (0.6-0.8) for Italian locust in Pavlodar 
oblast were 4% (4,970 km²) and 61% (75,912 km²), for Moroccan locust in Turkistan oblast 
16% (18,765 km²) and 7% (8,535 km²) and for desert locust in Awash river basin 3% (3,045 
km²) and 37% (39,733 km²). Compared to ENM alone, the area characterized by “very high 
breeding suitability” and “high breeding suitability” reduced by 22% (27,633 km²), 11% 
(12,372 km²) and 23% (24,246 km²) respectively, which could enable prioritizing and 
adjusting areas for locust management activities progressively on yearly basis. 

Objective 3: “Analyze the recent Moroccan locust outbreak in Sardinia (Italy) from the 
perspective of remote sensing based on up-to-date land cover characteristics with focus on 
favorable conditions for this species” 

 

 

 

Within this objective, the relation between different Moroccan locust life phases on the one 
hand and current land management as well as previous activities on the other hand was 
quantified based on Sentinel-2 data. The analysis shows that 43% of breeding locations 
during the 2022 outbreak were found on land which was previously used for agricultural 
purposes (abandoned, fallow or previously tilled land). Additional 23% were located on 
cropland but in vicinity (500 m) to abandoned, fallow or untilled land. The vicinity 
consideration accounts for possible displacement after hatching as well as inaccuracies of 
land cover classification. Furthermore, it was found that the majority of breeding locations, 
detected on abandoned, fallow or untilled land, were occupied by active agriculture until 
2020. This indicates that DMA has found favorable conditions and invaded this territory 
immediately after the areas were not used intensively any more. Considering the 
transformation of abandoned, fallow or untilled land, the majority of locations are found on 
land classified as sparse vegetation/grassland (97%). 

 What are the relations between recent Moroccan locust outbreak in Sardinia 
and land cover characteristics derived from Sentinel-2 data? 

 What kind of land surface was preferred by Moroccan locust for breeding 
during the outbreak? 

 How can remote sensing analyses contribute to an early warning system and 
decision support to minimize higher risk concerning this agricultural pest? 

Research Questions 3: 
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It total, it was demonstrated that remote sensing analyses using Sentinel-2 data can provide 
valuable up-to-date information for DMA upsurges. Such information can contribute to an 
early warning system and assist decision support to localize regions of higher risk 
concerning this agricultural pest. 

Objective 4: “Demonstrate an application case for locust management, based on expert 
rule set exploiting remote sensing and geoscientific datasets” 

 

 

 

Since locust management is a multi-disciplinary challenge, it requires an understanding and 
handling of different environmental and meteorological parameters. However, decision 
support systems for locust management at various levels, using the interpretation of 
available geospatial and remote sensing data, are still missing for many dangerous locust 
pests. The introduced concept based on a hexagonal h3-system simplifies complex 
datasets, characterized by their different spatial and temporal features, into reasonable 
spatial units. Those units can then be used by stakeholders to contribute to an improved 
monitoring, more efficient control mechanisms, and to environmentally more sustainable 
planning practices. The presented examples demonstrate how areas of higher or lower risk 
can be derived from expert rule sets. Furthermore, the concept was used to predict hatching 
timing for the entire study region using expert based protocols. The advantage of spatial 
application can contribute to a timely sustainable control as well as minimize the “over-
usage” of pesticides in large areas. Furthermore, by using up-to-date Sentinel-2 time-series 
analyses, the recent state of land cover with a focus on abandoned, fallow or not tilled land 
was derived also for this species. Most breeding locations of CIT between 2016-2020 were 
found in areas which became abandoned or fallow during the period 2016-2020 (62%) and 
2011-2015 (15%). This underlines the hypothesis that annual changes in land use and land 
cover directly influence locust population’s dynamics because of changes in nutrient 
availabilities. 

7.2 Future challenges and opportunities 
Highly migratory agricultural pests such as locust outbreaks will still occur in the future in 
many regions of the world. The key element for taking future actions is to understand and 

 How can different types of geospatial and remote sensing datasets be 
simplified for a straightforward spatial analysis? 

 How can expert rules, applied in practice, be implemented to exploit geospatial 
and remote sensing datasets? 

 What kind of practical locust management tasks can be conducted by such 
spatial applications? 

Research Questions 4: 
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quantify the impact of climate and environmental changes on locust upsurges in order to 
protect rural livelihoods and food security (FAO, 2021a). With a global growing population, 
preventive locust management and sustainable control measurements of outbreaks all over 
the world will become even more important. Remote sensing applications are an essential 
part of preventive locust management and locust research for some dangerous locust 
species. Nevertheless, there is still a lack of applications and spatial information for various 
other major locust pests.  

Firstly, the potential of remote sensing datasets to further improve preventive locust 
management and contribute to locust research can only be exploited by a close expert 
collaboration and knowledge exchange. Extensive knowledge on the ecology and biology of 
considered species and their habitats will be a key factor to keep damages as low as 
possible. Therefore, the development of databases focusing on species-specific parameters 
is necessary to properly utilize remote sensing data archives and new satellite datasets. 
Databases for all dangerous locust and agricultural pests should be publicly available to 
encourage further research, method development, education and capacity development. 
These may include historical field data, control operations and relevant environmental 
parameters originating from remote sensing and geospatial datasets. This would promote 
standardized applications for longer time periods and large-scale studies of entire habitats 
resulting into comprehensive understanding of natural and human interactions and their 
influences on locust population density and outbreaks. However, the availability and quality 
of field data (e.g., on locust life cycle stages, phases, density) is critical to derive meaningful 
results using existing technology and digital datasets. For example, the Global Locust 
Initiative (GLI) at the Arizona State University (Arizona State University, 2022), the FAO 
Desert Locust Hub (FAO, 2022) and FAO Locust Watch (FAO, 2021b) already provide 
comprehensive resources, information and data. Such initiatives have to be further 
maintained, improved and extended to all relevant regions and locusts pests. However, 
Lecoq and Cease (2022) reported that locust related research and funding undergo ups and 
downs with each major outbreak event. The main problem is that once outbreaks are under 
control, the funding and overall public interest reduce. This can lead to higher vulnerability 
and less sustainable measurements in terms of management, capacity development, and 
adaptation to technological progress, particularly regarding digital image analyses, remote 
sensing and GIS applications. In some cases, a re-establishment of preventive management 
as well as updates on research are required when susceptible countries have not suffered 
locust outbreaks for a long time (Trumper et al., 2022). In such cases remote sensing data 
and methods can then support such re-establishing measures and provide valuable spatial 
information. 

A second future opportunity is the applicability of current open-source datasets to support 
large-scale areal management. This can be of crucial significance in the event of any 
unforeseen collapse in regular locust management (e.g., lack of funding, armed conflicts, 
security, inaccessibility). During geo-politically and financially critical situations, remote 
sensing approaches could additionally contribute to locust management. Principally, the 
aspect of human interaction to create or destroy locust habitats is dominant as both 
conflicting elements influence the abundance of many locust species (Latchininsky, 1998; 
Sergeev, 2021; Showler and Lecoq, 2021). Additionally, climate change is going to affect 
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the habitats, distribution and behavior of locusts as well as the number and intensity of 
outbreaks (Meynard et al., 2020; Wang et al., 2019; Youngblood et al., 2022). This is 
because future climate will bring more droughts and more intense precipitation events 
(Balting et al., 2021; IPCC, 2019), both driving factors for outbreaks of many locust species 
in semi-arid and arid regions. Therefore, there is an urgent need for further research on how 
climate and global change will impact locust outbreaks (Kapuka and Hlásny, 2021). 
Consequently, with the areal changes of habitats, geospatial applications will be highly 
useful for all dangerous locust species (Latchininsky, 2013).  

Thirdly, Cheke et al. (2020) discussed that solar activity and ocean oscillation systems can 
be used to predict locust abundance and therefore forecast possible locust upsurges. 
Applications towards spatio-temporal variability of weather patterns, together with related 
changes of relevant ecological variables which are ruled by such large-scale events and 
their practical implementation for preventive locust management, must be explored.  

Finally, future activities should investigate the practical implementation of datasets with 
higher spatial and temporal resolution for locust management and research. About 15 years 
ago, remote sensing approaches were based on analyzing single images. For example, one 
Landsat scene provided enough material for several studies. Nowadays, satellite data 
archives cover more than 40 years of Earth history and data of new EO sensors are open 
to public and can be analyzed with cloud-based platforms highly efficient and at relatively 
modest costs (Gorelick et al., 2017). This era of ‘remote sensing big data’ (Xu et al., 2022) 
can be explored as strategic asset for preventive locust management and locust research 
including deep learning data analyses and modelling approaches based on improved and 
up-to-date datasets. In the future, similar development might enable full exploitation of VHR 
datasets of commercial or military satellites (less than 1 m spatial resolution) as well as UAV 
datasets with advanced deep learning methods. In this regard, remote sensing approaches 
will not only contribute to monitoring the environmental conditions within locust habitats but 
also allow actual detection of high insect density, typically for locust groups and bands during 
gregarious phase. Automatic, effective and accurate detection methods will have to be 
developed and implemented into modern locust management. Additional approaches 
exploiting hyperspectral remote sensing datasets and multi-satellite data fusion focusing on 
more detailed vegetation type classification, as well as soil moisture and soil temperature 
estimates at higher spatial and temporal resolution (Piou et al., 2019), could provide new 
insights.  

Last but not least, the consumption of locusts, especially during outbreaks and plagues, is 
common in different regions and cultures (Kietzka et al., 2021; van Huis, 2021). Therefore, 
harvesting edible locusts can contribute to food security and also used as an 
environmentally sustainable control strategy to avoid chemical treatments (Kietzka et al., 
2021). In this regard, accurate spatial and temporal information on locations with higher 
locust densities will be crucial to progress with such strategies. Here again, remote sensing-
based datasets, especially VHR and UAV data, and Insect-Monitoring Radars (IMR) (Drake 
and Wang, 2013), can support such activities. 
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To tackle the above-mentioned challenges and opportunities, and to minimize both the 
damage to rural livelihoods and the usage of insecticides, there is an urgent need to further 
develop remote sensing-based approaches for each dangerous locust pest. In the context 
of the recent global pandemic, regional military conflicts, wars, political or economic 
instability, and in combination with climate change, one can assume that such crises will 
also have a major impact on different locust types and lead to further outbreaks. The 
intensity of these future outbreaks will partially depend on the availability and quality of 
spatial information and resources utilizing it for effective control measurements. 
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