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The primary goal of mineral prospectivity mapping (MPM) is to narrow the search for
mineral resources by producing spatially selective maps. However, in the data-driven do-
main, MPM products vary depending on the workflow implemented. Although the data
science framework is popular to guide the implementation of data-driven MPM tasks, and is
intended to create objective and replicable workflows, this does not necessarily mean that
maps derived from data science workflows are optimal in a spatial sense. In this study, we
explore interactions between key components of a geodata science-based MPM workflow on
the geospatial outcome, within the modeling stage by modulating: (1) feature space
dimensionality, (2) the choice of machine learning algorithms, and (3) performance metrics
that guide hyperparameter tuning. We specifically relate these variations in the data science
workflow to the spatial selectivity of resulting maps using uncertainty propagation. Results
demonstrate that typical geodata science-based MPM workflows contain substantial local
minima, as it is highly probable for an arbitrary combination of workflow choices to produce
highly discriminating models. In addition, variable domain metrics, which are key to guide
the iterative implementation of the data science framework, exhibit inconsistent relation-
ships with spatial selectivity. We refer to this class of uncertainty as workflow-induced
uncertainty. Consequently, we propose that the canonical concept of scientific consensus
from the greater experimental science framework should be adhered to, in order to quantify
and mitigate against workflow-induced uncertainty as part of data-driven experimentation.
Scientific consensus stipulates that the degree of consensus of experimental outcomes is the
determinant in the reliability of findings. Indeed, we demonstrate that consensus through
purposeful modulations of components of a data-driven MPM workflow is an effective
method to understand and quantify workflow-induced uncertainty on MPM products. In
other words, enlarging the search space for workflow design and experimenting with
workflow components can result in more meaningful reductions in the physical search space
for mineral resources.

KEY WORDS: Mineral prospectivity mapping, Uncertainty, Zn–Pb deposits, Machine learning,
Consensus.

INTRODUCTION

Mineral prospectivity mapping (MPM) is an
activity that derives spatial information regarding
the prospectivity of target mineral (or ore) deposits.
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Depending on the approach used, the frameworks
that encapsulate the activities in pursuit of MPM are
many, and a high-level framework is the exploration
information system (EIS) framework (Yousefi et al.,
2021). Data-driven MPM is a sub-domain of practice
within MPM, whose activities are increasingly for-
mulated into artificial intelligence tasks due to the
usefulness of artificial intelligence algorithms, the
abundance of data, and the emerging domain of
geodata science. The use of artificial intelligence
methods in data-driven activities typically adheres to
a data science framework, which commonly consists
of data collection, data preparation, exploratory
data analysis, predictive modeling, and deployment
and reporting (Fig. 1) (e.g., Shearer, 2000; Hazzan &
Mike, 2023). This type of framework is designed to
cater to the characteristics of experimentation,
which include: (1) flexibility in methodology (e.g.,
workflow design), and (2) high-risk of having to
execute all stages to reach project feasibility analysis
(Fig. 1). There is a hidden type of uncertainty that
results from heuristic implementations of the data
science workflow, which we call �workflow-induced
uncertainty� (Fig. 1) in the construction of MPM
products. In particular, the sensitivity of MPM
products is unknown with respect to common
workflow design variability, and to what extent
workflow uncertainty can be anticipated and miti-
gated. Fundamentally, this is because workflow de-
sign is guided by variable domain performance
metrics in the data science framework, but spatial
domain characteristics of models are only weakly
coupled in a post-hoc manner.

In all sciences, models of reality advance
through two modes of scientific inquiry—dissent and
consensus. Dissent occurs in the form of new dis-
coveries, breakthroughs and otherwise disruptive
information or data that supersedes, invalidates or
weakens existing models (Solomon, 1994; e.g., gen-
eral relativity vs. Newtonian gravity). Consensus re-
affirms something that is already known and occurs
in the form of replications, validations and successful
applications of models, which increase model confi-
dence (Laudan, 1984). Both modes are necessary to
achieve scientific advancements, which often occurs
through experiments that generate new evidence.
Evaluations are then made to assess the degree to
which new evidence is dissent or consensus given a
previous model. Replicable findings are important to
determine the validity of evidence and the degree of
either dissent or consensus. Therefore, experimental
methodology is designed to maximize outcome

replicability. The value of experimental findings is
determined through replication, which is a form of
scientific consensus (e.g., follow-up studies, replica-
tions and post-hoc data analysis). Even dissenting
evidence must be replicable to retain scientific value.
In the hypothesis-driven domain of science, models
being inquired scientifically are causal or physical. In
the data-driven domain, models are commonly
inferential.

Data-driven MPM is a developing sub-domain
(e.g., Zuo et al., 2023), which means that there are
no canonical static methodology or standard oper-
ating procedures to produce models (which are
usually visualized as maps). For example, the con-
struction of evidence layers is seldom comparable
across studies (Yousefi et al., 2021; Zuo et al., 2021).
The most standardized portion of the data-driven
MPM workflow is the data science framework,
which recognizes and emphasizes workflow experi-
mentation, guided by model performance. In par-
ticular, data science makes the explicit recognition
that the applicative branch of this sub-domain is
experimental in nature, which is unavoidable for
data re-purposing (Grossi et al., 2021). This is en-
tirely the case for MPM, which is the biggest non-
ephemeral user of multidisciplinary geodata by its
breadth. Experimentation favors method develop-
ment. However, for method deployment, where a
MPM map would be used to guide exploration, rigor
in the spatial domain is desirable, such as in the case
of mineral resource estimation, which is governed by
a rigorous framework on resource assessment (e.g.,
OSC, 2016; SAMREC, 2016). The typical aspatial
data science framework is incomplete and not de-
signed for MPM because most algorithms model
data in the variable domain, whose performance is
used as guidance in model selection. Spatial conno-
tations of algorithm and model selection cannot be
generally addressed within the data science frame-
work because, e.g., hyperparameter tuning of non-
spatially aware algorithms cannot be generally and
robustly related to spatial characteristics. Applica-
tions of data science into each discipline requires
addressing challenges that arise from the integration
of different bodies of knowledge and traditions
(Hazzan & Mike, 2023). Thus far, a geospatial
extension has been added to the data science
framework for MPM (and similar) tasks, where
additional criteria are used after the execution of a
data science workflow to contextualize modeling
outcomes (Fig. 1). Integration of data science into
geosciences has resulted in at least two approaches:
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(1) an additional component to data science (e.g.,
Zuo, 2020), and (2) integration of spatial consider-
ations in data modeling (e.g., Hoffimann et al.,
2021). Presently, relationships between variable do-
main performance (the data science outcome) and
spatial characteristics (a geoscience outcome) re-
main to be fully explored.

Within the modeling stage of the data science
framework, several activities must occur whose
implementation can be varied, including: (1) details
of feature engineering or extraction; (2) algorithm
and model selection, including the choice of the
performance metric for model selection through
hyperparameter tuning; and (3) details of perfor-
mance assessment (e.g., varying strategies of train-
test data splitting) (Fig. 1). The data science frame-
work promotes the variation within any workflow,
provided that some benchmark of performance is
achieved. From the perspective of data science,
there are an unlimited number of combinations of
(1)–(3) to achieve a target level of model perfor-

mance. Since it is impossible to explore all combi-
nations exhaustively, it is unknown whether
variations between choices across MPM practition-
ers result in a substantial difference in prospectivity
maps and to what extent are heuristic choices
appropriate, in general. This means that it is not
possible to achieve scientific consensus of MPM-
based exploration models without explicit planning
and methodology design. This creates uncertainty
that arises from workflow design, which creates un-
known impacts on the characteristics of MPM
products. The closest known type of uncertainty to
workflow-induced uncertainty is judgment-related
uncertainty, which was identified for GIS-based ap-
proaches, in the context of the human cognitive
biases and heuristics (Zuo et al., 2021). Workflow
uncertainty is also not directly covered in the alea-
toric-and-epistemic decomposition of model uncer-
tainty, although it can impact both (Hüllermeier &
Waegeman, 2021).

Figure 1. A common data science framework guiding workflow design and execution associated with the generation and usage of

predictive models, with a specific geospatial extension to the workflow.
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This study aims to demonstrate that workflow-
induced uncertainty exists and is significant, and
proposes experimental consensus as a solution. In
particular, this study specifically modulates a data-
driven MPM workflow in a manner that mimics
common variabilities in workflow design, to deter-
mine their isolated and systemic effects on the
variable and spatial domain characteristics of the
resulting models. The modulated components in-
clude: (1) feature space dimensionality; (2) the
choice of algorithms; and (3) the choice of perfor-
mance metrics during model selection. We specifi-
cally examine the relationship between metrics of
model performance during performance assessment
in the data science framework and the spatial char-
acteristics of MPM products in the geodata science
framework. Our findings are intended to illustrate
complex interactions across key tasks that exist in
data science workflows for MPM, and their impact
on geospatial outcomes.

Our results demonstrate that: (1) it is possible
to reach high model performance through many
different combinations of feature-algorithm pairings,
implying that there are many local minima in
workflow design; (2) feature space dimensionality
impacts model performance significantly, whose
degree is algorithm dependent; (3) the choice of
algorithms impact model performance but standard
metrics of model performance are insufficient to
distinguish the quality of resulting maps as measured
by spatial selectivity; and (4) there is an inconsistent
relationship between model performance and spatial
selectivity, which implies that MPM products should
not be solely derived using a data-driven method-
ology (e.g., the data science framework), but must
involve some spatial or knowledge constraints.
Based on our analysis, we propose that workflow
modulation can be employed to propagate uncer-
tainty to achieve consensus in data-driven MPM.

To ensure replicability and relevance for mod-
ern exploration targets, we employed the dataset
that was published by Lawley et al. (2021), which
contained various data layers and labels pertaining
to primarily Mississippi Valley Type (MVT) and
clastic-dominated Pb–Zn deposits. It is important to
distinguish the purpose of our study from other
studies (e.g., Lawley et al., 2022) in that ours is a
theoretical/experimental MPM study, whereas, e.g.,
the Lawley et al. (2022) study is an applicative one.
Readers interested in the applicative domain of
MPM should refer to Lawley et al. (2022) for ap-
plied MPM products.

REVIEW OF DATA-DRIVEN MPM
WORKFLOWS

MPM can be conducted in a manner guided by
knowledge, data or some combination thereof
(Yousefi et al., 2021). In geodata science-based
MPM, machine learning algorithms are commonly
used to model relationships between covariates and
target labels because MPM is a particularly data-rich
domain within the geosciences and machine learning
as a discipline is primarily intended for big data
analysis (Zuo, 2020; Yousefi et al., 2021). However,
the extension of data science into geodata science is
more recent and ongoing (e.g., Zuo, 2020; Yousefi
et al., 2021) (Fig. 1). Within MPM, and for strictly
the purpose of data analysis, machine learning is
used to primarily: (1) identify mineralization-related
anomalies through unsupervised learning (e.g.,
Nwaila et al., 2022; Zhang et al., 2022b); (2) predict
targets that are similar to known occurrences
through supervised learning (e.g., Zuo & Carranza,
2011; Zhang et al., 2021; Senanayake et al., 2023);
and (3) predict targets using reinforcement learning
(e.g., Shi et al., 2023). Outside of data analysis,
machine learning is also beginning to be used in: (1)
data generation (e.g., Zhang et al., 2022b; Bourdeau
et al., 2023); (2) data processing (e.g., Song et al.,
2020; Nwaila et al., 2023; Zhang et al., 2023); and (3)
simulations (e.g., Song et al., 2021). Shallow learning
and statistical approaches are very common (Zuo,
2020). Deep learning is common in MPM because of
its lack of a-priori considerations on the statistical
properties of data and the availability of sizable
datasets at regional to national scales (e.g., Xiong
et al., 2018; Li et al., 2020; Sun et al., 2020; Shi et al.,
2023). Within the deep learning algorithms,
autoencoders (e.g., Chen, 2015; Xiong et al., 2018)
and convolutional neural networks (Li et al., 2020;
Sun et al., 2020) are prominent (Zuo, 2020). For
autoencoders, this is because they are the most
general-purpose dimensionality reduction and data
reconstruction tools, which means they could be
used to both extract features and detect high-di-
mensional anomalies. For convolutional neural net-
works, this is because they are the most general-
purpose learning algorithms that are applicable to
rasterized (image-like) data, can perform automated
feature extraction, and can extract spatial relation-
ships in addition to those in the variable domain.

This study solely focuses on classification-based
data-driven MPM using supervised machine learning
algorithms in the variable domain (or spectrum-
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based methods, see Zuo & Xu, 2024). This class of
approaches use training data with labels in the form
of known mineral occurrences (e.g., deposits, pro-
spects and showings) that are used to guide model
construction (Yousefi et al., 2021). Supervised data-
driven methods are commonly biased by the loca-
tions of training data labels (Yousefi et al., 2021). In
addition, the high complexity of geological systems
combined with an unknown lower-bound number of
labels renders it easy to produce models that are
overfitted, particularly for deep learning algorithms
(Dietterich, 1995; Porwal et al., 2004; Coolbaugh
et al., 2007; Skabar, 2007; Srivastava et al., 2014;
Chen, 2015; Porwal et al., 2015; Zuo et al., 2019,
2021; Yousefi et al., 2021). Consequently, models
that are produced using data-driven methods carry
exploration biases and uncertainties (Yousefi &
Nykänen, 2016). The formulation of MPM into
artificial intelligence tasks is an emerging domain of
research because there are generally unsolved chal-
lenges including: (1) the selection of algorithm,
architecture and optimal parameters; (2) training
data sufficiency, achieving class balance and repre-
sentativity of negative labels; and (3) rigorous uti-
lization of data science (Yousefi et al., 2021). In
addition, there are additional unsolved issues, e.g.,
of the spatial transferability of models and perfor-
mance expectations; specifically, the lack of geosta-
tistical learning algorithms (e.g., Hoffimann et al.,
2021).

An absolute scientific requirement is that mea-
surements or findings must be associated with a
notion of uncertainty. Here, we summarize uncer-
tainty in MPM products in strictly the data-driven
domain. Data-driven MPM products exhibit at least
two classes of uncertainty: (1) aleatoric, or data re-
lated; and (2) epistemic, or model related (Zuo
et al., 2021). Aleatoric uncertainty arises from
imperfect data, which can be further categorized
into those related to the spatial or variable domains.
It is important to distinguish between ‘‘data quality’’
as it is referred to in MPM literature (e.g., Zuo et al.,
2021) and in data management (e.g., DAMA
DMBOK; Henderson et al., 2017). The former
aligns closer with GIS terminology, while the latter
is a broader framework that aligns with data man-
agement and analytics. The latter definition is con-
structed using the delineation of roles along the data
lifecycle, by treating data as a product (e.g., similar
to a car from design to manufacturing processes)
that is passed from data generators to users. In this
definition, characteristics of data from generation to

management that adversely impacts analytics per-
formance are considered quality-related. We hereon
standardized the terminology as per DAMA�s defi-
nition (Henderson et al., 2017) because this study
considers data-driven MPM using machine learning
algorithms as a specific use-case of artificial intelli-
gence, which is a form of advanced analytics.
Therefore, completeness, resolution and availability
are part of data quality, which is different than the
GIS definition (Zuo et al., 2021). In this definition,
spatial domain uncertainty can be affected by (non-
exhaustively): coverage and coverage rate, espe-
cially relative to the areal coverage of litho-diversity
classes, and imprecision of coordinate measure-
ments. Variable domain uncertainty can be affected
by (non-exhaustively): metrological characteristics,
such as measurement accuracy and precision; sam-
pling practices; and geostatistical characteristics,
such as the nugget and random noise effects. Epis-
temic uncertainty relates to how models are typically
undercomplete relative to the full behavior of min-
eral systems, due to model capability, availability of
algorithms, knowledge of target behavior and natu-
rally irreducible variability (e.g., complex system
behavior). For example, algorithms that result in
models with greater degrees of freedom, such as
neural networks, are capable of modeling more
complex phenomena than simpler algorithms, such
as linear regression.

In addition to the preceding classes of uncer-
tainty, there is an additional class (3) that captures
judgment-related uncertainty, which is the result of
cognitive heuristics, experiential bias and other pri-
marily user-related effects, in a GIS context (Zuo
et al., 2021). This class has no direct equivalent in a
pure data science framework (Fig. 1) because this
framework was purposefully created to remove user
judgment by selecting models based on objective
metric scores and permitting workflow modulations
to achieve higher scores. Metric-driven search for
model candidates creates a collection of models,
each containing error that is decomposable into bias,
variance and irreducible error (Kohavi & Wolpert,
1996). However, judgment-related uncertainty exists
in the geodata science framework (Fig. 1) because
the spatial basis for model selection is EIS or GIS
based (e.g., Yousefi et al., 2021), but model con-
struction through hyperparameter tuning is not.
Therefore, performance as assessed in the variable
domain using common scoring metrics is decoupled
from spatial characteristics or performance. Conse-
quently, it is possible to produce equiprobable
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models, whose model performance in the data sci-
ence framework are comparable, but whose spatial
domain characteristics are not. This is compounded
by the fact that only a tiny minority of models per
workflow are assessed in the geospatial sense (e.g.,
the vast majority of models explored through grid
search are not assessed in the spatial domain).
Therefore, variations in workflow design creates
uncertainty in MPM products because user judg-
ment or perceived best practices (e.g., interpolation)
guide the implementation of at least some stages of
the geodata science framework (Fig. 1). In addition,
workflow tuning based on metric scores implies that
models are produced using a workflow-wide gradi-
ent descent to the best possible combination of
choices. However, given the large exploration space
for workflow design, reaching the global minimum is
impossible in general, and instead, equiprobable
models pertain to local minima in workflow design.
This type of uncertainty would not be an issue, if
spatial domain characteristic is monotonically
dependent on variable domain performance, which
means optimization in one domain is equivalent to
the optimization in the other. However, this has
never been examined empirically nor is it theoreti-
cally obvious. Presently, it is unknown how typical
variability in the construction of data science-based
MPM workflows translate into spatial characteris-
tics.

Within the domain of supervised artificial
intelligence-based MPM, we consider algorithm
selection as the biggest documented source of vari-
ability. This is because performance evaluations are
typically made on an experimentation of algorithm
selection, while controlling other portions of the
workflow. This is exemplified by a sizable body of
literature, whose raison d�être is to demonstrate the
effectiveness of novel algorithms in MPM tasks
(Chen & Wu, 2017; Xiong et al., 2018; Chen et al.,
2020; Wang et al., 2020; Yang et al., 2022; Yin & Li,
2022; Zuo et al., 2022; Gharehchopogh et al., 2023;
Li et al., 2023; Yin et al., 2023). There also have been
recent efforts to examine specifically this type of
uncertainty, in a GIS knowledge-driven framework
(Daviran et al., 2022). The range of all possible
algorithms is unknowable because there are emerg-
ing algorithms and variations of existing ones, either
as architectural modifications (e.g., changes in neu-
ral network architecture) or as add-ons (e.g., opti-
mization algorithms; Chen et al., 2020; Yin & Li,
2022; Gharehchopogh et al., 2023). An empirical
analysis revealed that algorithms used by various

authors include (non-exhaustively): Bayes network
(Porwal et al., 2006; Yin & Li, 2022); logistic
regression (Agterberg & Bonham-Carter, 1999;
Carranza & Hale, 2001; Karbalaei Ramezanali et al.,
2020; Lin et al., 2020; Zhang et al., 2022c); support
vector machines (Zuo & Carranza, 2011; Zhang
et al., 2021; Senanayake et al., 2023); tree-based
methods, such as random forest, extra trees and
XGBoost (Chen &Wu, 2019; Sun et al., 2019; Zhang
et al., 2022a); artificial neural networks, such as ex-
treme learning machines (Chen & Wu, 2017); deep
learning methods (Xiong et al., 2018; Wang et al.,
2020; Yang et al., 2022; Zuo et al., 2022, 2023; Li
et al., 2023; Yin et al., 2023; Zuo & Xu, 2023); and
reinforcement learning (Shi et al., 2023). There are
also applicative MPM studies that employed
ensemble learning, which is an approach to improve
outcome reliability by integrating the output of
multiple independent models (e.g., Senanayake
et al., 2023; Shetty et al., 2023). The diversity of
algorithms reflects a diversity of practitioners, scale
of MPM tasks, computational and data capabilities,
and algorithmic complexity choices, all of which
emphasize the experimental nature of data-driven
MPM. Algorithm choice primarily controls the
explanatory power of the model (but also model
complexity and generalizability), which implies that
modulating algorithmic choice impacts epistemic
uncertainty (Hüllermeier & Waegeman, 2021).

A second major source of variability in data-dri-
ven workflows is the construction of covariates, which
are referred to as �evidence layers� in the geospatial
realm. Covariate data can range from mono-disci-
plinary, such as geochemical (e.g., Zhang et al., 2022b)
or spectral (e.g., Nwaila et al., 2022), up to sizable
combinations of qualitative and quantitative geosci-
entific data (e.g., Lawley et al., 2022). The variability
encountered in covariate construction falls into two
major categories: (1) the number of covariates; and (2)
their quality. Category (1) variability primarily con-
trols the threshold between overfitting and underfit-
ting that differs on a per-algorithm basis (through the
curse of dimensionality; Jia et al., 2022; Márquez,
2022), which further implies that the selection of data
and feature engineering impacts algorithm selection.
The presence of category (2) variability is theoretically
easy to deducebecause factors such as the support type
(in a geostatistical sense), the quality of interpolation,
the data coverage and coverage rate (e.g., density of
samples and their distribution over space), as well as
metrological properties (e.g., measurement accuracy
and precision) all impact the quality of models. The
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impact of data quality on models is a part of aleatoric
uncertainty (Hüllermeier & Waegeman, 2021). How-
ever, the impact of data quality on downstream MPM
products is not fully understood because such inter-
actions are complicated to model in general and even
for specific applications, requires repetitive executions
of the data science framework, through uncertainty
propagation (Fig. 1) (e.g., Yang et al., 2023). Conse-
quently, pre-data modeling processes typically occur
in a feed-forward fashion. For example, spatial inter-
polation of sparse data into evidence layers are often
performed using heuristic or best practices, although
the rationale is inconsistently documented (e.g., Se-
nanayake et al., 2023). Creation of evidence layers in
this manner is considered feed-forward because much
of the best practices predate the coupling of traditional
geoscientific data to artificial intelligence algorithms.
Consequently, it is not generally known whether such
best practices are still optimal in a data re-purposing
context because data usage methods have changed.
Purely data-related workflow variability is outside of
the scope of this study because this study uses a pub-
lished and rasterized dataset. However and for
example, varying how data are collected and pro-
cessed clearly contributes to aleatoric uncertainty and
could theoretically be varied to modulate their effects
on MPM products (e.g., partially via simulations, see
Yang et al., 2023). A pre-data modeling task that is
often performed is dimensionality reduction because
of the high dimensionality of evidence layers relative
to the paucity of training labels (in supervised ap-
proaches). If left unattended, using a native number of
evidence layers can lead to overfitting because the
degrees of freedom of complex models are not fixed
using a statistically robust number of samples. Feature
space dimensionality reduction occurs using algo-
rithms that range from knowledge-based feature
engineering, simple principal component analysis to
knowledge-constrained variational autoencoders (e.g.,
Zuo et al., 2022; Senanayake et al., 2023). Technically,
the modulation of feature space dimensionality im-
pacts both variability categories (1) and (2) because
this process affects both the number of features
available for predictivemodeling and the quality of the
features through a controlled loss in feature-explana-
tory power.

Popular choices of performance metrics include
those that measure model discrimination power,
such as the area-under-the-curve of the receiver
operating function (AUC-ROC), and those that
measure the quality of predictions, such as the
accuracy and F1 metrics. Metrics are intended to be

a robust criterion to guide model selection or
hyperparameter tuning. However, in the geodata
science extension (Fig. 1), this intention is weakened
because spatial domain metrics, such as the predic-
tion-area curve (Yousefi & Carranza, 2015a, 2015b)
does not directly guide hyperparameter optimization
(or model selection; e.g., Yin & Li, 2022). Part of the
issue results from the fact that training datasets are
not necessarily (and generally are not) spatially
contiguous and of sufficient extent, such that spatial
characteristics could be robustly determined during
hyperparameter optimization. Consequently, spatial
metrics are typically computed on the testing dataset
(or more appropriately, the whole dataset), which
means that spatial performance assessed post-hoc of
hyperparameter optimization cannot be used to
rigorously guide model selection but only model
performance assessment in the spatial domain (e.g.,
Yin & Li, 2022). Therefore, it is not clear the rela-
tionships between the choice of variable domain
metrics and spatial characteristics. The choice of
feature space dimensionality is also similarly weak
because the extent to which the explanatory power
of covariates is preserved during feature engineering
occurs along a smooth continuum. Once this choice
is made, it is not generally documented to have been
revisited explicitly, which implies that the impact of
this choice on downstream metrics is not generally
intelligible. Consequently, the complex interactions
between feature space dimensionality and algorithm
performance, particularly the relationships between
variable (in a pure data science framework) and
spatial domain performance (in a geodata science
framework), remain to be explored.

METHODOLOGY

Data Sources

The dataset employed in this study was pub-
lished and made digitally available by Lawley et al.
(2021) as a single file or as a compilation of GIS-
compatible files from McCafferty et al. (2023)
(Fig. 2). The dataset was managed to facilitate its re-
use and re-purpose by data scientists because the
master data, metadata and reference data files are
fully machine readable and full documentation ex-
ists to guide non-geoscientists to understand the
data. By employing this dataset, we were able to
experimentally control the data collection to
preparation stages of the data science workflow.

Workflow-Induced Uncertainty in Data-Driven



Figure 2. Geological maps of Canada and the United States (top), and Australia (bottom). Figure was modified from Lawley

et al. (2021). The H3 cells are color-coded using the hierarchical rock classification developed as part of Lawley et al. (2021),

with data sourced from multiple national, state, provincial/territorial databases. Rock subtypes were used during mineral

prospectivity mapping as mappable proxies for the sources and traps of mineral systems. Known Pb–Zn Mississippi Valley-

type and clastic-dominated deposits and mineral occurrences used for training are shown for reference.
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Here, we provide a description of the dataset
(Fig. 2). Bedrock geological data for the United
States were sourced from the State Geologic Map
Compilation (SGMC) digital database covering the
conterminous United States (Horton et al., 2017), as
well as the Geologic Map of Alaska (Wilson et al.,
2015). In the case of Canada, the geological datasets
are a compilation of 20 previously published na-
tional, provincial and territorial geological map da-
tabases (Lawley et al., 2021). It is important to note
that geological data from the United States and
Canada should be considered a collection of indi-
vidual bedrock geology maps with highly variable
mapping scales (1:50,000 to 1:5,000,000) and
boundary artifacts (e.g., induced by mapping sub-
jectivity). In contrast, geological data for Australia
are seamless and was extracted from the 1:1 million
scale national bedrock geology database (Raymond
et al., 2012). Lithological information from all 23
source maps was re-categorized into four main types
(sedimentary, igneous, metamorphic, and other) and
31 subtypes for the purposes of prospectivity mod-
eling (Fig. 2). New data dictionaries were also used
to identify the presence or absence of up to 17
geological properties (such as coarse clastic, fine
clastic, calcareous, carbonaceous, evaporitic, cherty,
red beds, sedimentary, ultramafic to mafic compo-
sition, intermediate composition, felsic composition,
pegmatitic, alkalic, igneous, schistose, gneissose, and
anatectic) from the available geoscientific text data.

Geochronological data were reformatted and
compiled from the 23 geological map compilations
described above. They were then combined with
plate tectonic models to estimate the paleo-latitude
and -longitude of rocks at the time of their deposi-
tion or emplacement (Scotese, 2021). The fault
compilation was based on global sources (Chorlton,
2007; Styron & Pagani, 2020), national databases
(Raymond et al., 2012), and the 1:5,000,000 scale
Geologic Map of North America digital database
(Reed et al., 2005) (Fig. 2). Duplicate faults from
these different data sources were not removed prior
to converting fault traces into a proximity surface.
Proximity calculations were also performed for
passive margins and the point locations of carbona-
ceous sedimentary rocks (e.g., black shales) using
the global compilations from Bradley (2008) and
Granitto et al. (2017), respectively.

Geophysical datasets represent the second ma-
jor source of information for prospectivity modeling.
Seismic datasets were sourced from a range of sur-
vey types, including active controlled-source seismic

refraction and passive teleseismic surveys. Depth
estimates for the seismogenic Moho were extracted
from national datasets specific to each region, i.e.,
Canada (Schetselaar & Snyder, 2017), the contigu-
ous United States (Shen & Ritzwoller, 2016), Alaska
(Zhang et al., 2019), and Australia (Kennett et al.,
2011). Global models, such as Szwillus et al. (2019),
Reguzzoni & Sampietro (2015), and Laske et al.
(2013) were also used as secondary sources for
Moho depth estimates. Seismic velocity data for the
upper mantle and estimates for the lithosphere–as-
thenosphere boundary were sourced from studies
conducted by Debayle et al. (2020), Hoggard et al.
(2020), and Priestley et al. (2018). The spatial reso-
lution of the source seismic datasets is highly vari-
able (e.g., seismic stations may be separated by 10–
100s of km), but the depth estimates for the seis-
mogenic Moho and lithospheric–asthenosphere
boundary were expected to be within a few kilo-
meters of their true value (Snyder et al., 2018).

Gravity datasets were sourced from satellite, air-
borne, and ground-based surveys. Satellite gravity
data is based on the European Space Agency (ESA)
Gravity Field Steady-State Ocean Circulation Ex-
plorer (GOCE) mission and its derivative products,
which focus on highlighting the curvature and shape of
gravity anomalies, as described in Ebbing et al. (2018).
TheBouguer anomaly grid is based on national gravity
databases for Canada, Alaska, the contiguous United
States, and Australia (Phillips et al., 1993; Saltus et al.,
2008; Geological Survey of Canada, 2017; Lane et al.,
2020). Individual stations within this gravity mea-
surement network tend to be distributed every few
kilometers but can bemorewidely spaced for themore
remote parts of North America and Australia. Multi-
ple derivative products were then calculated to high-
light density variations at different crustal depths,
including the horizontal gradient magnitude (HGM)
and an upward continued version of the Bouguer
anomaly grid. In addition to these grids and their
derivatives, we identified points tracking the maxima
of the HGM gravity values for both the Bouguer
gravity and its upward-continued field following the
approach outlined by Phillips (2007). The proximity to
these tracks, often referred to as gravity ‘‘worms’’,
were used as proxies for identifying steeply dipping
geological structures and the contacts between rocks
with varying densities.

Magnetic datasets were combined from both
modern sources (Alaska Division of Geological and
Geophysical Surveys, 2016; Miles & Oneschuk,
2016) and legacy surveys, such as the North America
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magnetic map (Ravat et al., 2009), to create an up-
dated and merged residual magnetic anomaly map
for North America. The spatial resolution of these
source geophysical surveys is highly variable, and, in
the case of aeromagnetic data, can include line
spacings ranging from hundreds of meters to several
kilometers. A differential RTP (reduction-to-pole)
methodology included with the Geosoft Montaj
software was used to make the adjustment for the
magnetic north pole, as described by Arkani-Hamed
(2007). An identical workflow was followed to pro-
duce an RTP grid and its derivative products from
the residual magnetic anomaly map of Australia. In
addition, several derivative products were calcu-
lated from the RTP grids, following the procedures
outlined in Phillips (2007). These calculations in-
cluded the first vertical derivative (1VD) to assess
and map magnetic variations in the shallow crust.
Shallow magnetic sources were further highlighted
by calculating the horizontal gradient magnitude
(HGM) of the pseudo-gravity field and the proxim-
ity to the paths of HGM maxima, often referred to
as magnetic ‘‘worms’’. Deep magnetic sources are
based on long-wavelength anomalies from the RTP
grids using a matched filtering technique described
by Syberg (1972) and implemented with code
developed by Phillips (2007). These long-wavelength
RTP anomalies were then transformed into a pseu-
do-gravity field, and the HGM was calculated from
this field to accentuate the boundaries and edges of
deep magnetic sources. The proximity to long-
wavelength ‘‘worms,’’ which trace the HGM max-
ima, served as proxies for mapping the edges of deep
magnetic sources within the deep-to-mid-crust.

The dataset was published in the H3 Discrete
Global Grid System (DGGS), an open-source soft-
ware developed by Uber Technologies Inc. (2020) to
convert latitude and longitude coordinates of the
source geological and geophysical datasets into unique
H3 addresses (Fig. 2). The H3 DGGS is a hierarchical
and hexagonal grid system, which offers global cov-
erage at multiple resolutions. For spatial indexing, this
study used resolution 7 of the H3 DGGS, resulting in
98,825,162 unique H3 addresses worldwide. At this
resolution, the average hexagon covers an area of 5.16
km2, with average edge length of 1.22 km.

Data Processing

Data pre-processing is trivial because of the
high quality of the dataset. There were a total of 82

evidence layers, of which 31 contained null values
for at least one data record. These layers were re-
moved because this study does not aim to examine
the variability introduced by imputation methods,
which is a part of data preparation. Additionally, the
intention of this study was not to provide updated
prospectivity maps, which was completed by Lawley
et al. (2022) for the same exact dataset. Conse-
quently, the employed data pre-processing may re-
sult in a loss of model performance or spatial realism
of derived maps, under the condition that: (1) data
imputation is feasible and benefits predictive mod-
eling; and (2) the affected data layers are useful
additional covariates of the target label. After the
removal of partially empty evidence layers, the data
were re-scaled to span an equal range. The labels in
the dataset describe two types of Zn–Pb deposits,
that is, MVT and clastic-dominated (CD) deposits.
For the purpose of our study, we wished to maximize
the amount of training data possible. Therefore, it
was irrelevant to the study�s purpose, whether the
targets were MVT or CD (or any other deposit
type). Consequently, we merged the two deposit
types into a single class, implying that MPM is tar-
geting all Zn–Pb deposit types. Training data were
purposely generated to achieve class balance.
Hence, there was a total of 2474 positive labels and
the same number of negative labels, which were
randomly sampled from the much larger proportion
of presumed negative labels. However, negative
training labels were kept consistent across workflow
variations to control training data variability. This
was sufficient for the purpose of pure (as opposed to
applied) MPM research to understand workflow
variability that excludes variability induced by data
label generation. In addition, with the exception of
class balancing, this was identical to the original
methodology used in Lawley et al. (2022) because
true negatives (areas devoid of mineralization) are
generally unavailable across all areas, due to a lim-
ited availability of borehole coverage.

Data Science Workflow and Algorithm Descriptions

The workflow contained three key stages re-
lated to the experimental variables: (1) feature
extraction and feature space dimensionality-modu-
lation using autoencoders; (2) predictive modeling
using machine learning algorithms; and (3) statistical
analysis and geospatial visualization. For (1), there is
a collection of algorithms in the data-driven domain
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that are theoretically useful (Jia et al., 2022), but
research of their empirical effects on MPM is
exceedingly rare (Wang et al., 2022). For our pur-
pose, the experimental constraint to maximize the
amount of information contained in the covariates
for every feature space dimensionality implies that
we require a general-purpose feature extraction and
engineering algorithm that is agnostic to down-
stream algorithms. Therefore, we cannot rely on
feature elimination methods because their outcomes
are optimized to downstream algorithms. Other
popular methods in MPM include mainly principal
component analysis (PCA) (e.g., Wang et al., 2022).
However, PCA is not the most general because it
assumes linearity of relationships in data, which, if
violated, can lead to counter-productive results
(Abbott, 2014). Consequently, for dimensionality
reduction, we employed autoencoders, which are
generalizations of PCA, because among other
characteristics, they make no assumptions on the
types of relationships exhibited by data (Kramer,
1991). Therefore, we ensured that features extracted
from the evidence layers were the most compact, de-
correlated (linearly and nonlinearly), information-
dense and useful for all downstream algorithms. This
enabled us to ensure that feature space dimension-
ality can be explicitly controlled and that informa-
tion is maximally retained for any feature space
dimensionality. Consequently, we were able to
modulate feature space density by changing the
number of extracted features to study its impact on
algorithms and maps.

Autoencoders are a general-purpose dimen-
sionality reduction tool based on artificial neural
networks (ANNs) in the context of unsupervised
feature extraction via deep learning. The classic
function of autoencoders is to encode data into a
compact latent space representation, such that
reconstructed data and input data are as similar as
possible (Kramer, 1991). ANNs mimic biological
neural networks and feature multiple layers of vary-
ing numbers of neural nodes, which in the case of
feed-forward ANNs, are connected in a single direc-
tion from the input side of the network to the output.
Abstract information flows along the connections. At
each node, an activation function computes the nodal
output given the sum of all weighted inputs from
other nodes. Typical activation functions include the
rectified linear (relu), hyperbolic tangent (tanh),
logistic and linear functions. Where autoencoders are
used for dimensionality reduction, they are a gener-
alization (e.g., nonlinear and non-parametric) of

PCA (Kramer, 1991). The bottleneck of the autoen-
coder, which is the narrowest layer of the ANN, also
known as the coding layer, is purposely designed to be
narrower than the dimensionality of the input data,
such that the typical autoencoder is undercom-
plete—meaning that the neural network is unable to
fully replicate all information contained in data.
Hence, by modulating the coding layer size, autoen-
coders can discard variable amounts of information in
the data. This behavior is similar to truncating the
number of principal components. Reconstructed data
exhibit an increasing loss of noise, data and physical
anomalies and increasingly more common events,
with decreasing coding layer size. Consequently,
known uses of autoencoders include image denoising,
geochemical anomaly detection and seismic data
denoising (e.g., Gondara, 2016; Luo et al., 2020; Saad
& Chen, 2020, respectively). Key hyperparameters of
ANNs include the number of hidden layers and their
size, the choice of the activation function, the ability
to stop training early if performance fails to improve
(early stopping), regularization strength, and the
random number generator seed to control the ini-
tialization of all connection weights.

Shallow learning algorithms are suitable for
predictive modeling but are incapable of automated
feature extraction. Unlike deep learning, their usage
necessitates discipline-specific expertise and knowl-
edge to craft effective features for the task and
algorithms considered. In this study, we explored a
variety of common shallow learning algorithms with
a range of algorithmic complexity that include:
logistic regression (LR; Cramer, 2002); k-nearest
neighbors (kNN; Tikhonov, 1943; Fix & Hodges,
1951; Cover & Hart, 1967); Gaussian process (GP;
Rasmussen & Williams, 2006; Kotsiantis et al.,
2007); artificial neural networks (when not used for
deep learning, ANN; Curry, 1944; Rosenblatt, 1961;
Rumelhart et al., 1985; Hastie et al., 2009; Lemaré-
chal, 2012); support vector machines (SVM); ran-
dom forest (RF) and adaptive boosting of decision
trees (AdaBoost or AB; Ho, 1995; Breiman, 1996a,
1996b; Freund & Schapire, 1997; Breiman, 2001;
Kotsiantis, 2014; Sagi & Rokach, 2018); and extra
trees (ET; Geurts et al., 2006). It is worth mention-
ing that ANN can be used for both shallow and deep
learning purposes and, where it is used for both
feature extraction and predictive modeling, the
combination is considered deep learning.

In this study, we forwent an exhaustive techni-
cal description of the machine learning algorithms
for brevity but provide a general description of them
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and their key hyperparameters. The LR algorithm is
a parametric method that attempts to fit data labels
to a logistic function. In the classic case, the output
of the model is binary, which suits classification
tasks. Its key hyperparameters include the type of
regularization, which could be none, L1-norm, L2-
norm or a combination (elastic net) thereof. The
strength of regularization is controlled by a param-
eter C. The kNN algorithm is a non-parametric
method that predicts the label of a sample using an
average of similar samples, which is computed
through a distance metric (typically the L2-norm).
Its key hyperparameters include the number of
neighbors (k) and distance weighting, which could
be a variety that include uniform or inversely
weighted by distance. GP is a non-parametric fea-
ture interpolation-based method that probabilisti-
cally assigns labels to samples by attempting to
model the underlying stochastic process using a
kernel. The kernel specifies the covariance function
of the data. The type of kernel and its parameters
are key hyperparameters. Common kernel choices
include the radial basis function (RBF), which has
two typical parameters that specify the length scale
and amplitude. The SVM algorithm is a non-prob-
abilistic linear method that attempts to maximize the
separation distance between classes. Because it can
be formulated using inner products, it is often used
with kernels to effectively expand the dimensional-
ity of the problem without data transformation and
seek a decision boundary in higher dimensional
space, which when projected to the original dimen-
sions of the problem, becomes a nonlinear decision
boundary. Key SVM hyperparameters include: the
choice of the kernel, which could be RBF, linear or
polynomial; C, which defines a penalty for misclas-
sifying support vectors and higher values increase
the decision boundary complexity; and c, which
specifies the nonlinear kernel�s coefficients.

Ensemble methods include RF, AB and ET.
Although technically, any weak classifier could be
ensembled to produce a strong classifier, RF, AB
and ET typically refer to ensembles of decision
trees, which are flowchart-like hierarchical struc-
tures that partition the trees recursively. Learning
occurs to partition the trees through splitting bran-
ches (at nodes). The splitting is metric-driven to
maximize the difference between the resulting
leaves. RF utilizes bagging to create a forest of de-
correlated trees, from which the averaged output is
the prediction. De-correlation occurs through boot-
strap sampling of features. The maximum number of

features per tree, the splitting metric, the number of
trees, and the minimum number of samples per split
are model hyperparameters in addition to the tree
depth parameter that is inherited from decision
trees. AB uses adaptive boosting (Freund & Scha-
pire, 1995), which is a type of predictor–corrector
algorithm in the sense that trees are constructed
through adaptation, which adjusts the weights of
subsequent trees to focus on cases that are more
difficult. The output in AB is a weighted sum of
individual trees. In addition to hyperparameters for
RF, the rate of adaptation is an AB-specific hyper-
parameter. ET is similar to RF but randomizes
thresholds instead of optimizing them for splitting,
and retaining the best thresholds as the splitting rule.
The hyperparameter grid for all algorithms is pro-
vided in Table 1. The hyperparameter ranges are not
intended to be exhaustive but are intended to cover
the probable usage of each algorithm in this task. In
addition, the hyperparameter ranges were iteratively
refined by observing model choices (e.g., if a model
is consistently at the end of a parameter range, that
parameter range would be extended, if possible, to
increase model diversity).

Model selection occurs through cross-valida-
tion, whose strategy is an experimental control.
Because the data were abundant, we employed four-
fold cross-validation. We used a variety of metrics to
assess model performance, which included accuracy,
class-weighted F1 score and AUC-ROC (Fawcett,
2006). The F1 score is a harmonic mean of precision
and recall. The ROC (receiver operating function) is
a curve that describes the relationship between true
positive rate and false positive rate at a range of
discrimination thresholds, whose integral is the
AUC (area under the curve)-ROC score. In essence,
the AUC-ROC measures the degree of cross-over of
the predictions given a model. However, the AUC-
ROC metric can give misleading results in class-
imbalanced cases. Consequently, the AUC-ROC
metric is better for examining the quality of a model,
whereas the class-weighted F1 score is robust to
class imbalance and is better for assessing the quality
of predictions (e.g., outputs of a deployed model).
AUC-ROC scores are easy to interpret; e.g., a score
of 0.5 implies that the model is no better than a
random guess. The AUC-ROC score is desirable for
classification tasks because it is classification-
threshold-invariant and describes the model’s dis-
crimination quality. This further implies that MPM
models derived from different implementations of
the data science framework can be compared purely
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on the basis of their ability to separate prospective
and non-prospective sites, regardless of the details of
the workflow. However, the classification-threshold
invariance can lead to issues with the usability of
prospectivity maps because the investment cost
associated with false negatives is zero, compared
with the non-zero investment cost associated with
false positives. Because we controlled class imbal-
ance through purposely constructing two identically
sized positive and negative label sets, the effect of
class imbalance is minimized for all performance
metrics. A summary for the MPM workflow, par-
ticularly as it pertains to the experimental controls
and variables within the workflow, is shown in Fig-
ure 3.

RESULTS

Feature Extraction

The optimized autoencoder within the grid
range has the structure (102, 51, 34, 25, nodes in the
coding layer, 25, 34, 51, 102) (Fig. 4) with early
stopping enabled, a regularization strength of 0.0001
and using the tanh activation function. The coding
layer size can be controlled to modulate the per-
formance of the autoencoder. Varying the coding
layer size from 25 to 5 for a total of 20 runs (with
randomized initializations of the nodal weights) per
size reveals a gradual loss of autoencoder perfor-
mance (Fig. 5). This loss has two distinguishable

regimes, with a shallow trend from 25 to 10 and a
steeper trend from 10 to 5 (Fig. 5). The reconstruc-
tion performance is often above a coefficient of
determination (CoD) value of 0.95 for coding layer
sizes above 11, which implies that less than 5% of
the variability of the data was lost. This implies that
the evidence layers are highly compressible and
about 11 fully de-correlated latent features contain
about 95% of the original variability. It is important
to recognize that the rate of information loss (de-
termined through the CoD metric) is significantly
slower than the rate of dimensionality loss, espe-
cially down to a coding layer size of 8 (see shallow
slope of curve, Fig. 5). Consequently, the main dif-
ference imparted onto downstream algorithms is
more attributable to changes in feature space
dimensionality, rather than feature information-
content.

To provide the readers with a qualitative visu-
alization of the latent data, we visualized the ex-
tracted features, for two features for coding layer
sizes 5 and 25 (Fig. 6). There was excellent spatial
variability that roughly followed geological terranes
(e.g., around the Canadian Shield, across the interior
plains and the Cordilleran range). However, the
exact nature of the features was not geologically
interpretable because they were complex nonlinear
combinations and transformations of the input data.
Moreover, it was theoretically clear and empirically
observable (Fig. 6) that nonlinear combinations re-
sulted in features exhibiting nonlinear spatial vari-
ability. This may also be the case for many evidence

Table 1. Hyperparameter grid for all algorithms

Algorithm Parameter range

ANN (autoen-

coder)

Hidden layers: {5, 7, 9}; hidden layer design (e.g., for 7 layers): m 9 (n1, fÆn2, gÆn3, gÆn4, gÆn3, fÆn2, n1), where ni is an

integer between 1 to 5 with the condition that nj ‡ ni if j> i, m is the number of features, and f and g are fractions

within {1/4, 1/2, 1/3, 2/3} with the condition that f> g. Activation function: {linear, logistic, tanh, relu}. Regular-

ization: {0.00001, 0.0001, 0.001}. Early stopping: {True, False}

kNN k: 1 to 23 by 1; distance weighting: uniform, inverse distance

LR C: from 1 to 20 by 0.1; regularization penalty: L1, L2, elastic net, none

SVM Kernel: linear, RBF, polynomial; C: {1, 10, 100, 1000, 10000}; c: 1, 2, auto-scaled by the inverse of number of features

and feature variance

GP Kernel: {dot product, RBF}; length scale: {0.1, 1.0, 10.0}

RF Number of estimators: {500, 1000, 2000}; splitting metric: {Gini, entropy}; maximum depth: {3 to 30}; maximum features:

{1 to the number of autoencoder features used}; minimum number of samples for a split: {2 to 20 by 1}; minimum

number of samples per leaf: {2 to 20 by 1}

ET Same as for RF

AB Same as for RF

ANN Hidden layers: {3, 4, 5}; hidden layer design: (m,…, m,m/2), where m is the number of features and is repeated to reach

the number of hidden layers; all other parameter ranges same as for ANN (autoencoder)
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layers even prior to encoding because many types of
data are discontinuous across terranes, faults or
other types of boundaries (e.g., geochronological
age and rock type). Incidentally, this implies that
linear geostatistical methods (including interpola-
tion) are not generally reliable on nonlinear latent
data.

Predictive Modeling

For each set of autoencoder features from 5 to
25, we performed predictive modeling using all eight
machine learning algorithms (Table 1), with the
model selection driven by either the AUC-ROC or
weighted F1 metric. This resulted in two sets of 168
optimal models with a range of performance (Figs. 7

Figure 3. Illustration of the experimental MPM workflow, depicting the experimental controls and variables, as well as the result

analysis methods. The experimental variables are modulated, whose choices are provided in set notation (members in curly

brackets).

Figure 4. Network configuration for the optimized autoencoder. The coding layer size is shown as

‘‘x’’. The black arrows abbreviate full connectivity between neurons in adjacent layers (fully

connected layers).

Figure 5. Autoencoder�s performance as measured through

the coefficient of determination (CoD) metric, as a function of

the coding layer size of the autoencoder.
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and 8). Two categories of algorithms are evident
based on the results—those that were performance-
sensitive or -insensitive to the number of features
used. The first category consisted of SVM, LR, ANN
and GP, all of which generally exhibited an increase
in all metric scores up to about 20 features or coding
layer nodes (Figs. 7b, f, g, and h and 8b, f, g, and h).
Beyond a coding layer size of 20 nodes, model per-
formance in this category demonstrated plateaus or
slight decreases for models that were selected using
the AUC-ROC metric (Fig. 7). For models selected
using the weighted F1 metric, the trend was some-
what similar but the transition was not as clear for
some algorithms, such as the ANN algorithm, which
demonstrated a performance plateau past 20 nodes
(Fig. 8g). For other algorithms, the performance
plateau was not reached until 21 or 22 (e.g., AB and
SVM; Fig. 8e and b, respectively) or slightly more
(e.g., ET and GP; Fig. 8d and h). The second cate-

gory consisted of kNN, RF, ET and AB. This cate-
gory tended to exhibit the same model performance
with minor variance (Fig. 7a, c, d, and e). This is an
important observation because, clearly, the strategy
to perform dimensionality reduction depends on the
choice of algorithms and to a lesser extent, the
choice of performance metric for performance
assessment. An additional observation was that
hyperparameter tuning using the AUC-ROC metric
increased the AUC-ROC score of all best models
for each algorithm, whereas tuning using the
weighted F1 metric resulted in generally lower per-
formance metric scores for all performance metrics
used (Figs. 7 and 8). It is also worth to note that
hyperparameter tuning using the weighted F1 metric
in our study resulted in essentially identical metric
scores for all metrics used, but this would not
be expected where class imbalance existed.

Figure 6. Visualization of the autoencoder�s extracted features (AE features) 1 in (a) and (b), and 21 in (c) and (d) for

coding layer sizes 5 and 25.
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Analyzing prospectivity maps in solely the
spatial domain is challenging to standardize because
there are no data science metrics for this task, and it
is impossible to craft universal metrics because there
are no universal notions of spatial quality. The
closest metric is related to the prediction–area curve,
which simultaneously assess both spatial and vari-
able domain characteristics (Yousefi & Carranza,
2015a, 2015b). The ratio of class-dependent predic-
tion rate (sites per class divided by total number of
sites) to its corresponding occupied area (area of the
class divided by total area) is known as normalized
density (Mihalasky & Bonham-Carter, 2001). Con-
sequently, normalized density is a composite metric
that is formulated like a posterior probability with
the numerator incorporating variable domain per-

formance, and the denominator spatial selectivity of
models. Prediction rate is somewhat comparable,
but not identical to the accuracy metric, and is
incomparable to either the F1 or AUC-ROC met-
rics. This is a problem for our intended usage be-
cause we cannot explicitly and generally relate
model quality in terms of purely data science met-
rics, which are always used to guide model con-
struction, to model quality in terms of purely
geospatial characteristics. Therefore, we extended
the idea of the normalized density metric as a ratio
of two independent metrics (across domains) to
incorporate typical data science metrics, eschewing
prediction rate. It was also unnecessary that the
numerator–denominator assignment be kept the
same as it was in normalized density. Spatial selec-

Figure 7. Performance of various algorithms with

hyperparameter tuned using the AUC-ROC metric during

predictive modeling as a function of the number of

autoencoder features used (as controlled by the coding layer

size).

Figure 8. Performance of various algorithms with

hyperparameter tuned using the weighted F1 metric during

predictive modeling as a function of the number of

autoencoder features used (as controlled by the coding layer

size).
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tivity was assessed through the occupied area metric,
which was calculated in this study as the fraction of
sites prospective (fraction prospective). Conse-
quently, visualizing spatial selectivity as a function
of metrics in the data science framework revealed
the spatial evolution of models given workflow
variability. Therefore, the spatial-variable domain
coupling can be directly related to model tuning. An
excessively overfitted model would predict few sites
beyond positive training labels as prospective.
Therefore, it was possible to compare, among other
things, the fitting quality of models in response to
changes in feature space dimensionality between
algorithms, by examining the changes in spatial
selectivity vs. model performance. A physical upper
bound on spatial selectivity (occupied area) is un-
known because the total area of mineral deposits
cannot be known, but heuristic order-of-magnitude
guesses may be possible (e.g., Fermi�s piano tuner
problem; Zipf�s Law; Merriam et al., 2004).

In terms of spatial selectivity alone, tree-based
methods (group 1) exhibited the highest selectivity
to within the range of parameters studied, across all
sizes of feature dimensions (Fig. 9). The moderately
selective algorithms included the kNN, ANN, SVM
and GP (group 2). However, the variance of selec-
tivity within this group was relatively large com-
pared to that of the tree-based group (Fig. 9). The
least selective group (group 3) consisted of solely
LR, which did not overlap with any other group at
all sizes of feature dimensionality (Fig. 9). Within
groups, there was a common trend of increasing
spatial selectivity with increasing coding layer size
(feature space dimensionality), although at feature
space dimensions beyond about 17, there was a
gradual plateauing and loss in selectivity for kNN,
ET, AB and RF algorithms, which was prominent
for models selected using the weighted F1 metric
(Fig. 9b). The net change in selectivity (average
slope) was not comparable for all groups. The
average slopes for the tree-based algorithms were
shallower than those of the other groups, with the
exception of the kNN algorithm, which was com-
parable (Fig. 9). To provide a robust summary, we
performed a sensitivity analysis of spatial variability
induced by changes in workflow, which we deter-
mined using the mean range metric (the mean of the
absolute range of scores). The fraction prospective
metric was the most sensitive to changes in algo-
rithm, which resulted in a mean range of 0.15 across
all feature space dimensions and model selection
metrics. The second-most sensitive variable was the

feature space dimensionality (coding layer size),
with a mean range of 0.05, across all algorithms and
all model selection metrics. The least sensitive
variable was the choice of tuning metric, with a
mean range of 0.01, across all algorithms and feature
space dimensions.

The relationships between spatial selectivity
and model performance (the numerator and
denominator of the composite metric) were noisy
and varied (for the AUC-ROC metric, see Fig. 10,
the results were qualitatively similar for the weigh-
ted F1 metric). There were two distinct categories:
(1) those that exhibit clear relationships between
spatial and variable domain characteristics, which
included SVM, LR, ANN and GP (Fig. 10b, f, g, and
h); and (2) those that exhibited no strong relation-
ship between spatial and variable domain charac-
teristics, which included kNN, RF, ET and AB
(Fig. 10a, c, d, and e). In effect, only some algorithms
resulted in models whose spatial selectivity was
sensitive to variable domain performance (the
‘‘spatial sensitivity issue’’). In addition, the tree-
based algorithms (RF, ET and AB) produced mod-
els that exhibited an inflection in their variable–
spatial domain relationships, which can be observed

Figure 9. The fraction of sites that are deemed prospective

(fraction prospective) as a function of the number of features

used (as controlled by the coding layer size) for

hyperparameter tuning using the AUC-ROC metric (a) and

the weighted F1 metric (b).
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Figure 10. Relationships between spatial selectivity as measured by the fraction of sites predicted

as prospective (fraction prospective) and variable domain metric scores.
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as a curvature in the scatter plots (Fig. 10c, d, and e).
The peak variable domain performance for the tree-
based methods occurred at roughly the mid-range of
spatial selectivity and away from the mid-range, the
performance was generally lower as measured
through any performance metric. Therefore, the
relationship between variable domain performance
and spatial selectivity was not monotonic and
exhibited at least a peak (the ‘‘selectivity ambiguity
issue’’). The existence of the peak is telltale of a
gradual overfitting of the models that may not be
detectable within heuristic designs of the workflow.
Consequently, because of both sensitivity and
ambiguity issues, variable domain metrics cannot
generally guide model selection toward a target de-
gree of spatial selectivity.

Because MPM results in maps that are often
used visually, it is also important to examine quali-
tatively the resulting prospectivity maps. For each
set of maps resulting from a unique combination of
the number of features and model-tuning metric,
there were observable differences between the best
models for each algorithm (e.g., Fig. 11). The dif-
ferences were the greatest between the best and
worst performing models regardless of the perfor-
mance metric used to tune the models (Fig. 9). To
understand the degree of consensus within the two
sets of 168 optimal models, we summarized the dif-
ferences of each set using a linearly weighted aver-
age, based on the tuning metric used (AUC-ROC or
F1 score). Weighted averaging seeks to reduce the
disproportionate impact of the poorest performing
models. This yields a set of maps that are not in-
tended to be prospectivity maps per se (because this
is not an applicative study), but are experimental
�consensus maps� (equivalent to a workflow uncer-
tainty analysis). Values on the maps that are closer
to 1 imply consensus for a positive label and at 0
consensus for a negative label, and in between
meaning variable dissent or disagreement. To create
a range in variable domain performance, we com-
bined only models above a given performance level
using their hyperparameter-tuning performance
metric, producing three sets of maps with all models
(cut-off threshold of 0.0) and only those above 0.85
and 0.90 (Figs. 12 and 13). These thresholds were not
classification thresholds, but were performance cri-
teria for model merging. It is visually clear that there
was better consensus at higher model performance,
which can be seen in the form of a loss of interme-
diate-colored (colors near the center of the color
bar) sites and more bright (more yellow) sites, and

dark (more deep blue) sites (compare Fig. 12e with
Fig. 12a). Regardless of the performance threshold,
it was also visually obvious that consensus was sig-
nificant in key prospective zones, which were con-
sistently colorized yellow (e.g., western Canada
extending into Alaska; Fig. 12). Conversely, the
consensus was poor, e.g., in western to the central
United States (Fig. 12).

It is visually discernible that models tuned using
the weighted F1 metric were more selective spatially
(e.g., Fig. 13f compared with Fig. 12f). Indeed, the
quantitative difference can be substantial in maps
(Fig. 14). In fact, for most algorithms with the
exception of GP and kNN, the general trend was
such that hyperparameter tuning using the weighted
F1 metric resulted in the most spatially selective
models across a range of feature space dimension-
ality (Fig. 15). Spatial selectivity also increased more
rapidly at increasing AUC-ROC thresholds for
models that were tuned using weighted F1 metric
than the AUC-ROC metric (Fig. 16). This observa-
tion combined with the observation that hyperpa-
rameter tuning using the weighted F1 metric
resulted in generally lower AUC-ROC scores
(Figs. 6 and 7), which implies that although there
was a rough relationship between spatial selectivity
and model performance metric scores on average, it
varied depending on the performance metric used
and is algorithm dependent (Fig. 16). A strategy to
tune models to maximize AUC-ROC score is inef-
fective to create models with the highest spatial
selectivity for our workflow and dataset.

DISCUSSION

In applicative domains of data science, model
performance is usually stipulated by a client and
through unlimited choices in workflow design, and
the data scientist attempts to locate at least one such
model satisfying the performance constraint. In this
research study, we adopted a reasonable perfor-
mance threshold of 0.90 as assessed through the
AUC-ROC metric. Models meeting this criterion
were considered satisfactory in the data science
framework. Results suggest that there always exist at
least one combination of feature space density/di-
mensionality and algorithm that produces an AUC-
ROC score above 0.90 (Fig. 7). This is false for
models produced using the weighted F1 metric be-
cause all LR and GP models fail this criterion
(Fig. 8). Consequently, we demonstrated that it is
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highly possible for MPM workflows to differ in key
stages, including feature selection (or extraction
using deep learning), predictive modeling algorithms
and performance metrics, while still producing
equiprobable models (in the case of classification
tasks). The effect of feature space dimensionality
was also significant. The increase in spatial selec-
tivity of all algorithms with increasing feature space
dimensionality, at least up to 20 features was ex-
pected given the increase in explanatory power of
the features (Fig. 5). However, beyond 20 to 22
features, the curse of dimensionality effect likely
caused performance plateaus or slight losses in
model performance (Figs. 7 and 8). This implies that
feature space density is becoming too low, such that,
despite increases in the explanatory power of the
features, there is a loss in model performance be-
cause of increasing sparsity of training samples rel-
ative to feature space dimensionality. In general,

there was a noticeable to significant difference in
prospectivity maps both quantitatively and qualita-
tively as a function of changes in algorithm and
changes in feature space dimensionality. An impli-
cation of this finding is that feature engineering and
algorithm interactions should be experimentally
modified using feedback as part of the workflow, in
the sense that a range of feature space dimensions
should be explored for each algorithm to optimize
model performance. Another implication of this
finding is that, where MPM adopts machine learn-
ing, a comprehensive implementation of a data sci-
ence framework should be a minimal requirement
for model deployment settings (e.g., Fig. 1). This
implication may also apply to data pre-processing,
which could include the construction of evidence
layers using discipline-specific methods, such as
geostatistics, because clearly differences in data pre-
processing would also propagate to machine learn-

Figure 11. Visual comparison of the prospectivity maps produced using 19 features and the AUC-ROC metric. Results are

shown for ANN in (a), RF in (b), GP in (c) and SVM in (d).
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ing features. However, this exploration was outside
of the scope of this study.

Another major finding was that there was not
always a sensitive or monotonic relationship be-

tween spatial selectivity and model performance as
assessed through the AUC-ROC, F1 or accuracy
metrics. This is a potential problem because the
geospatial extension to the data science framework

Figure 12. Weighted average maps (consensus) of all models using the AUC-ROC metric with a performance score:> 0.0

(a, d);> 0.85 (b, e);> 0.90 (c, f).
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is a post-hoc one. Therefore, e.g., it is unknown how
spatially-guided model construction (e.g., hyperpa-
rameter tuning) could be integrated into the data
science framework in general (i.e., not necessitating
spatially aware algorithms). In our case, for the ex-

plored tree-based algorithms, which are popular in
current MPM practices, optimizing model perfor-
mance via any metric did not necessarily result in
more spatially selective maps. On average, opti-
mizing the F1 score, by using the F1 metric to per-

Figure 13. Weighted average maps (consensus) of all models using scores of the F1 metric with a performance score:> 0.0

(a, d);> 0.85 (b, e);> 0.90 (c, f).
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form model selection through hyperparameter tun-
ing, produced more spatially selective maps. How-
ever, this produced models with generally lower
AUC-ROC (as well as accuracy and F1) scores. This
implies that the choice of metric during hyperpa-
rameter tuning was a significant source of variability
in prospectivity maps in the spatial domain. Because
the overarching objective of MPM is to narrow the
search space for mineral resources, this implies that
the value of MPM products cannot be determined
within the data science framework because this

framework employs solely variable domain metrics
to select algorithms and models. Consequently, the
rigor in which the geospatial extension (Fig. 1) is
practiced significantly controls the value of MPM
products. However, it is not obvious whether the
extension of the data science framework using a
geospatial post-hoc analysis can create effective
feedback, such that the metric-driven aspect of the
data science framework is preserved. For example,
metrics in the spatial domain relying on large por-
tions of maps could violate the train-test indepen-
dence of datasets in data science. As such, it is not
feasible to treat the style of geospatial extension of
the data science framework as practiced in this study
for the task of MPM, as a rigorous geodata science
framework because cyclical tasks, such as data
preparation to modeling cannot be generally con-
ducted using metric-driven feedback and experi-
mentation. For solely prospectivity mapping using
this type of framework, some measure of spatial
concordance between prospective sites and actual
mineral occurrences would be an effective validation
of any MPM product. However, because for many
commodities or deposit types, the positive label is
a constraint on training data abundance, it is not
practical in general to set aside a spatially extensive
and statistically large number of labels for robust
model testing.

Unfortunately, the inconsistent and sometimes
unreliable relationship between performance of
models in the variable and spatial domains implies
that out-of-sample testing and metric-driven model

Figure 14. Differences in the consensus maps produced by tuning hyperparameters using the AUC-ROC metric vs. the

weighted F1 metric (using only models with metric scores above 0.90). The difference is calculated as the consensus map

produced using the AUC-ROC metric minus that of the F1 metric.

Figure 15. Fraction of all maps that are deemed prospective of

all models tuned using the weighted F1 metric vs. those tuned

using the AUC-ROC metric.
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selection are insufficient to control models� spatial
selectivity, the (unconstrained) optimization of
which is the fundamental goal of MPM. This is
demonstrably true for supervised classification ap-
proaches using spectrum-based (aspatial) algorithms
and we expect that it would hold true also for
regression-based MPM, but it remains to be empir-
ically examined. This is likely more problematic for
singleton or experiential studies (studies that result
in single models or are based on subjective experi-
ence). This further implies that the uncertainty of
MPM products is generally unknown in the sense of
their spatial characteristics, e.g., how to define a
desirable extent of reduction in exploration search
space, and how to relate it to the data science
framework. With the current state of theoretical
development in the geodata science framework, it is
not yet possible to design an objective workflow and
its constraints (e.g., of number of features, algo-
rithms and otherwise) to definitively produce a
MPM product meeting or exceeding spatial
requirements. Physical feedback approaches are not
scalable in general to MPM products. For example,
in mineral resource estimation, additional sampling
could be used to delineate between resources and
reserves, which could occur after the resource
modeling stage. For MPM, this cannot generally
happen to the scale necessary to validate maps.
Therefore, feed-forward approaches are probably
the only viable solution for now. Our results indicate
that a possible way to de-risk MPM products is via
consensus of the outputs of multiple workflows,
whose key experimental variables are as de-corre-
lated as possible, as was utilized in this study
(Fig. 17). Any workflow component could be varied,

beyond those examined in this study (e.g., the
interpolation of sparse data into evidence layers). As
such, we propose that a practical mitigation measure
to workflow-induced variability is to build a large
variety of experimental models, each of which is
optimized through a single variation of a data sci-
ence workflow (e.g., the highest scoring model under
a set of experimental controls and variables, Fig. 3),
from which, a consensual model is derived that de-
picts regions of varying consensus. In this way,
exploration risk can be stratified (categorized) based
on the degree of consensus or a level of tolerance of
dissent. The most optimal exploration model is then

Figure 16. Comparison of the fraction of sites classified as prospective, averaged over all models meeting the performance

threshold in (a) and the number of models satisfying the performance threshold in (b), both as a function of threshold values

of AUC-ROC.

Figure 17. Summary of uncertainty propagation through

workflow modulation to create consensus of mineral

prospectivity mapping (MPM) products. The key stages depicted

are identification of subjective choices,modulation of experimental

variables and controls among the choices, and finally, propagation

of uncertainty to determine degree of consensus (e.g., the

uncertainty) of MPM products. A consensual model can then be

constructed using many individual models to understand

exploration risks created by workflow design.
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the subset of regions depicted by the consensual
model that meets or exceeds a target degree of risk,
which is defined by users of MPM products (e.g.,
99% consensus or 1% dissent). Unfortunately, this
means that prospectivity maps produced using sin-
gular workflows should probably be better treated as
isolated experimental findings, in the sense that they
require multiple either ensemble-type or subsequent
replications via de-correlated confirmation studies
or workflows to construct a scientific consensus. This
would make sense given that MPM is technically a
type of data-driven experimentation. Where con-
sensus is likely to be a deciding factor for down-
stream investment are greenfield settings, where no
additional knowledge would be available to con-
strain data-driven findings. To quantify uncertainty,
it would only require modulation of the workflow to
produce a set of (equiprobable) models or maps. To
mitigate uncertainty, a threshold could be used to
eliminate prospective areas of high disagreement
from further consideration.

CONCLUSIONS

Uncertainty of MPM products derived from
data-driven methods can be traced to the guiding
frameworks. For MPM methods that are formulated
as artificial intelligence tasks, the data science
framework is the most common framework to guide
model construction. The decoupling of data science
practices, such as the experimentation of algorithms
and models, and geoscience needs, such as spatial
characteristics of models, prevents effective feed-
back to guide objective and extensive experimenta-
tion within data-driven MPM workflows. However,
it is still a matter of research how spatial constraints
can be integrated into the data science framework in
a manner that respects the automatability, objec-
tivity and rigor of the framework. Therefore, al-
though the data science framework was originally
designed to standardize inferential data modeling, to
remove operator subjectivity and increase replica-
bility, the extension of data science frameworks via
post-hoc additions of geospatial analysis does not
preserve this intention because it cannot be used to
steer workflow design. This is the context in which
heuristic choices in workflow design creates un-
known and hidden uncertainty, which is not ad-
dressed by the data science framework, and whose
closest concept is judgment-related uncertainty in
GIS-based MPM. Given heuristic workflow design,

variability in MPM products is significant and indi-
vidual MPM outcomes (e.g., models or maps) con-
tain unknown uncertainty with respect to choices in
workflow design.

This study contributes to the understanding of
uncertainty in MPM products. Specifically, we
empirically demonstrated the existence of workflow-
induced uncertainty for MPM workflows adhering to
the geodata science framework. Moreover, we
showed that its spatial effects are significant and
unintuitive and exhibits complex relationships with
model performance metrics. Specifically, we found
that: (1) it is possible to reach high model perfor-
mance through distinct combinations of feature-al-
gorithm pairings, implying that there are many local
minima in workflow design; (2) feature space
dimensionality impacts model performance signifi-
cantly, whose degree is algorithm dependent; (3) the
choice of algorithms impact model performance but
model performance alone is not sufficient to distin-
guish the quality of resulting maps as measured by
spatial selectivity; and (4) there is an inconsistent
relationship between model performance and spatial
selectivity, which implies that MPM maps should not
be solely derived using a data-driven methodology
(e.g., the data science framework), but must involve
some spatial or knowledge constraints.

We also identified a solution to minimize
workflow-induced uncertainty, which leverages the
notion of scientific consensus, reframing data sci-
ence-based MPM into the greater experimental sci-
ence framework. We demonstrated that consensus
of workflows is realizable by treating the output of
each workflow variation as an independent experi-
mental measurement or outcome, then analyzing the
degree of consensus across outcomes. Therefore, by
carefully choosing experimental controls and vari-
ables, it is possible to both isolate uncertainty con-
tributions associated with a particular stage of the
workflow and study its interactions with those of
other stages. In effect, we demonstrated that mod-
ulation of workflow design enables uncertainty
propagation to the resulting MPM products. We
expect our findings and solution to be generalizable
to most known types of data science-based MPM
because our assumptions are unspecific to our data
or algorithms and we purposely explored a large
(multi-continental scale) dataset and range of
workflow implementations. We only anticipate that
to adopt our solution, the key requirement would be
computational capacity and high-performance com-
puting expertise, as modulating workflows is com-

Workflow-Induced Uncertainty in Data-Driven



putationally intensive, even if it is fully automated.
However, uncertainty analysis does not necessitate
that all sources of variability to be propagated, only
those with a dominant impact. Finally, in a philo-
sophical interpretation, because data-driven MPM is
a type of data-driven experimentation, it would be
consistent with experimental science practices to
ascribe value to outcome using scientific consensus.
An implication of this finding is that where geodata
science is used to derive scientific outcome, the
geodata science framework should be embedded
into an experimental science framework to properly
assess the value of data-driven products.
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