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Central Place Indexing: Hierarchical Linear Indexing 
Systems for Mixed-Aperture Hexagonal Discrete 

Global Grid Systems
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ABSTRACT

Hexagonal discrete global grid systems (DGGSs) with integer spatial indexes are a promising new approach to designing 
geospatial data structures and location reference systems. Central place indexing (CPI) is a class of multi-precision hierar-
chical linear spatial indexing systems for pure and mixed-aperture hexagonal DGGSs. Definitions for CPI systems are given 
both on the plane and on the polyhedral surfaces of geodesic DGGSs, and examples of real-world DGGSs indexed using CPI 
are described. The semantic advantages of CPI systems are discussed, including their ability to exactly represent their own 
geometries.

Keywords: discrete global grids, spatial indexing, geocoding, spatial data structures

RÉSUMÉ

Les systèmes de grilles globales discrètes (DGGS) hexagonales faisant appel à des indices spatiaux entiers offrent une 
 nouvelle méthode prometteuse pour la conception de structures de données géospatiales et de système de géoréférence-
ment. Les systèmes d’indexation de lieux centraux (central place indexing — CPI) constituent une catégorie de systèmes d’in-
dexation spatiale linéaire hiérarchique multiprécision pour les DGGS hexagonaux purs et à mailles mixtes. L’auteur définit 
les systèmes CPI tant sur la surface plane que sur la surface polyédrique des DGGS géodésique, et il propose des exemples 
concrets de DGGS indexés à l’aide de systèmes CPI. Il analyse les avantages sémantiques des systèmes CPI, y compris leur 
capacité de représenter avec exactitude leur propre géométrie.

Mots clés : géocodage, grilles globales discrètes, indexation spatiale, structures de données spatiales
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Introduction

The impressive achievements of geospatial computing 
have been enabled by the development of powerful geo-
spatial location representation systems and data structures. 
But, as useful and convenient as traditional systems have 
proven, it is questionable whether they can meet the chal-
lenges of global geospatial big data and of truly realizing 
the Digital Earth vision (Goodchild and others 2012). Re-
searchers (e.g., Dutton 1999; Goodchild 2018; Goodchild 
and others 2012; Sahr 2011) have argued for the develop-
ment of data representations based on discrete global grid 
systems (DGGSs; Sahr, White, and Kimerling 2003) – regu-
lar multi-resolution partitions of the sphere into geocoded 
cells. A substantial body of research (see the survey in Sahr 
2011) suggests that DGGS based on regular partitions of 

spherical Platonic solids into cells that are primarily hexag-
onal in shape exhibit superior properties for a wide range 
of use cases, providing superior representational efficiency, 
semantic fidelity, and algorithmic tractability. Hexagonal 
DGGS are already being used in a variety of scientific and 
commercial settings (e.g., Brodsky 2018; Open  Geospatial 
Consortium 2017; Sahr 2018a; Sahr,  Dumas, and   
Chaudhuri 2015).
Hexagonal DGGS consist of multiple resolutions of hexag-
onal grids, and the geometric relationship between these 
resolutions is often defined in terms of their aperture (Bell 
and others 1983), or the ratio of areas between a hexagonal 
cell in successively coarser grid resolutions. As discussed 
in the next section, indexing these cells using hierarchical 
linear indexes has many advantages, and several research-
ers have developed such indexing systems for hexagonal 
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quantification indexes for all coarser precisions. The index 
of the precision q quantification of the point, where q < p, 
is simply the first q digits of the precision p index.
The term resolution, rather than precision, is often used in 
this context. Resolution refers to the minimum difference 
between two location values that can be distinguished by 
the system (Csillag 1991), and therefore seems more ap-
propriate for discussing fully specified DGGSs (per Sahr 
and others 2003), where each cell corresponds to a spe-
cific region on the surface of the earth. But when indexing 
systems are defined independent of particular DGGSs, as 
is being done here, the most that can be said is that each 
digit in the hierarchical index supplies a certain number of 
additional bits that may be used to distinguish cells at that 
precision. The cells of whatever DGGS will be indexed will 
correspond to specific geospatial regions, but the resolu-
tion of those regions is not determined solely by the preci-
sion of the cells.
Quadtree indexes have multiple fully equivalent semantics, 
which can be freely moved between in conceptualizing 
quadtree construction and use. For example, indexes for 
the cells at a given precision can be algorithmically con-
structed in at least three ways, and the choice made has 
no bearing on the approach taken to designing algorithms 
that make use of the resulting indexes. Quadtree indexes 
can be constructed top-down, by recursive subdivision, 
beginning with a single large square that covers the region 
of interest. But they can also be constructed bottom-up, 
by starting at the desired precision and recursively ag-
gregating the square cells in groups of four to form larger 
squares, until a square is created that covers the domain. 
Equivalently, a recursive fractal space-filling curve can be 
constructed at the desired precision, and transformations 
that map square cells at a particular precision to and from 
such curves effectively assign quadtree indexes to those 
cells, without conceptual recourse to other grid precisions.

INDEXING PLANAR HEXAGON GRIDS

In the case of hexagonal cells, it is impossible to partition 
a hexagon exactly into smaller hexagons or to aggregate 
smaller hexagons to form a larger hexagon; hexagonal hi-
erarchies do not have the multiple equivalent semantics of 
the quadtree. But a multi-precision sequence of aligned 
hexagon grids can be constructed, where the centre points 
of hexagons at a given precision are also centre points of 
hexagons at the next finer precision (and hence at all finer 
precisions; Bell and others 1983). The apertures that form 
aligned multi-precision hexagon grids are generated by 
the formula i2 + ij + j2, where i and j are arbitrary non- 
negative integers (Dacey 1965). The smallest three such 
apertures are 3, 4, and 7, known as the central place aper-
tures (Figure 1), after Christaller (1966), who argued that 
ideal human settlement patterns form aperture 3, 4, and 7 
hierarchies. The smaller branching factors of these three 

DGGS (e.g., Sahr 2008; Tong, Ben, and Wang 2010; Wang 
and others 2017; White, Kimerling, and Overton 1992). 
But these indexing systems have largely been restricted to 
pure sequences of grid resolutions of aperture 3 or 4 – two 
of the three central place apertures (Christaller 1966). The 
grid system of White and others (1992) is the only geo-
spatial grid system to index mixed sequences of all three 
central place apertures – 3, 4, and 7 – but that grid is not 
extended to the entire sphere.
This article presents central place indexing (CPI): a uni-
form multi-precision hierarchical linear indexing system 
for pure and mixed-aperture hexagonal DGGSs. CPI in-
dexing allows the cells in the indexed DGGS to embody the 
semantics of either raster/gridded or vector/point location 
representation, or to be used as efficient and algorithmi-
cally tractable data buckets for geospatial sharding and da-
tabases. First some background on planar hexagonal grids 
is given, and then CPI systems are defined on the plane 
before that definition is extended to polyhedral surfaces. 
Algorithms are described for the geometric generation of 
cells in CPI systems, and some examples of implemented 
CPI systems are discussed. Finally, some useful features of 
CPI systems are described, such as their ability to exactly 
represent their own cell geometries.

Background

AN EXEMPLAR: THE SQUARE QUADTREE

It is useful to assign to each cell in a hexagonal DGGS a 
unique structured integer index. On the plane the canonical 
example of such an indexing is the aperture 4 square quadtree 
(Gargantini 1982). Quadtree indexes are hierarchical prefix 
codes; each digit in a cell index corresponds to a cell at some 
coarser precision, defined relative to their common hierar-
chical indexing ancestors. Such indexes implicitly encode 
both precision (indicated by the number of digits in the 
index), without the need for metadata, and  direction (en-
coded in the well-defined digit arrangement at each level 
of precision), as well as defining a  locality-preserving total 
ordering of the cells (i.e., a space-filling curve) at each pre-
cision (Mark and Goodchild 1986).
Every quadtree cell is the root of an indexing hierarchy. Let 
the precision q indexing footprint of a precision p root cell, 
where q > p, be the set of precision q cells whose p-digit 
prefix is the index of the precision p root cell. In a square 
quadtree, each cell’s indexing hierarchy is equivalent to that 
cell’s spatial hierarchy (Kiester and Sahr 2008), consisting 
of the cells at finer precisions that are contained within, 
or overlap, the root cell. The cells at each precision in the 
indexing footprint/spatial hierarchy of a cell form a parti-
tion of that cell. Square quadtree indexes naturally provide 
multi-precision quantification (Sahr 2013); if a point loca-
tion is quantized at some desired precision p by assigning 
to it the index of the precision p cell that contains the point, 
then the precision p index contains, as prefixes, the correct 
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apertures also make them attractive for creating hierarchi-
cal indexing structures.
Hierarchical prefix codes can be created for the cells of a 
single-precision hexagon grid bottom-up, analogously to 
a quadtree, by aggregating the cells into compact groups 
of 3, 4, or 7 hexagons and then recursively aggregating 
those groups into larger groups, until only a single group 
remains (see Figure 2). The groups at each level of aggre-
gation form the nodes of a single precision of the corre-
sponding aperture sequence of grids. Indexes are formed 
by consistently assigning a digit per precision, with the 
digit base traditionally determined by the aperture (Burt 
1980; Gibson and Lucas 1982). Tesseral arithmetics (Bell 
and Holroyd 1991; Diaz and Bell 1986) can be defined on 
these indexes, with common vector operations such as 
addition and scaling using very efficient per-digit integer 
calculations or table lookups.
Computing with square grids traditionally uses two- 
dimensional integer coordinate systems with orthogonal 
axes. Hexagon grids have three natural axes spaced 120° 
apart, as illustrated in Figure 3. Any two of these axes 
are sufficient to identify each hexagon uniquely, using 
a 2-tuple of integers, just as with square grid coordinate 
systems. Hierarchical space-filling curves defined on two- 
dimensional square grids can be constructed directly on 

hexagonal grids, with common curves such as z-order and 
Hilbert’s curve – which generate an aperture 4 spatial and 
indexing hierarchy on square grids – similarly inducing an 
aperture 4 hexagonal sequence of precisions (see Figure 4).
As with a square quadtree, these same hexagonal index-
ing hierarchies can be viewed as top-down constructions. 
But unlike squares, it is not possible simply to partition 
hexagonal cells into smaller hexagons. Hierarchical pre-
fix codes can be created by starting with a hexagon at the 
coarsest precision, and then assigning to it a set of hexa-
gons at the next finer precision that will be its indexing 
children. While the indexing children of a parent cell in a 
square quadtree are fully determined by the spatial hier-
archy, the assignment of child cells to parents in hexago-
nal hierarchies is ambiguous; a coarse-precision hexagon 
wholly contains some hexagons at the next finer precision, 
but there are other hexagons that it only partially overlaps, 

Figure 1. Three precisions of aligned multi-precision hexagonal grids using the three central place apertures: (a) aperture 3, 
(b) aperture 4, and (c) aperture 7

Figure 2. Example recursive planar hexagonal aggregation 
groupings with apertures 3, 4, and 7, respectively (see also 
Figures 11 and 12 in the next section)

Figure 3. The three natural axes of a hexagonal grid, 
spaced 120° apart
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which could potentially be indexed by a cell adjacent to 
the parent under consideration. One solution is to note, as 
done above, that a bottom-up approach results in group-
ings that correspond to the nodes at single precisions of the 
corresponding aperture sequence of grids, and the hierar-
chical prefix codes formed bottom-up trace an indexing 
hierarchy through these grids. These same groupings can 
be constructed top-down to unambiguously assign child 
cells to parents. This idea will be developed further in the 
next section.
Recursive aperture 7 grouping of hexagons best approx-
imates a hexagonal shape across all precisions and has 
therefore received the most attention on the plane. One 
efficient digit assignment for each aperture 7 unit is gen-
eralized balanced ternary (GBT; Gibson and Lucas 1982), 
a generalization of one-dimensional balanced ternary ad-
dressing (Knuth 1998, 190–92) to the three axes of a hexa-
gon grid, as illustrated in Figure 5.
Aggregation-based hexagonal grid indexing, whether con-
structed bottom-up or top-down, can be used to index a 

single-precision raster grid hierarchically. White and others 
(1992) used aggregation-based indexing to create a hexago-
nal grid system with a user-specified sequence of apertures 
3, 4, and 7 on a single hexagonal face of a truncated icosahe-
dron, projected to create cells on the sphere using an equal-
area projection. Since the indexing hierarchy is anchored to 
a specific geospatial region – a polyhedron face – the coars-
est grid precision is fixed, making a top-down construction 
much more straightforward to define and implement.

CPI System Definition

The topology and location coding of CPI systems are de-
fined on ideal CPI manifolds. An ideal CPI manifold is a 
triangulated two-dimensional surface, with equal-length 
edges connecting adjacent vertices to create planar trian-
gle faces, and where each of the vertices has a valence, or 
number of triangular faces for which it is a vertex, of at 
most 6. Interesting ideal CPI manifolds include a regular 
triangular lattice on the plane and triangle-faced regular 
polyhedra such as the icosahedron.
A topology and indexing defined on an ideal CPI manifold 
can be applied to arbitrary triangulated two-dimensional 
manifolds by defining an appropriate mapping between 
these manifolds and a topologically equivalent ideal CPI 
manifold. For example, a CPI hierarchy can be constructed 
on an arbitrary two-dimensional triangulated manifold 
with unequal edges (such as a triangulated irregular net-
work or a stellated polyhedron) by defining a mapping 
(e.g., bilinear interpolation) between the irregular triangles 
adjacent to each vertex and the corresponding equilateral 
triangles on a topologically equivalent ideal CPI manifold.
Similarly, CPI systems can be created on triangulations of 
a curved 2D surface by defining a mapping between the 
curved triangles and an ideal CPI manifold, as is often done 
when constructing a DGGS. For example, the ISEA3H and 
ISEA4H hexagonal DGGSs (Sahr and others 2003) use the 
icosahedral Snyder equal-area (ISEA) projection (Snyder 
1992) to map the planar triangular faces of an icosahedron 
to and from the spherical triangles of a spherical represen-
tation of the earth’s surface, while the H3 hexagonal DGGS 
(Brodsky 2018) uses an icosahedral gnomonic projection 
(Fisher 1943) for the same purpose.
CPI systems can be defined using a top-down approach. 
Let M be an ideal CPI manifold. A cell at precision p of a 
CPI system defined on M consists of the following:

(1) A point on M that is either a vertex of M (if p = 0) or 
introduced through generation of subsequent preci-
sions of the CPI system (if p > 0).

(2) The polygonal Voronoi area on M associated with 
that point, defined relative to all other precision p 
cell points.

(3) A generator that specifies the geometry, generator 
types, and location coding of all precision p+1 cells 

Figure 4. A z-order space-filling curve defined on a two-
dimensional hexagonal coordinate system

Figure 5. GBT digit assignment
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that are children of this cell in the indexing hierar-
chy defined by the location coding system.

Then a CPI system specification consists of the following:
(1) A connected set of precision 0 cells, referred to as 

the system’s base cells.
(2) A sequence of apertures 3, 4, and/or 7 that define 

the topology of each finer precision in the system. 
As discussed below, in the case of apertures 3 and 7 
a direction of rotation must also be specified.

CPI INDEX DEFINITION ON A VALENCE-6 VERTEX

If a single base cell is formed on a vertex of M with a va-
lence of 6, the resulting Voronoi cell on an ideal CPI man-
ifold will be a planar hexagon.
The central place children of a valence-6 precision b cell 
cb consist of an appropriately scaled and rotated pre-
cision b+1 cell centred on cb and the six adjacent preci-
sion b+1 cells. In the case of aperture 3, the central place 
children will have 1/3 the area of cb and are rotated 30° 
counter-clockwise or clockwise relative to it (see Figures 
6a and 6b, respectively). In the case of aperture 4, the cen-
tral place children will have the same orientation as cb and 

1/4 its area (Figure 6c). Finally, in the case of aperture 7, 
the central place children will have 1/7 the area of cb and 
will be rotated by approximately 19.1° counter-clockwise 
or clockwise relative to it (Figures 6d and 6e, respectively). 
Note that the aperture 3 clockwise and counter-clockwise 
cases generate central place children that are geometrically 
identical, though this is not true of aperture 7. However, in 
both the aperture 3 and 7 cases each rotation direction will 
generate different indexes (see below).
This process can be applied recursively at precisions b+2, 
b+3, .  .  . (until a desired precision is achieved) by choos-
ing the aperture for each precision given in the CPI system 
specification. Let the precision p Christaller set of cb be the 
resulting set of cells at precision p (where p > b). Figures 7 
and 8 illustrate Christaller sets generated by some repre-
sentative pure and mixed aperture sequences. Note that in 
the case of aperture sequences involving apertures 3 and/
or 4 some cells will be generated multiple times.
A hierarchical integer location code (or codes) can be as-
signed to a precision p cell cp in the Christaller set of cb as 
follows. The location code of cp will have as its prefix the in-
teger location code of cb, with a single digit concatenated to 
it for each precision from b+1 to p, inclusive. Since each cell 
has seven central place children, the digits 0, 1, 2, . . . , 6 are a 
convenient choice for these additional digits. The assignment 

Figure 6. Central place children under all possible 
central place apertures: (a) aperture 3 with counter-
clockwise rotation (3ccw); (b) aperture 3 with clockwise 
rotation (3cw); (c) aperture 4 (4); (d) aperture 7 with 
counter-clockwise rotation (7ccw); (e) aperture 7 with 
clockwise rotation (7cw)
Source: Sahr (2013).

Figure 7. Precision b + 3 Christaller sets generated by 
pure central-place aperture sequences: (a) 3ccw, 3ccw, 3ccw, 
(b) 4, 4, 4, and (c) 7ccw, 7ccw, 7ccw

Figure 8. Examples of precision b + 3 Christaller sets 
generated by mixed aperture sequences: (a) 3ccw, 7ccw, 4, 
(b) 7cw, 3ccw, 3cw
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of digits should be geometrically consistent and can be spec-
ified by assigning each digit to a child relative to that child’s 
 position in the local coordinate system at that child’s preci-
sion. Let the arrangement given in Figure 9 be the default 
CPI arrangement. Table 1 lists several useful ways in which 
these digits might be represented. Note that this arrangement 
is rotated from the canonical arrangement used in GBT, so 
that unit vectors in the i, j, and k directions correspond to 
the binary representation of the octal digits, which facilitates 
working with the system. A CPI index for cp is any one of the 
location codes formed by following a single hierarchical path 
through the Christaller set of cb that generates cp.
A cell generator must also be specified for each cell, which 
indicates which of the cell’s seven child cells are actually 
indexed by that generator cell, along with the cell gener-
ator associated with each of the generated children. Thus, 
generators recursively define subsets of the possible paths 
through the Christaller sets of a given root cell.
Since each cell in a CPI system has at most seven children, 
let the generator for a cell c be specified as a string of seven 
values g0g1g2g3g4g5g6, where each gi specifies the generator 

associated with the i-digit child of c (as defined in the pre-
vious paragraph).
Then the C7 generator is

C7 = C7C7C7C7C7C7C7.

A CPI system can now be completely specified on a va-
lence-6 ideal CPI manifold as follows. Let the base cells be 
centred on the lattice vertexes and assign the C7 generator 
to each base cell. Then choose a sequence of one or more 
apertures: 3 (counter-clockwise and/or clockwise), 4, and/
or 7 (counter-clockwise and/or clockwise).

GEOMETRIC GENERATION OF CPI CELLS

Each precision p of the Christaller set of a precision-b cell 
cb (where b < p) is created using a consistent scaling and 
rotation across all cells at that precision, relative to the pre-
vious precision p−1. This means that all precision p cells 
lie on a regular hexagonal grid that is scaled by the product 
of the precision b+1 to p scaling factors and rotated by the 
sum of the precision b+1 to p rotations about the origin (as 
illustrated in Figure 6).
Let A be a central place aperture sequence, and let aA be 
the number of central place apertures of type a that oc-
cur in A. Then scaling factor sp for precision p relative to 
precision 0 in a CPI system with aperture sequence A is 
given by

sp
A A

A
A A

=
× ×

+( ) +( )
1

3 2 7
3 3 4 7 7ccw cw ccw cw

The rotation angle dp for precision p relative to precision 0 
in a CPI system with aperture sequence A is given by

NORMALIZED CPI SYSTEMS

Hierarchical generation using C7 generators under aper-
ture sequences that include apertures 3 and/or 4 will result 
in the assignment of multiple CPI indexes to some of the 
cells. If the system is being used to geocode a point loca-
tion, then a multi-precision quantization (Sahr 2013) can 

dp A A A A= − × + − ×



(( ) ) ( )3 3 30 7 7 3

28
ccw cw ccw cw arcsin


















.

Table 1. Three representations of direction in CPI systems

Octal 0 1 2 3 4 5 6

(i, j, k) (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0)
Binary 000 001 010 011 100 101 110

Note: Note the equivalence between (i, j, k) coordinate components and digits in the corresponding binary representation.

Figure 9. Digit assignment at successive precisions, 
defined relative to the three-dimensional hexagonal 
coordinate system at that precision
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be created by choosing, for each precision p, a digit that 
corresponds to the cell that contains the point location at 
that precision (see example in Figure 10).
It is often useful to specify generators that index each cell 
uniquely. This includes use cases where the cells repre-
sent raster pixels or data structure buckets, as well as cases 
where generators are used to hierarchically generate cell 
geometries. Let a normalized CPI system be one in which 
each cell has only one valid CPI index. Note that aperture 7 
systems always assign a unique CPI index to each cell, and 
therefore are always normalized.
Central place generators can be defined for an aperture a 
of 3 or 4 that generate a corresponding number of children: 
the central (0-digit) central place child, and a−1 of the 
other six central place children, where each such generator 
can tile an ideal planar CPI manifold. Figures 11 and 12 
illustrate the single generators (unique under reflections 
and 60° rotations), that tile the plane with consistent ori-
entation, for counter-clockwise aperture 3 and aperture 4 
precisions respectively, along with the corresponding gen-
erator string representations. A child cell that is not gener-
ated is indicated in the string representation by replacing 
a generator specification with the corresponding digit 0–6. 
G is used to indicate an arbitrary generator type.
The precision p indexing footprint of a cell in an aperture 
3 or 4 normalized CPI system is a subset of that cell’s pre-
cision p Christaller set. Only in the case of aperture 7 is the 
indexing footprint of a cell always equal to its Christaller 
set at every precision. Figure 13 illustrates the assignment 
of a cell index for a particular normalized CPI system.

Figure 10. Two vector locations quantized into 
precision 2 of an aperture 4 grid system. At precision 2 
the points quantize to the same cell C. But at precision 1 
they quantize to two different cells, with indexes A and B, 
respectively. A multi-precision quantization would assign 
each point an index based on the corresponding precision 
1 base cell, yielding indexes A4 and B3 respectively. This 
approach effectively indexes the subregions formed by the 
intersections of multiple-precision cells.

Figure 11. Generator types that tile the plane with 
consistent orientation for counter-clockwise aperture 3.

Figure 12. Generator types that tile the plane with 
consistent orientation for aperture 4.

Figure 13. An example of using a normalized CPI 
system to assign a unique index to a cell: (a) a cell C 
at precision 3 of a grid system with aperture sequence 
3ccw, 4, 7ccw; (b) the precision 0 base cell A with generator 
G123G5G indexing precision 1 child cell A4; (c) the 
precision 2 cell A44 indexed using generator GGG3G56; 
(d) the precision 3 cell C assigned index A445 using the 
generator C7.
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Single generators that tile the plane using multiple orienta-
tions can also be used, as well as combinations of different 
generators that tile the plane. For example, the aperture 
3 generators given in Figure 11 produce indexing foot-
prints that do not have hexagonal symmetry. The aperture 
3 hexagon tree (A3HT; Sahr 2008) is a normalized aper-
ture 3 CPI system that generates indexing footprints with 
full hexagonal symmetry. It uses two generator types, the 
open generator A = B123456 and the closed generator B = 
BAAAAAA (see Figure 14).

DEFINITION ON VERTICES WITH VALENCES LESS THAN 6

Note that it is impossible to tile the sphere completely with 
hexagonal cells; each precision of a hexagonal geodesic 
DGGS must contain a fixed number of non-hexagonal 
cells. For example, hexagonal DGGS based on the icosa-
hedron usually have, at each precision, 12 pentagonal cells 
centred on the 12 valence-5 vertices of the icosahedron. 
CPI hierarchies can be constructed on triangulated mani-
folds that include vertices with valences less than 6 by em-
bedding the lower-valence vertices onto a connected set of 
valence-6 vertices, and then assigning to the lower-valence 
vertices generators that do not generate all of the subse-
quences of the complete valence-6 Christaller set.
For example, the C6 generator, which generates the com-
plete Christaller set for a valence-5 vertex, can be desig-
nated as

C6 = C6C7C73C7C7C7.

Figures 15 and 16 depict the C6 generator applied to a sin-
gle base cell with a variety of aperture sequences.
In defining the C6 generator, any single subsequence can 
be chosen for non-generation; the choice of subsequence 
3 in our definition above is arbitrary. The specific subse-
quence for deletion can be chosen based on the needs of 
a particular grid construction, and in any event the same 
Christaller set cells can always be re-indexed with a differ-
ent non-generated subsequence by performing a 60° rota-
tion on the subsequences that lie geometrically in between 
the current and desired orientations. This also enables the 
construction of multiple valence-6 planar embeddings of 
portions of a non-valence-6 manifold for the construction 
of algorithms on the plane.
As with the C6 generator, the C5 generator, which generates 
the complete Christaller set for a valence-4 vertex, can be 
defined by not generating any two of the subsequences of 
the full valence-6 Christaller set. Choosing digits 3 and 4 
gives the definition

C5 = C5C7C734C7C7.

A similar approach can be used to create the Christaller 
sets of vertices with lesser valences.
Just as in the case of valence-6 vertices, note that in aper-
ture sequences that include aperture 3 and/or 4, some of 
the cells in the Christaller set will be geometrically gener-
ated (and indexed) multiple times. Generators that assign 

Figure 14. Four precisions of indexing footprints of a 
precision p closed (generator type B) A3HT base cell.
Source: Adapted from Sahr (2008) with permission from 
Elsevier © 2008.

Figure 15. Precision b + 3 Christaller sets generated by 
pure central-place aperture sequences on a valence 5 base 
tile: (a) 3ccw, 3ccw, 3ccw, (b) 4, 4, 4, and (c) 7ccw, 7ccw, 7ccw.

Figure 16. Examples of precision b + 3 Christaller sets 
generated by mixed-aperture sequences on a valence-5 
base tile: (a) 3ccw, 7ccw, 4, (b) 7cw, 3ccw, 3cw.
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unique cell indexes and that maintain at least the rotational 
hexagonal symmetries of the base cells (e.g., C7 for aper-
ture 7, and the A3HT for aperture 3) can be used directly 
with vertices of any valence, simply by not generating the 
appropriate number of subsequences under these gener-
ators, as described above. Generators that lack hexagonal 
symmetry must be adapted to the particular symmetries 
associated with the underlying manifold.

PLANAR CPI ALGORITHMS

A number of planar algorithms for CPI systems are given 
in Sahr (2010), including forward and inverse quantiza-
tion, 60° rotation, addition, subtraction, neighbour find-
ing, and metric distance. As with all tesseral arithmetics 
(Diaz and Bell 1986), discrete integer operations on CPI 
indexes can be defined efficiently as operations on individ-
ual digits, where the per-digit operation is defined using 
either of two basic approaches: as rule-based operations 
on groups, or as table lookups. Both approaches involve a 
small number of equivalently primitive computer opera-
tions: integer arithmetic in the case of the group-theoretic 
rule-based approach and memory accesses in the case of a 
table-lookup approach. The per-digit operations for basic 
algorithms are constant-time, and therefore the complex-
ity of most discrete CPI algorithms is O(p), where p is the 
precision of the CPI operands.

Designing CPI-Indexed DGGSs

CPI defines a class of indexing systems independent of 
particular DGGSs; the same CPI system could be used to 
index DGGSs designed for very different use cases. The 
design of a DGGS often occurs in parallel with the design 
of the CPI system, and both are dictated by the require-
ments of the use case. Much research is still required to 
better understand the optimal hexagonal DGGS and CPI 
design choices for various use cases. In particular, a full 
accounting is still needed of the design implications of the 
semantics of different CPI/DGGS apertures and aperture 
sequences. The author has participated in the design and 

implementation of several real-world CPI-indexed hex-
agonal DGGSs, and the evolution of hexagonal DGGS 
represented by four examples can help illustrate some of 
the issues involved. Table 2 summarizes the CPI indexing 
design choices made for these systems, all of which are de-
fined on an icosahedron.
The icosahedral Snyder aperture 3 hexagon (ISEA3H) 
DGGS (Sahr, White, and Kimerling 2003) was proposed as 
a straw man “attempt to construct a good general-purpose 
Geodesic DGGS,” though that analysis implicitly focused 
on the requirements of the primary use case of that time: 
representing gridded single-resolution data sets for scien-
tific analysis. Aperture 3 was chosen primarily because, 
amongst the three central place apertures, it provides the 
most gradual change in cell area between precisions, giving 
end users a greater number of grid resolutions from which 
to choose for gridding their data. But mixed-aperture CPI 
systems provide many more grid resolution options, mak-
ing them superior to pure aperture 3 grids for these use 
cases.
In 2003 the first implementation of the ISEA3H was re-
leased as part of the open source program DGGRID (Sahr 
2018b), developed for the US Environmental Protection 
Agency to generate DGGSs for survey sampling and grid-
ded data analysis. DGGRID generated pure aperture 3 and 
4 grids, internally indexed using a pyramid addressing ap-
proach (Sahr 2008), with each precision indexed using a 
set of two-dimensional integer coordinate systems defined 
on quadrilaterals formed by adjacent pairs of icosahedral 
faces.
The icosahedral aperture 3 hexagon tree (iA3HT; Sahr 
2008) is a CPI system for the ISEA3H and other pure aper-
ture 3 DGGSs. An iA3HT/ISEA3H prototype was success-
fully implemented for the Canadian Space Agency as a thin 
layer atop DGGRID. The iA3HT base cells are formed by 
a single unindexed aperture 3 precision (geometrically a 
truncated icosahedron). A3HT closed (see Figure 14) and 
open generators are used on pentagonal and hexagonal 
base cells, respectively. Figure 17 illustrates the indexing 

Table 2. Example CPI-indexed DGGSs

Grid Base cells Generating method Aperture sequence

DGGRID aperture 
4 INTERLEAVE 

precision 0 (pentagons) Z-order space-filling curves 444. . .

iA3HT precision 1 open (hexagon) and closed (pentagon) 
A3HT generators

3ccw3cw3ccw3cw. . .

Superfund_500m precision 1 specialized generators (see Sahr and 
White 2010)

443ccw3cw3ccw3cw. . .
(15 aperture 3 precisions in total)

H3 precision 2 (CPI43 on 
Dymaxion icosahedral 
orientation; Fuller 1975)

generators C7 (hexagon) and C6 
(pentagon) with 1-digit subsequence 
removed

43ccw7ccw7cw7ccw7cw. . .
(15 aperture 7 precisions in total)
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Superfund Atlas program. An intercell spacing of 500 m 
was required to balance the requirements of different 
stakeholders; this could not be achieved with sufficient ac-
curacy using a pure–aperture grid system. A mixed aper-
ture 4 and 3 grid sequence (see Table 2) was used to achieve 
the required spacing. The base cells are formed by a single 
un-indexed aperture 4 precision. In order to leverage the 
existing DGGRID software base, a set of 10 CPI generators 
was used to generate normalized indexing footprints that 
match the set of quadrilateral 2D coordinate systems used 
internally by DGGRID.
The open source H3 indexing system (Brodsky 2018) was 
designed for Uber Technologies’ use in marketplace anal-
ysis and optimization. It is a CPI43 system (Sahr 2013); 
it uses initial apertures 4 and 3 to encode the icosahedral 
face center points and algorithmically useful symmetries 
of the icosahedron. The CPI43 cells are the base cells for a 
sequence of aperture 7 precisions; these are indexed with 
C7 and C6 generators, applied to hexagonal and pentag-
onal base cells respectively (see Figure 19). Among the 
three central place apertures, aperture 7 generates the 
most “hexlike” of indexing footprints, and these footprints 
most closely approximate the cells in the corresponding 
spatial hierarchy. As previously discussed, aperture 7 has 
unambiguous cell indexing (the indexing footprints and 
Christaller sets of any cell are equal at all precisions), so it 
is also the most efficient at utilizing the default CPI octal 
encoding, with three bits per digit. This makes it a good 
choice for the efficient and scalable processing of gridded 
big geospatial data.

footprints of the base cells for the first six precisions of the 
iA3HT.
DGGRID includes an aperture 4 CPI index type named 
INTERLEAVE, which uses a Z-order space-filling curve 
to form the CPI cell indexes. The base cells are the 12 
pentagonal vertex cells of the icosahedron, which are the 
origins of the 2D hexagonal coordinate systems used by 
DGGRID. Given a cell’s 2D coordinates, the cell’s index is 
created by interleaving the bits of the i and j coordinates 
(see Figures 4 and 18).
The superfund_500m DGGS (Sahr and White 2010) was 
developed for the US Environmental Protection Agency 

Figure 17. The first six precisions of indexing footprints 
for iA3HT base cells on an ISEA3H DGGS.
Source: Reprinted from Sahr (2008) with permission from 
Elsevier © 2008.

Figure 18. Precision 4 of a DGGRID aperture 4 
INTERLEAVE system with z-order CPI indexing.

Figure 19. H3 base and precision 2 cells, with the 
precision 2 indexing footprints of a single pentagonal and 
hexagonal base cell indicated.
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coincide with points in the geometry set of the next finer 
precision p, regardless of the aperture; the precision p – 1 
geometry set is always a subset of the precision p geometry 
set. Let A be an arbitrary aperture sequence, and let pMAX 

Some Useful CPI Constructions

EXACT REPRESENTATION AND SUBSTRATE GRIDS

In aligned hexagonal grid systems, the centre point of each 
cell is also a cell centre point at all finer precisions, and CPI 
systems assign to that centre point the address of the root 
cell followed by an infinite number of zeros. The location 
and index of a cell centre point are exactly specified for all 
finer precisions as soon as it is introduced. Rather than a 
potentially infinite string of 0s, an octal 7 digit can be used 
to indicate that all finer precision digits of an index will be 
0, allowing us to represent many points with infinite preci-
sion, using only a finite number of digits. For example, the 
centre point of a precision p cell with CPI index P is exactly 
represented by the index P7.
The exact representation of geometric information in a 
tractable form, such as cell centre points represented as 
CPI indexes, potentially enables us to store and manipu-
late those geometric data more efficiently. Algorithms us-
ing exact integer location representations can ameliorate 
the often problematic divergence of numeric computations 
from actual geometric semantics. Exact representation 
is not possible, without metadata, using either a float-
ing-point location representation, which is implicitly ap-
proximate, or a square quadtree, the cells of which lack a 
central cell at all precisions.
As discussed in Sahr 2013, the vertices of each cell in a pre-
cision p grid are the centre points of cells at an aperture 3 
precision p+1 grid, as illustrated in Figure 20a. If the ap-
erture sequence of the grid system includes an  aperture 
3   precision q, where q > p, then the vertices of all cells at 
 precision p have an exact representation at precision q. 
 Alternately, an aperture 3 substrate grid – a potentially 
temporary grid precision lying outside the regular aperture 
 sequence – can be introduced to represent and manipulate 
the vertices on an as-needed basis. For example, the algo-
rithm used to generate cell boundaries in H3 (Uber Technol-
ogies Inc. 2018) uses an aperture 3 substrate grid  approach. 
Similarly, an aperture 4 substrate grid ( Figure  20b) can 
exactly represent the midpoints of each cell edge. And an 
aperture 7 substrate grid (Figure 20c) introduces exactly 
represented points in the interior of each cell.
Let the precision-p geometry set be the set of all centre 
points, vertices, and edge midpoints of cells at precision 
p. Adding both aperture 3 and 4 substrate grids (in either 
order) creates a substrate grid that exactly represents all 
of the points exactly represented by either substrate grid 
aperture. Given a precision p grid, an aperture sequence 34 
substrate grid is a precision p+2 grid that exactly represents 
all points in the precision p geometry set (see Figure 21).
Recall that any CPI grid precision p, where p > 0, will be 
generated from the next coarser precision p – 1 grid us-
ing either aperture 3, 4, or 7. As illustrated in Figure 22, 
the points in the coarser precision p – 1 geometry set all 

Figure 20. Exact location representations introduced by 
single precision substrate grids: (a) aperture 3 represents 
cell vertices, (b) aperture 4 represents the midpoints of 
cell edges, and (c) aperture 7 represents points in the cell 
interior.

Figure 21. A substrate grid created by adding aperture 
3 and aperture 4 to a coarse-precision grid exactly 
represents the centre points, vertices, and edge midpoints 
of all of the coarse-grid-precision cells.

Figure 22. The cell centre points, vertices, and edge 
midpoints of a coarse-precision grid all coincide with cell 
centre points, vertices, or edge midpoints in the next-
finer-precision grid using aperture 3, 4, or 7, respectively.
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number of central place apertures of type a (including ro-
tation, as applicable) that occur in A. Thus, in constructing 
a common substrate grid, precisions with apertures that 
are redundant for the two aperture sequences A1 and A2 
can be removed from D. Let D’ be an aperture sequence 
such that aD’ = max(aA1, aA2) for each aperture type a. Let 
the grid produced by D’ be designated the least common 
substrate grid, because it is the coarsest precision substrate 
grid common to both A1 and A2. An example of this con-
struction on the sphere is given in Figure 23. Adding an 
aperture sequence 34 substrate grid to D’ results in a least 
common substrate grid that exactly represents the com-
plete geometry set of all cells at all apertures of both A1 
and A2. This allows us to construct, for any two (or more) 
disparate CPI systems, a common spatial substrate where 
the cell geometries of both systems can be efficiently repre-
sented and manipulated as integer CPI indexes.

Conclusions

As discussed above, hexagonal DGGS with hierarchical 
linear indexes have significant advantages for a wide va-
riety of use cases, and mixed-aperture grids provide the 
greatest known representational and semantic flexibility. 
CPI is the first systematic approach to the indexing of 
hierarchical hexagonal DGGS constructed using mixed- 
aperture central place hierarchies.
Hexagonal DGGS already provide concrete solutions to 
challenging real-world problems in geospatial computing. 
This usefulness has led to their implementation and on-
going use in a number of scientific and industrial settings, 
including the examples of CPI systems described here. 
A subset of mature DGGS use cases has even begun the 
process of standardization (Open Geospatial Consortium 
2017). It could be argued that the adoption of hexagonal 
DGGS by end users seems to have outpaced the depth of 
our understanding of them; much more research is re-
quired to better inform effective DGGS design choices and 
implementations. The author concurs with Ben and oth-
ers (2018) that much of existing research into hexagonal 
DGGS “rel[ies] mainly on a research style of induction, 
guesswork, and experimentation and lack[s] theoretical 
derivation or proof.” And hexagonal DGGS have not been 
subjected to the kind of rigorous performance comparison 
testing usually required of geospatial data structures.
But independent of such quantitative analysis, hierarchi-
cally indexed hexagonal DGGS provide qualitatively su-
perior solutions for a growing number of geospatial end 
users. CPI gives these users a tractable approach to effi-
ciently exploiting the full expressiveness of hexagonal 
DGGS, including their ability to exactly and efficiently rep-
resent their own geometries. Further research –  including 
the definition and implementation of more algorithms – 
will be needed to effectively evaluate the impact of these 
semantic advantages.

be the finest precision in A. As discussed above, adding an 
aperture sequence 34 substrate grid to pMAX will introduce 
exact representations of the precision pMAX geometry set. 
Since the precision pMAX – 1 geometry set is a subset of the 
precision pMAX geometry set, the substrate grid also exactly 
represents the precision pMAX – 1 geometry set, and this is 
true, by induction, for all grid precisions. Thus an aperture 
sequence 34 substrate grid added to the maximum preci-
sion of a CPI system will exactly represent the cell centre 
points, vertices, and edge midpoints of every grid precision 
in that system, allowing users to represent and manipulate 
the geometry of all of these grids using exact integer CPI 
indexes.

LEAST COMMON SUBSTRATE GRIDS

Let A1 and A2 be two CPI aperture sequences defined on 
the same CPI manifold. A higher-precision common sub-
strate grid can be constructed using an aperture sequence 
D = A1A2; the centre points of all cells at all precisions of 
the A1 and A2 grid systems are exactly represented in the 
precision D grid, and each cell in the precision D grid can 
be assigned cell indexes with a prefix in either A1 or A2.
Recall that the grid produced by an aperture sequence A 
is completely specified geometrically by the number of 
each type of aperture that occurs within it, where aA is the 

Figure 23. An example of constructing a least- 
common-substrate grid on ISEA DGGSs. (a) and (b) 
are grids generated from the same base cells but with 
different aperture sequences: A = 4, 3ccw and  
B = 3ccw, 3ccw. (c) and (d) show A and B, respectively, with 
a substrate grid generated by the least-common-aperture 
sequence D’, with non-zero aperture components 3ccw

D = 2 
and 4D = 1.
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