
Queued Direct Input Output

Table of Contents
Introduction..3

Group Device..3
Adapter..4

Features and Facilities..5
Queued Direct Input/Output Feature (QDIO)..5

Design Limits..5
QDIO Data Device..5

Adapter Interrupt Facility (AIF)..6
QDIO Extended State Block Management Facility (QEBSM)..6
Time Delay Disablement Facility (TDD)..7

QDIO Operations Overview..8
Adapter Initialization..9

Adapter Recognition...9
Network Adapter Operations..9
QDIO Operations..10

Queue Establishment...10
Input Preparation...11

Input Buffer Usage..11
Input Recognition..12

Programmed Controlled Interrupt Signaling...12
Adapter Interrupt Signaling...12

Input Processing...13
Output Preparation..13

TCP Segmentation Offload Buffer Usage..14
Non-packing Mode Output Buffer Usage...14
Packing Mode Output Buffer Usage...14

Output Initiation...15
Output Completion..16

Networking Facility and Feature Usage..17
Assigned Storage..18

I/O Interruption Identification Word ..18
Channel Subsystem Calls...19

Channel Subsystem Characteristics Call...19
Request/Response Layout...19
General Characteristics..19

Subchannel Subsystem Call...20
Request/Response Layout...20

schid...21
Subsystem Queue Description Call..21

Request/Response Layout...21
Subsystem Queue Description...22

flags..23

Harold Grovesteen Page 1 of 62

Queued Direct Input Output

qdioac1 – Adapter Characteristics...23
qfmt...24

QDIO Data Device Commands...25
Error Reporting...25
CLEAR SUBCHANNEL Function...26
HALT SUBCHANNEL Function...26
ACTIVATE Command (X'1F')..26

Asynchronous Interrupts...26
ESTABLISH Command (X'1B')...27

Queue Description Record (QDR)..27
Queue Descriptor, Format 0 (QDF0)..28

skeys..28
Queue Information Block (QIB)..29

Network Adapter Parameter Data..29
PCI Threshold Parameter – 'PCIT'...30
Block Timer Parameter – 'BLKT'..30

Storage List Information Block (SLIB)..30
Storage List (SL)...31
Storage Block Address List (SBAL)..31
Storage Block Address List Entry (SBALE)..31

flags..32
Storage List State Block (SLSB)..33

READ CONFIGURATION DATA Command (0xFA)...34
Emulation Node Element Descriptor..35
I/O Device Node Element Descriptor...35
Node Element Qualifier..35

SENSE Command (0x04)...35
SENSE ID Command (0xE4)..35

Basic Identification Information..35
Extended Identification Information..36

CPU Instructions...37
EQBS – EXTRACT QUEUE BUFFER STATE..37

Usage...40
SIGA – SIGNAL ADAPTER...41

Queue Mask...42
Signal Synchronize (Function 2)..42
Signal Input (Function 1)..43
Signal Output (Function 0) and Signal Enhanced Output (Function 3)............................44

SQBS – SET QUEUE BUFFER STATE...45
Usage...47

SVS – SUBSYSTEM VARY STATUS...49
SVS Clear Global Summary (Function 3)..50

Architecture and Evolution..51
Adapter Main Storage Interface..51

Harold Grovesteen Page 2 of 62

Queued Direct Input Output

QEBSM Considerations..52
Adapter Functionality..54

Appendix A – GCC Useful References...55
s390 32-bit ABI Types...55
s390 64-bit ABI Types...55
In-line Assembler..55

Constraints..56
Appendix B – Linux Modules..58
Appendix C – Linux Interrupt and I/O Handling..60

QETH Handlers...60
Queue Handlers...60
I/O Interrupt Handlers...60

Adapter Interrupt Handlers...61
I/O Interrupts...61
QDIO Adapter Interrupts...61
QDIO Data Device I/0 Interrupt Handlers...61
QDIO Data Device Adapter Interrupt Handlers..61
QETH Adapter Queue Handlers...62
QETH Read/Write Device I/O Interrupt Handlers...62

Introduction
Linux supports the z/Architecture Channel Subsystem feature Queued Direct Input Output
(QDIO). This document describes the hardware capabilities as derived from the Linux
implementation of QDIO supporting devices.

QDIO requires cooperation between the program, Linux, the Channel Subsystem, and QDIO
supporting device. Linux supports two devices that utilize QDIO:

� Open System Adapters (Linux qeth devices) and

� Fiber Channel Protocol SCSI disks (Linux zfcp devices).

The facilities provided by QDIO are fundamentally the same, although the device
implementations vary. This document focuses primarily on QDIO from the perspective of its
use by Linux qeth devices, but both zfcp (to a lesser degree) and qeth (to a much greater
degree) usages were explored to understand QDIO.

Group Device

A “group device” presents to the program multiple subchannels that operate in concert to
provide a single set of functionality.

In the case of QETH group devices, their are two devices, the read and write subchannels,
devoted to network related configuration information exchanges. If the read subchannel has
a device address of n, then the write subchannel must have a device address of n+1. The

Harold Grovesteen Page 3 of 62

Queued Direct Input Output

third subchannel in the group, the QDIO data device may be configured with any device
address. The QDIO data device address is independent of the read and write subchannel
device addresses.

Adapter

This document uses the term “adapter” to refer to a single instance of a device presenting to
the CPU one or more subchannels of which one (or the only) subchannel is a QDIO data
device.

In the case of an OSA (Open System Adapter) Express hardware device, each network port
constitutes a single adapter. By the above definition of “adapter,” an OSA Express or OSA
Express2 device supports at most two adapters and an OSA Express3 device supports at
most four adapters.

Harold Grovesteen Page 4 of 62

Queued Direct Input Output

Features and Facilities

Queued Direct Input/Output Feature (QDIO)

QDIO channel subsystem feature provides:

� A new device, the data device,

� A new CPU instruction, SIGNAL ADAPTER, that allows the program to notify the
adapter of program events and synchronize state with the adapter,

� Various structures understood by the QDIO feature,

� A channel subsystem call that queries a data device on behalf of the program for QDIO
information and

� Reporting of channel subsystem QDIO capabilities to the program.

Design Limits

The QDIO implementation appears to have the following limits or values:

� Maximum input queues per data device – 32

� Maximum output queues per data device – 32

� Number of buffers per queue – 128

� Maximum number of entries per SBAL – 16

� Maximum non-shared adapter interrupt indicators – 63

� Shared adapter interrupt indicators - 1

QDIO Data Device

The data device provides the linkage between the program, the channel subsystem QDIO
feature and a hardware adapter that supports QDIO functionality. By reporting SENSE ID
data consistent with the adapter with which a specific data device is associated, the data
device appears to be a functioning component of the adapter. The data device is in reality
implemented by the channel subsystem.

Two CCW commands are provided by the data device: ESTABLISH and ACTIVATE. The
ESTABLISH command provides the communication linkage between the program and the
data device, defining for the channel subsystem how the program will use the facility. Once
the program interface with the QDIO feature is established, the interface between the channel
subsystem and the hardware adapter may be started by the program issuing the ACTIVATE
command to the data device. Following activation of the adapter, the program may utilize the
new facilities (CPU instruction interrupts and structures) provided by the QDIO feature for

Harold Grovesteen Page 5 of 62

Queued Direct Input Output

communication with the adapter.

The fundamental unit of communication between the program and the adapter is a buffer
associated with a queue. Conceptually the queue is a circular ring of 128 buffers. Buffers are
shared between the adapter and program as each proceed around the ring. A buffer is
defined by its associated System Buffer Address List. This list is composed of one or more
entries that relate to the buffer. The QDIO feature provides access to the buffer's address list
by the adapter. The adapter's own path to main storage allows the address list to be read or
written by the adapter as can the buffer contents via the addresses supplied by the program
in the list itself.

Adapter Interrupt Facility (AIF)

AIF provides a:

� new form of input/output interrupt independent of a device that informs the program of
an adapter event,

� storage resident indicator that allows the program to recognize the occurrence of an
adapter event on

� any adapter by use of a summary indicator or

� an adapter associated with a specific QDIO data subchannel's adapter.

� new channel subsystem request allowing the indicator for a specific data device to be
set and/or a summary indicator to be identified, and

� new CPU privileged instruction, SVS, giving the program the ability to manage channel
subsystem resident indicators. The instruction name associated with the SVS
mnemonic is not used. Herein, it will stand for the SUBSYSTEM VARY STATUS
instruction.

QDIO Extended State Block Management Facility (QEBSM)

QEBSM provides two new privileged CPU instructions designed to improve performance
when the program is managing buffer state information in a z/VM environment:

� SET QUEUE BUFFER STATE (SQBS) and

� EXTRACT QUEUE BUFFER STATE (EQBS).

� A token associated with the subchannel provided to the program via a CHANNEL
SUBSYSTEM CALL request.

� Use of the subchannel token when identifying the data device to the SIGNAL
ADAPTER instruction.

Use of QEBSM eliminates the need for SIGNAL ADAPTER Synchronize commands
intercepted by z/VM. An SIE feature, QIOAssist, provides direct support of SIGNAL
ADAPTER Input or Output requests and handling of QEBSM.

Harold Grovesteen Page 6 of 62

Queued Direct Input Output

Reference

SC24-6081-05, z/VM V5R3.0 CP Commands and Utilities Reference, commands
QUERY QIOASSIST, QUERY VIRTUAL OSA

z/VM V5R2 Performance Report,
http://www.vm.ibm.com/perf/reports/zvm/html/qebsm.html

Time Delay Disablement Facility (TDD)

TDD extends AIF with the ability to disable the built-in time delay used to defer PCI input
interrupts until input slows or input buffers are exhausted. Disablement of the input interrupt
time delay ignores the BLKT value specified in the adapter parameter field during queue
establishment.

Harold Grovesteen Page 7 of 62

http://www.vm.ibm.com/perf/reports/zvm/html/qebsm.html

Queued Direct Input Output

QDIO Operations Overview
QDIO links a program and an adapter for input/output activities. As such, QDIO has two
interfaces:

� A program to channel subsystem interface and

� a channel subsystem to adapter interface.

Only the first is visible to the program. The second is completely embedded in the System z
hardware. While the second may influence how the program operates via the channel
subsystem adapter interface, it is impossible to differentiate whether the channel subsystem
interface the program observes is an artifact of QDIO operations or how the adapter
interfaces with the channel subsystem. This phenomenon is observed in system buffer
access list usage by the adapter.

Fiber channel buffers always have sixteen access list entries per buffer and network adapter
buffers may have as few as one access list entry per buffer. Network adapter buffer access
lists appear to be read-only from the perspective of the adapter. In other words, network
adapters do not alter the content of an access list entry supplied by the program, while the
fiber channel adapter does.

There is only one place where the channel subsystem is explicitly exposed to the nature of
the adapter during QDIO initialization. When the queues are described to the channel
subsystem by the program via the data device (notice all three participants are linked in this
operation), a parameter, queue format, is provided by the program that explicitly identifies
whether the queues are network adapter queues or fiber channel queues. Exactly how this
parameter effects QDIO operations is unclear, but it definitely provides the opportunity for
choice by the program and specification of adapter specific information.

This suggests that these variances in QDIO operations between the two different adapters is
the result of implementation choices made by the adapter developers in their internal use of
the adapter to channel subsystem interface.

Before a QDIO data device may be utilized it must be initialized with the program's
configuration. Once initialized and activated input/output operations may proceed until the
device is halted. Output operations are always initiated by the program. Input operations
may be under program control (zfcp) or occur unsolicited (qeth) depending upon the adapter.

Recognition of the completion of input or output operations is provided by a CPU recognized
I/O interruption. The source of the interruption may be either the data device subchannel or
directly by the adapter. Output operation completion is only provided by a program controlled
interrupt (PCI) provided to the program via the data device when requested by the program.
The program requests this by an indication in a SBAL entry. Completion of input operations
may be provided be either the adapter directly or data device depending upon how the data
device has been configured for operation.

Harold Grovesteen Page 8 of 62

Queued Direct Input Output

Following adapter initialization and activation, input operations may then be solicited by the
program. When input operations are not expressly solicited by the program, recognition by
the program that input has occurred is provided by one of two input/output interrupt types.
Output operations are always initiated by the program and completion of the output is
provided via an input interruption triggered by the data device if requested by the program
and supported by the adapter.

Adapter Initialization

Initialization of the adapter falls into three distinct phases:

� Recognizing the adapter group device

� Configuring the adapter for operations and

� Configuring QDIO operations.

Adapter Recognition

The program must recognize any group devices and those that support QDIO by means of
the extended SENSE ID channel command issued to each subchannel. The extended
SENSE ID will provide the channel commands required to complete the data device
initialization via CIW's.

The SENSE ID command is used to determine if the group device is an:

� OSA Express Adapter or

� Hipersocket Adapter or

� OSA for NCP adapter.

Each device in the group will respond with the same basic identification information. The
QDIO data device is further probed using the READ CONFIGURATION COMMAND to
determine if the adapter is a physical OSA Express or z/VM Guest LAN.

Network Adapter Operations

Adapter operations configure the adapter for its intended usage. For a network adapter, this
would include parameters related to either Layer-2 or Layer-3 operations. Adapter operation
initialization occurs over what will be called here, the adapter interface.

The adapter interface utilizes the adapter's read/write subchannels as a single bi-directional
communication path. The adapter interface communication path is established by the
program issuing to each of the read and write subchannels a:

1. WRITE CCW command containing an ID EXCHANGE activation command as data
followed by a

2. READ CCW command containing as data the subchannel's response to the ID
EXCHANGE adapter command.

Harold Grovesteen Page 9 of 62

Queued Direct Input Output

Among other things, this process validates that the subchannels the program believes to be
the adapter's read and write subchannels are in fact the read and write subchannels for the
adapter.

Once this adapter interface has been established, configuration of the adapter's operations
can be performed by the program issuing various commands to the adapter that configure its
operation. Details of these exchanges are not documented here as they are independent of
the QDIO operations discussed in this document. A companion document provides these
details.

QDIO Operations

The program must query the channel subsystem to determine:

� available QDIO features and

� the specific QDIO capabilities of individual attached adapter data devices.

Before data devices may be used, some group devices will require other operational aspects
of the adapter to be initialized. Such initialization must occur before an adapter is initialized
for QDIO input and output operations. For network adapters, operational aspects include
various configuration related to either Layer-2 or Layer-3 operations. Adapter configuration is
performed using the adapter's write and read devices operating as a single interface channel.

Queues, as managed by the program, are defined to the data device by means of the
ESTABLISH channel command. Input/output operations are started by the ACTIVATE
channel command. Exactly what actions are performed by the ACTIVATE channel command
is not clear from the Linux code. However the following can be inferred:

� I/O operations will not occur until the data device has been activated and

� an activate check condition can occur which suggests some form of error detection
occurs during activation.

Following queue initialization and activation, the data device may be used by the program for
QDIO input and output operations with the SIGNAL ADAPTER instruction and respond to
Program Control and Adapter Interrupts, and QEBSM instructions if available.

Queue Establishment

The program must create all of the structures required by the data device. For Linux this
process is separated between the adapter driver and the QDIO driver.

The Linux adapter driver creates:

� arrays (one per queue) of SBAL pointers used by the SL array.

� QIB adapter parameter field content and

� an initialization structure that includes:

� the queue format,

Harold Grovesteen Page 10 of 62

Queued Direct Input Output

� number of input and output queues,

� an interrupt parameter identifying the address of the QETH structure associated
with the adapter

� queue handlers

� and operational flags, for example, use output PCI's, and others

The QDIO driver establishes the following structures:

� SLIB,

� SBAL (SBAL entries are not complete, see “Input Preparation” and “Output
Preparation” sections, below),

� Input buffers are set to SLSB_P_INPUT_NOT_INIT,

� Output buffers are set to SLSB_P_OUTPUT_NOT_INIT,

� QIB,

� QDR,

� Adapter interrupt indicators, if used, and

issues the ESTABLISH and ACTIVATE commands to the data device.

Reference example:

drivers/s390/net/qeth_core_main.c/qeth_qdio_establish
drivers/s390/cio/qdio_main.c/qdio_establish
drivers/s390/cio/qdio_setup.c/setup_irq (and various called functions)
drivers/390cio/qdio_thinint.c/qdio_establsh_thinint

Input Preparation

The program must prepare the buffers that will receive input before QDIO can provide data in
them. See the “Input Buffer Usage” section, below.

The prepared buffers must then be given to the data device for use by setting the SLSB to a
state of SLSB_CU_INPUT_EMPTY. If the data device has no available input buffers the
program must issue a SIGNAL ADAPTER Input function to make the adapter aware of the
availability of input buffers if the adapter characteristic values indicate this requirements.

Input Buffer Usage

The Linux network adapter support initializes the SBAL entries with the following values:

SBAL Entry Field Entries Value Notes

length 0-15 4096

address 0-15 Pool entry element address

flags 0-14 0

Harold Grovesteen Page 11 of 62

Queued Direct Input Output

SBAL Entry Field Entries Value Notes

15 0x40 Flag this is last entry

Reference example:

drivers/s390/net/qeth_core_main.c/qeth_init_qdio_queues
drivers/s390/cio/qdio_main.c/handle_inbound

Input Recognition

The program is signaled by the adapter that input is available by means of either a
Programmed Control Interrupt (the default) or an Adapter Interrupt (if available). The purpose
of both is to inform the program of presence of inbound buffers that require processing.

Programmed Controlled Interrupt Signaling

Whenever a PCI interrupt is received from a data device, each established input queue,
usually only one, must be examined to determine if input has been received. The SLSB is
examined to determine this based upon the buffers previously provided to the adapter for
input. The SLSB does not require the SIGNAL ADAPTER Synchronize function because
synchronization is automatically performed by the adapter for inbound frames or packets.

The buffers states examined for buffers used for output operations are:

� SLSB_P_INPUT_PRIMED (0x82) – Input has been received

� SLSB_P_INPUT_ERROR (0x8F) – Error has occurred processing this inbound buffer

� SLSB_CU_INPUT_EMPTY (0x41) – Buffer has been provided for input, still empty

� SLSB_P_INPUT_NOT_INIT (0x80) – Buffer has not been prepared for input

� SLSB_P_INPUT_ACK (0x81) – Program acknowledges buffer contains inbound data
and processing is pending completion

Reference example:

drivers/s390/cio/qdio_main.c/qdio_int_handler
drivers/s390/cio/qdio_main.c/qdio_int_handler_pci
drivers/s390/cio/qdio_main.c/qdio_inbound_processing

Adapter Interrupt Signaling

Adapter interrupts on not device specific. It it the responsibility of the program to validate
each input queue to identify which has received input. Examination of the subchannel or
summary indicators may be used, or some other program specific mechanism. Once an
indicator has been identified as requiring service, it must be cleared. Clearing requires an
atomic operation. If the shared indicator has identified one or more subchannel requiring
servicing of its input queue, following recognition for each such subchannel, the shared

Harold Grovesteen Page 12 of 62

Queued Direct Input Output

indicator must be cleared using the SUBSYSTEM VARY STATUS instruction.

Reference example:

drivers/s390/cio/airq.c/do_adapter_IO
drivers/s390/cio/qdio_thinint.c/tiqdio_thinint_handler
drivers/s390/cio/qdio_main.c/tiqdio_inbound_processing

Input Processing

Once a buffer is recognized as containing input to be processed, the buffer is processed by
the QETH Layer-2 or Layer-3 inbound queue handler. Following the processing of the
inbound buffer, the SLSB state is set to SLSB_CU_INPUT_EMPTY. If the adapter has run out
of free input buffers, SIGNAL ADAPTER Input should be issued. SIGNAL ADAPTER
Synchronize function is then performed to both update the adapter with processed buffers
and recognize new input.

Reference example:

drivers/s390/net/qeth_l2_main.c/qeth_l2_qdio_input_handler
drivers/s390/net/qeth_core_main.c/qeth_queue_input_buffer
drivers/s390/cio/qdio_main.c/do_QDIO
drivers/s390/cio/qdio_main.c/handle_inbound

Output Preparation

QETH buffer preparation is dependent upon two factors:

� TCP Segmentation Offload is in use or

� Packing mode is active.

When TCP Segmentation Offload is in use, the first SBAL entry will contain data pointing to
the packet header and reflect its length.

When packing mode is in use, multiple complete packets or frames will be contained in a
single buffer. However, each packet or frame will be pointed to by one of more SBAL entries,
meaning that an individual packet or frame will not share an SBAL entry with another packet
or frame.

The last used entry of the SBAL will have the last entry flag set in bit 1. If the completion of
processing by the adapter of this SBAL is to generate a PCI interrupt, the PCI flag in bit 25 of
at least one of the entries must be set. This may be the first or last.

Once the SBAL entries have been completely defined for the buffer, its SLSB is set to
SLSB_CU_OUTPUT_PRIMED (0x62).

Reference example:

drivers/s390/net/qeth_core_main.c/qeth_do_send_packet
drivers/s390/net/qeth_core_main.c/qeth_fill_buffer
drivers/s390/net/qeth_core_main.c/__qeth_fill_buffer

Harold Grovesteen Page 13 of 62

Queued Direct Input Output

drivers/s390/cio/qdio_main.c/do_IRQ
drivers/s390/cio/qdio_main.c/handle_outbound

TCP Segmentation Offload Buffer Usage

The first SBAL entry isolates for the adapter the packet header.

SBAL Entry Field Entries Value

length 0 Packet header size

1-15 4096 or TCP data fragment length

address 0 Packet header address

1-15 TCP data fragment address start

flags 0 First fragment

1-15 Middle or last fragment

last Bit 1 set to 1, indicating last entry

15 Bits 24-31 not zero indicating a send error
(only used by Hipersocket)

Non-packing Mode Output Buffer Usage

As many entries as needed are used to point to the fragments of the buffer as necessary.
Only one packet or frame is identified in the buffer.

SBAL Entry Field Entries Value

length 0-15 4096 or fragment length

address 0-15 Fragment start address

flags 0-15 First, middle or last fragment

last Bit 1 set to 1, indicating last entry

15 Bits 24-31 not zero indicating a send error
(only used by Hipersocket)

Packing Mode Output Buffer Usage

Multiple complete QETH packets or frames may be sent in a single buffer by using as many
SBAL entries as required and available to do so. A separate SBAL entry is required to define
the starting (or only) fragment of each packet or frame being sent. This means that a SBAL
entry will provide location and size information for one and only one packet or frame at a time.

The following is an example of the SBAL entry content when packing mode is in use:

Harold Grovesteen Page 14 of 62

Queued Direct Input Output

Entry Last Entry Flag Fragment Flag PCI Flag

0 0 Packet 1 - First 1

1 0 Packet 1 - Middle 0

2 0 Packet 1 - Last 0

3 0 Packet 2 - Last 0

4 0 Packet 3 - First 0

5 0 Packet 3 - Last 0

6 1 Packet 4 - Last 0

7 0 0 0

8 0 0 0

9 0 0 0

10 0 0 0

11 0 0 0

12 0 0 0

13 0 0 0

14 0 0 0

15 * 0 0 0

* Hipersocket may post an error indication in bits 24-31 of the flag field in this entry. This will
be accompanied by an error state being indicated in the SLSB entry associated with the error
SBAL.

Output Initiation

To provide output to the adapter on an output queue, the program must prepare the buffer(s)
for output (see “Output Preparation” section above), treating the output buffers as a ring.

If the adapter characteristics indicates that a SIGNAL ADAPTER Synchronize function is
needed, the function is used to update the adapter with the buffer states of the primed output
buffers. In the case where PCI interrupts are not supported by the adapter, this Synchronize
function will provide the program opportunity to recognize the completion of output for
previously primed output buffers. This is recognized by the SLSB state changing from
SLSB_CU_OUTPUT_PRIMED to SLSB_P_OUTPUT_EMPTY.

If the previously initiated output operation is still in progress (indicated by the buffer previous
to the first being sent for output is still control unit primed), no further action is required of the
program. The newly added buffers will be output when reached by the adapter.

If the previously initiated output operation has completed (indicated by the previous buffer

Harold Grovesteen Page 15 of 62

Queued Direct Input Output

preceding the first being sent for output is no longer primed), the program will issue a SIGNAL
ADAPTER Output function to initiate the output operation.

Reference example:

cio/qdio_main.c/handle_outbound

Output Completion

When an output buffer SBAL flag indicates that a PCI is to be generated, a PCI I/O interrupt
will be generated by the data device indicating to the program that a QDIO event has
occurred. The PCI interrupt will occur at completion of the processing of the SBAL. Upon
recognizing the program controlled interrupt from the data device, the program must
determine which of the devices output queues have completed. If automatic synchronization
on an output triggered PCI is not provided by a hypervisor, then the program must issue the
SIGNAL ADAPTER Synchronize function with the output queue mask of the output queue for
which output completion is expected.

The buffers states examined for buffers used for output operations are:

� SLSB_P_OUTPUT_EMPTY (0xA1) – successfully output by the adapter

� SLSB_P_OUTPUT_ERROR (0xAF) – unsuccessfully output by the adapter

� SLSB_CU_OUTPUT_PRIMED (0x62) – still waiting to be output by the adapter

� SLSB_P_OUTPUT_NOT_INIT (0xA0) – associated SBAL not initialized

� SLSB_P_OUTPUT_HALTED (0xAE) – not output because the data device was halted.

It is also possible for a PCI interrupt to be missed(?) due to adapter interrupt support. During
adapter interrupt handling, output queues should be synchronized (if needed) and checked for
output completion. This suggests that the triggering of an adapter interrupt has the effect of
clearing a pending PCI interruption as well.

Reference example:

drivers/s390/cio/qdio_main.c/qdio_int_handler_pci
drivers/s390/cio/qdio_main.c/__qdio_outbound_processing
drivers/s390/cio/qdio_main.c/get_outbound_buffer_frontier
drivers/s390/cio/qdio_main.c/qdio_outbound_q_moved
drivers/s390/cio/qdio_thinint.c/tiqdio_thinint_handler

Harold Grovesteen Page 16 of 62

Queued Direct Input Output

Networking Facility and Feature Usage
Fundamentally three networking environments utilize the QDIO feature and its related
facilities:

1. Two networking environments are available to a guest running in a PR/SM LPAR:

� Any of three generations of Open System Adapter Express hardware
components (OSA Express, OSA Express 2 or OSA Express 3) or

� Hipersockets provided by PR/SM, a form of OSA emulation.

2. One networking environment is provided to a guest running in z/VM

� Guest LAN, another variant of OSA Express emulation, with or without
VSWITCH.

The key differentiators of these environments from a QDIO perspective are the feature and
facility usage. These are articulated primarily by means of the adapter characteristics field,
qdioac1 (byte 6, of the Subsystem Queue Description data) provided by the data device
subchannel.

Bit qdioac1 OSA OSA 2 OSA 3 Hipersocket Guest LAN

AC 1 SIGA_INPUT_NEEDED 1 1 1 1 0

AC 2 SIGA_OUPUT_NEEDED 1 1 1 1 0

AC 3 SIGA_SYNC_NEEDED 1 1 1 0 0

AC 4 AUTO_SYNC_ON_THININT 0 0 0 1 1

AC 5 AUTO_SYNC_ON_OUT_PCI 0 0 0 1 1

AC 6 QEBSM_AVAILABLE 0 0 0 0 1

AC 7 QEBSM_ENABLED 0 0 0 0 1

GC 41 QDIO 1 1 1 1 1

GC 56 AIF_TDD 0 0 1 0 0

GC 58 QEBSM Available 0 1 1 1 1

GC 67 AIF_OSA 0 1 1 1 0

Harold Grovesteen Page 17 of 62

Queued Direct Input Output

Assigned Storage

I/O Interruption Identification Word

When an adapter interrupt has occurred, the I/O interruption identification word indicates this
by setting bit 0 to 1. The adapter interrupt type is identified in bits 17-19.

Normal I/O interrupts have bits 0,1 and 5-31 set to zeros.

The I/O interruption identification word is stored at real address 192 or x'C0'.

Bit Usage (0-15) Linux Symbol Description

0... adapter_IO Subchannel I/O interrupt

1... adapter_IO Adapter interrupt

.X.. reserved

..XX X... isc I/O interrupt subclass

.... .XXX XXXX XXXX Reserved

Bit Usage (16-31) Linux Symbol Description

X... reserved

.XXX int_type Adapter interrupt type, 0==I/O

.... XXXX XXXX XXXX Reserved, bits 20-31

Harold Grovesteen Page 18 of 62

Queued Direct Input Output

Channel Subsystem Calls

Channel Subsystem Characteristics Call

Request/Response Layout

Disp. Length Field Description

+0 2 req.length Request length (0x0010, 16 bytes)

+2 2 code Request code (0x0010)

+4 12 reserved

+16 2 rsp.length Response length

+18 2 rsp.code Response code

+20 4 reserved

+24 2040 general_char General characteristics

2064 2072 chsc_char Channel subsystem characteristics

General Characteristics

The general characteristics constitutes a series of bits indicating the general characteristics of
the channel subsystem. The following bits in the response data are used by Linux. The four
general characteristics associated with QDIO are in bold.

Bit Description Linux Field

12 Dynamic I/O – affects ioctl start request dynio

41 QDIO Adapter interrupt facility aif

45 Multiple channel subsystem facility mcss

46 Required for channel path description format 1 fcs

48 Extended measurement block support ext_mb

56 AIF Time Delay Disablement facility aif_tdd

58 QEBSM supported by Channel Subsystem qebsm

67 OSA adapter interrupt facility support (or hipersocket) aif_osa

82 Required for channel path description format 2 cib

88 Fiber channel extensions (transport mode) fcx

Harold Grovesteen Page 19 of 62

Queued Direct Input Output

Subchannel Subsystem Call

The Subchannel Subsystem Call initiates a request by the channel subsystem for the specific
subchannel identified in the call. The operation code indicates the action the subchannel is to
perform.

Request/Response Layout

Disp. Length Field Description

+0 2 req.length Request length (0x0010, 4064 bytes)

+2 2 req.code Request code (0x0021)

+4 2 operation_code Operation code (0, set indicators)

+6 2 reserved

+8 8 reserved

+16 8 summary_indica
tor_address

Summary indicator absolute address (or zero to reset)

+24 8 subchannel_indi
cator_address

Subchannel specific indicator absolute address (or
zero to reset)

+32 8 � Bits 0-3, summary indicator storage key
� Bits 4-7, subchannel indicator storage key
� Bits 8-29, reserved, zeros,
� Bits 30-31, adapter interrupt input/output

subclass
� Bits 32-34, reserved
� Bit 35, TDD disable bit
� Bits 36-63, reserved

+40 4 reserved

+44 4 schid Subchannel for which indicators are to be set

+48 4016 reserved

+4064 2 rsp.length Response length

+4066 2 rsp.code Response code

+4070 4 reserved

Harold Grovesteen Page 20 of 62

Queued Direct Input Output

schid

Bit(s) Field Descriptions

0-7 cssid Channel subsystem ID

8-11 reserved

12 m

13-14 ssid Subsystem ID

15 one Set to one

16-31 sch_no Subchannel number

Subsystem Queue Description Call

The Subsytem Queue Description Call requests information from one or more subchannels
with regard to their support and use of QDIO.

Request/Response Layout

Disp. Length Field Description

+0 2 req.length Request length (0x0010, 16 bytes)

+2 2 req.code Request code (0x0024)

+4 2 � Bits 0-9 reserved (zeros)
� Bits 10-11, ssid, channel subsystem id
� Bits 12-15, fmt, format (0x0)

+6 2 first_sch First subchannel

+8 2 reserved

+10 2 last_sch Last subchannel

+12 4 reserved

+16 2 rsp.length Response length

+18 2 rsp.code Response code

+20 4 reserved

+24 32 ssqd Susbsystem Queue Description (SSQD) Response, one per
subchannel

Response length for a single subchannel is 40 bytes (8 for the response header, 32 for the
SSQD)

Harold Grovesteen Page 21 of 62

Queued Direct Input Output

Subsystem Queue Description

The SSQD structure is defined in arch/s390/include/asm/qdio.h

Disp. Length Field Description

+0 1 flags See details below

+1 1 reserved

+2 2 schid Subchannel Identification

+4 1 qfmt Queue format, see values below

+5 1 parm Parm format (Not used by Linux, a guess)

+6 1 qdioac1 Adapter Characteristics, see details below

+7 1 sch_class Subchannel class

+8 1 pcnt Port count, number of ports supported by the OSA

+9 1 icnt Input queues supported (Not used by Linux, a guess)

+10 1 reserved

+11 1 ocnt Output queue supported (Not used by Linux, a guess)

+12 1 reserved

+13 1 mbccnt Maximum queue buffer count (Not used by Linux, a guess)

+14 2 qdioac2 Additional access options (Not used by Linux, options
unknown)

+16 8 schtoken Token identifying the subchannel if QEBSM is available

+24 1 mro not used by Linux, no clue

+25 1 mri not used by Linux, no clue

+26 1 reserved

+27 1 sbalic Minimum input SBAL entry count required (Not used by
Linux, a guess)

+28 2 reserved

+30 1 reserved

+31 1 mmwc When not zero, indicates the maximum multiple write buffer
count for enhanced SIGA output operations, SIGA function
code 3, provided by Hipersocket queues.

Harold Grovesteen Page 22 of 62

Queued Direct Input Output

flags

This field provides information about QDIO capabilities of a subchannel.

Bit Usage Linux Symbol Description

X... CHSC_FLAG_QDIO_CAPABILITY Subchannel QDIO capability:
0=incapable, 1=capable

.X.. CHSC_FLAG_VALIDITY Flag validity: 0=invalid, 1=valid

..XX XXXX reserved

Subchannels that do not understand how to provide SSQD information will leave this field
zero. Subchannels that recognize the request but do not support QDIO must set the flag field
to 0x40. Subchannels that are QDIO capable must set the flag field to 0xC0 indicating the
information is both valid and QDIO may be enabled. For devices that require QDIO
operation, the capability is really from the perspective of the channel subsystem. For such
devices, proper device operation requires that QDIO be used.

qdioac1 – Adapter Characteristics

This field provides access to details of the capabilities offered by the adapter's data device.
This information influences how the program will interface with the data device for adapter
input/output operations.

Bit Usage Linux Symbol Description

X... reserved

.X.. AC1_SIGA_INPUT_NEEDED SIGA Input needed to retrieve input
buffers

..X. AC1_SIGA_OUTPUT_NEEDED SIGA Output needed to initiate output

...X AC1_SIGA_SYNC_NEEDED SIGA Synchronize needed to update
SLSB state

.... X... AC1_AUTOMATIC_SYNC_ON_THININT Sync provided automatically on adapter
interrrupt by hypervisor

.... .X.. AC1_AUTOMATIC_SYNC_ON_OUT_PCI Sync provided automatically by
hypervisor on PCI from an output queue

.... ..X. AC1_SC_QEBSM_AVAILABLE QEBSM available for subchannel

.... ...X AC1_SC_QEBSM_ENABLED QEBSM enabled for subchannel

These key values and others related to QDIO are displayed by the Linux kernel when the
queues are established with the following message found in cio/qdio_setup.c.

qdio: %s %s on SC %x using AI:%d QEBSM:%d PCI:%d TDD:%d SIGA:%s%s%s%s%s%s

Harold Grovesteen Page 23 of 62

Queued Direct Input Output

Inspection of this message from different running system configurations would provide
valuable insight into the set of options actually used by these configurations. The settings of
these values dictate how the QDIO driver interacts with a specific adapter.

qfmt

Value Linux Symbol Description

0x00 QDIO_QETH_QFMT OSA queue format

0x01 QDIO_ZFCP_QFMT FCP queue format

0x02 QDIO_IQDIO_QFMT HiperSocket queue format

Harold Grovesteen Page 24 of 62

Queued Direct Input Output

QDIO Data Device Commands
The data device associated with a queue direct I/O device is used to provide a
communication path between to the QDIO channel subsystem feature and the program. This
interface primarily is used to communicate the configuration of the queues the program will
utilize.

Code Channel Command Description0x

0x1F * ACTIVATE Causes the adapter to to initiate I/O operations
using the established queues of its data device

0x1B * ESTABLISH Informs the QDIO feature of the program's queue
configuration for the adapter

0xFA ** READ CONFIGURATION DATA Returns adapter configuration data

0x04 SENSE Returns sense data

0xE4 SENSE ID Return configuration data and Command
Information Words

* These commands are specified by means of extended identification Command Information
Words supplied by the SENSE ID command and are device dependent. The codes for
ACTIVATE and ESTABLISH are identified as the defaults in the Linux code. Any different
code consistent with control command codes may be used by the QDIO device for these
commands.

** This command code is code identified in IBM manual SA22-7871-01, z/Architecture
Reference Summary, for a SENSE ID command. No reference to the actual code used by a
QDIO data device is available from the Linux source. Linux uses the code provided by a CIW
from the device. The QDIO device may support any code as long as it is consistent for a read
sense command.

Error Reporting

Linux does not do any detailed analysis of the possible device error status conditions or
possible sense bytes. It only logs the reported data for external analysis. It is therefore
impossible to determine valid detailed error reporting data for the data device, other than as
actually indicated below. Testing with real hardware or with emulated devices under z/VM
would be required to determine how such data might be reported. When sense data is
present in the IRB, Linux will display the 32-byte Extended-Control Word and 32-byte
Extended-Measurement Word in hex.

Harold Grovesteen Page 25 of 62

Queued Direct Input Output

CLEAR SUBCHANNEL Function

The CLEAR SUBCHANNEL instruction addressed to the data device will remove established
queue information. A CLEAR SUBCHANNEL is used following errors encountered by either
the ESTABLISH or ACTIVATE commands to reset the QDIO data device.

The CLEAR function is used if the QDIO data device has not been activated by an ACTIVATE
command.

HALT SUBCHANNEL Function

The HALT SUBCHANNEL instruction addressed to the data device will cause it to cease
handling input or output data. Buffers pending transmission or whose transmission is aborted
or suppressed will reflect this with an SLSB state of SLSB_P_INPUT_HALTED or
SLSB_P_OUTPUT_HALTED. The QDIO data device is then reset as if a CLEAR function
had been issued to the device.

The HALT function is used following successful activation of the device by an ACTIVATE
command.

ACTIVATE Command (X'1F')

ACTIVATE command initiates QDIO I/O operations following the establishment of the queues.
Activation appears to make active the queues established by the ESTABLISH command and
enable the interface between the adapter and the channel subsystem interface for
input/output use. It would be at this time that the SBAL structure is likely exposed to the
adapter.

The default ACTIVATE command code is X'1F' and the default command length is 0.

The I/O interrupt generated by the completion of the ACTIVATE command is expected to have
the PCI channel status set. The ACTIVATE CCW does not require the PCI flag to be set for
the PCI status to be returned. The presence of the PCI status indicates successful
completion of the ACTIVATE command. Any status not accompanied by the PCI status
indicates an ACTIVATE check condition. Linux does not explicitly check for channel end and
device end, only PCI on completion of the ACTIVATE command.

QEBSM instructions may return a code that implies an ACTIVATE CHECK condition occurred.
A role is implied for ACTIVATE when QEBSM is available. I suspect that ACTIVATE actually
validates the data supplied via the ESTABLISH command. Errors encountered during this
process may become exposed when the QEBSM instruction is used due to an error state that
may occur.

Asynchronous Interrupts

Following successful completion of the ACTIVATE Command, PCI interrupts are used to
signal the program of input/operations for which it needs to take action (input present or
output complete). Any asynchronous interrupt not including a PCI indication reflect an error

Harold Grovesteen Page 26 of 62

Queued Direct Input Output

condition within the adapter.

Whether asynchronous interrupts without the PCI indicator being set post activation are
actually possible is unclear. However, if such were to occur, Linux would treat them as an
error.

ESTABLISH Command (X'1B')

ESTABLISH is a write control command that transfers to the data device the Queue
Description Record (see below). The command may also perform a microcode
loading/resetting of the adapter. The actual channel command code is provided by a
Command Information Word for the command.

A device status of Channel End accompanied by Device End without any other device status
indicators indicates that the command executed successfully.

The default ESTABLISH command code is X'1B' and the default command length is 4096.

Errors encountered during the ESTBLISH command will be reflected in either the channel
status or device status. A successful ESTABLISH command will be indicated by a device end
unaccompanied by any other device status condition.

Linux does not do an analysis of the possible device error status conditions nor any sense
bytes. It only logs the reported data for external analysis. It is therefore impossible to
determine valid error reporting data for the data device

Queue Description Record (QDR)

The QDR is written to an adapter's data device subchannel to establish the queues. The
Command Information Word for the ESTABLISH channel command is used for this write
operation.

Disp. Length Field Description

+0 1 qfmt Queue format (see SSQD qfmt field)

+1 1 pfmt Parameter format

+2 1 reserved

+3 1 ac Adapter characteristics

+4 1 reserved

+5 1 iqdcnt Number of input queue descriptors

+6 1 reserved

+7 1 oqdcnt Number of output queue descriptors

+8 1 reserved

+9 1 iqdsz Size of an Input Queue Descriptor in 4-byte words, 8 words

Harold Grovesteen Page 27 of 62

Queued Direct Input Output

Disp. Length Field Description

+10 1 reserved

+11 1 oqdsz Size of an Output Queue Descriptor in 4-byte words, 8 words

+12 4 reserved

+16 32 reserved

+48 8 qiba * Queue Information Block (QIB) absolute address

+56 4 reserved

+60 1 qkey QIB storage key, bits 0-3, reserved, bits 4-7

+61 3 reserved

+64 4032 qdf0s Space for 126 Format-0 Queue Descriptors, input queues
followed by output queues.

* In ESA/390, bits 0-31 of an absolute address are reserved.

Queue Descriptor, Format 0 (QDF0)

A format 0 Queue Descriptor describes attributes of a single queue.

Disp. Length Field Description

+0 8 sliba * Storage List Information Block absolute address

+8 8 sla * Storage List absolute address

+16 8 slsba * Storage List State Block absolute address

+24 4 reserved

+28 2 skeys Storage keys (see bit usage below)

+30 2 reserved

* In ESA/390, bits 0-31 of an absolute address are reserved.

skeys

Bit Usage Linux
Symbol

Description

XXXX akey Storage List Information Block (SLIB) storage key

.... XXXX bkey Storage List (SL) storage key

.... XXXX ckey Storage Block Address List (SBAL) and storage
buffer storage key

Harold Grovesteen Page 28 of 62

Queued Direct Input Output

Bit Usage Linux
Symbol

Description

.... XXXX dkey Storage List State Block (SLSB) storage key

Queue Information Block (QIB)

Alignment: 256

Storage Key: QDR, qkey field

Disp. Length Field Description

+0 1 qfmt Queue format (see SSQD qfmt field)

+1 1 pfmt Parameter format, 0 used by QETH and ZFCP

+2 1 rflags Bit 0 set to 1 enables QEBSM on the queue.

+3 1 ac Adapter characteristics, bit 1 set to 1 indicates outbound
PCI supported by the program.

+4 4 reserved

+8 8 isliba Absolute address of the first input SLIB in the linked list of
input SLIB's

+16 8 osliba Absolute address of the first output SLIB in the linked list
of output SLIB's

+24 8 reserved

+32 8 ebcnam Adapter identifier in EBCDIC

+40 88 reserved

+128 128 parm 128-byte implementation dependent parameters

Network Adapter Parameter Data

Parameters specific to the adapter's operation may be provided in the “parm” field of the QIB.
This data is specific to the device. Linux refers to this data as “impl” data. The network
adapter accepts two parameters. Each parameter consists of four four-byte words. The first
word consists of a four-character EBCDIC sequence identifying the parameter, the parameter
id. Each of the remaining three words contain a binary value in the word, parameter values 0-
2. The use of EBCDIC character sequence to identify the parameter data suggests that any
sequence of parameters is legitimate, although Linux first specifies the PCI Threshold
Parameter followed by the Block Timer Parameter.

Harold Grovesteen Page 29 of 62

Queued Direct Input Output

PCI Threshold Parameter – 'PCIT'

The PCI Threshold parameter defines a set of PCI related thresholds. The parameter id is the
EBCDIC character sequence 'PCIT' (0xD7, 0xC4, 0xC9, 0xE3).

� Value 0 – Number of physical inbound buffers

Linux attribute: /sys/bus/ccwgroup/drivers/qeth/<devise_bus_id>/buffer_count

These are the number of actual buffers for input to be used by Linux. As Linux
marches around an input queue buffer ring, these buffers will be reused as they
become available. When the adapter has used this number of buffers, it must present
a PCI or adapter interrupt to the program

� Value 1 – Set to zero by Linux. Meaning uncertain, but considering the context, it
could be the threshold of output buffers after whose transmission the adapter should
generate an output PCI. Zero could mean none implying the program will set the PCI
flag in an SBAL to trigger outbound PCI's (which Linux does in fact do.)

� Value 2 – Set to a value of 3 by Linux. Purpose unknown.

Block Timer Parameter – 'BLKT'

The Block Timer parameter defines a set of timer values to be used by the adapter. The
parameter id is the EBCDIC character sequence 'BLKT' (0xC2, 0xD3, 0xD2, 0xE3). The
BLKT parameter describes how the adapter should utilize the time delay facility. It is this
facility that can be disabled by the TDD Facility when Adapter Interrupts are used.

The values are times. The time unit is not defined, but it is assumed to be milliseconds.

� Value 0 – Total time that the adapter should delay from receipt of a frame before
generating a PCI interrupt. Legitimate values accepted by Linux are in the range of 0-
1000 inclusive.

Linux attribute: /sys/bus/ccwgroup/drivers/qeth/<devise_bus_id>/total

� Value 1 – Maximum time between receipt of network frames before generating a PCI
interrupt. Legitimate values accepted by Linux are in the range of 0-100 inclusive.

Linux attribute: /sys/bus/ccwgroup/drivers/qeth/<devise_bus_id>/total

� Value 2 – Maximum time between receipt of network jumbo frames before generating a
PCI interrupt. Legitimate values accepted by Linux are in the range of 0-100 inclusive.

Linux attribute: /sys/bus/ccwgroup/drivers/qeth/<devise_bus_id>/jumbo

Storage List Information Block (SLIB)

Alignment: 2048

Storage Key: QDR, Queue Descriptor, akey field

Harold Grovesteen Page 30 of 62

Queued Direct Input Output

Disp. Length Field Description

+0 8 nsliba Next SLIB absolute address

+8 8 sla Storage List absolute address

+16 8 slsba Storage List State Block absolute address

+24 1000 reserved

+1024 1024 slibe 128 8-byte implementation dependent parameters, 1 per
the 128 maximum buffers per queue

Storage List (SL)

Alignment: 1024

Storage Key: QDR, Queue Descriptor, bkey field

A Storage List contains 128 8-byte storage list elements, one element per storage buffer.
Each Storage List element contains the absolute address of a Storage Block Address List. In
ESA/390 mode, bits 0-31 of the storage list element is reserved.

Storage Block Address List (SBAL)

Alignment: 256

Storage Key: QDR, Queue Descriptor, ckey field

The Storage Block Address List contains a maximum of 16 Storage Block Address List
Entries. The entire list corresponds to the description of a single queue buffer. A single SBAL
may consist of one or more SBAL entires. FCP uses 16 entries per buffer. QETH tends to
use one per buffer.

Storage Block Address List Entry (SBALE)

Alignment: 16

Storage Key: QDR, Queue Descriptor, ckey field

The key to be used to access a buffer is nowhere specified in the Linux structures. The
assumption is made that the same key used for the SBAL is used to access system buffers. It
is also possible that one of the reserved fields of the SBALE is actually used to specify the
system buffer key and that Linux has simply not documented its usage. Only testing with
multiple implementations that use QDIO or real hardware could validate this assumption.

Disp. Length Field Description

+0 4 flags Flags associated with this entry

+4 4 length Length of the storage area associated with this entry

Harold Grovesteen Page 31 of 62

Queued Direct Input Output

Disp. Length Field Description

+8 8 addr * Absolute address of the storage area associated with this
entry

* In ESA/390 mode bits 0-31 are reserved.

flags

When output packing mode is used, multiple adapter frames or packets will be identified by a
single SBAL. Each packet or frame will have a sequence of first, middle and last fragment
settings as required for the packet.

Bit 25 is set to cause an output PCI to be triggered on completion of the output operation
initiated by a SIGNAL ADAPTER Output function. This is normally set in the first SBAL entry
of the first buffer being sent to the adapter.

Bits 0-7 Usage Linux Symbol Description

X... reserved

.1.. SBAL_FLAGS_LAST_ENTRY Last entry in the SBAL, terminates processing of this SBAL
by the data device or adapter

..1. SBAL_FLAGS_CONTIGUOUS This entry is contiguous to the previous

...X reserved

.... 01.. SBAL_FLAGS_FIRST_FRAG This entry is the first fragment of of a multi-fragment buffer

.... 10.. SBAL_FLAGS_MIDDLE_FRAG This entry is a middle fragment of the buffer

.... 11.. SBAL_FLAGS_LAST_FRAG This entry is the last or only fragment of the buffer

.... ..XX reserved

Bits 8-23 are reserved.

Bits 24-31
Usage

Linux Symbol Description

X... reserved

.1.. Set by the program to request PCI upon completion of
the handling of this output queue buffer.

..xx xxxx reserved

Bits 24-31 are also used in entries 14 and 15 to reflect error conditions reported by the the
presence of the error state in the SLSB.

The usage described above is generic. Zfcp extends use of the flags field. Zfcp extensions
are not described here.

Harold Grovesteen Page 32 of 62

Queued Direct Input Output

Storage List State Block (SLSB)

Alignment: 256

Storage Key: QDR, Queue Descriptor, dkey field

The Storage List State Block contains 128 contiguous one-byte state indicators describing the
current state of each of the 128 possible buffers in the Storage List, hence the name, Storage
List State Block. There is a one-to-one correspondence between the a Storage List entry, a
pointer to a single Storage Block Address List, and the state indicator in the Storage List State
Block.

Contains the buffer state of each buffer, one entry for each QDIO buffer. Each entry is a
single byte in length. The list must be 256-byte aligned. Each state entry is 8-bits in length
with the following assignments

� Bits 0,1 – Buffer owner (a bits)

� Bit 2 – Buffer type (b bit)

� Bit 3 – validity bit (v bit)

� Bits 4-7 – State (y bits)

State Bits Linux Name Description

aabv 0000 SLSB_STATE_NOT_INIT Not initialized (initial state)

aabv 0001 SLSB_STATE_EMPTY Buffer is not eligible to swap
ownership

aabv 0010 SLSB_STATE_PRIMED Buffer eligible to swap
ownership with data

aabv 1110 SLSB_STATE_HALTED I/O halted

aabv 1111 SLSB_STATE_ERROR Error occurred during I/O

aa0v yyyy SLSB_TYPE_INPUT Input buffer

aa1v yyyy SLSB_TYPE_OUTPUT Output buffer

10xv yyyy SLSB_OWNER_PROG Program owns the buffer

01xv yyyy SLSB_OWNER_CU Control unit owns the buffer

1111 1111 SLSB_ERROR_DURING_LOOKUP (not referenced by program)

Linux does not use the above bit definitions directly, but rather always combines them into a
single state. These combined states therefore represent the buffer conditions that Linux
recognizes. The recognized buffer states and usage are described in the following table.

State Setting Linux State Name Linux State Usage
1000 0000 (0x80) SLSB_P_INPUT_NOT_INIT Set: qdio_main.c/qdio_init_buf_states

Set: qdio_main.c/qdio_stop_polling

Harold Grovesteen Page 33 of 62

Queued Direct Input Output

State Setting Linux State Name Linux State Usage

Set: qdio_main.c/inboud_primed (no QEBSM)
Ref: qdio_main.c/get_inbound_buffer_frontier
Ref: qdio_debug.c/qstat_show

1000 0001 (0x81) SLSB_P_INPUT_ACK Set: qdio_main.c/inboud_primed (no QEBSM)
Ref: qdio_main.c/get_inbound_buffer_frontier
Ref: qdio_debug.c/qstat_show

0100 0001 (0x41) SLSB_CU_INPUT_EMPTY Ref: qdio_main.c/get_inbound_buffer_frontier
Set: qdio_main.c/handle_inbound
Ref: qdio_debug.c/qstat_show

1000 0010 (0x82) SLSB_P_INPUT_PRIMED Ref: qdio_main.c/get_inbound_buffer_frontier
Ref: qdio_main.c/qdio_inbound_q_done
Ref: qdio_debug.c/qstat_show

1000 1110 (0x8E) SLSB_P_INPUT_HALTED Ref: qdio_debug.c/qstat_show

1000 1111 (0x8F) SLSB_P_INPUT_ERROR Ref: qdio_main.c/get_inbound_buffer_frontier
Ref: qdio_debug.c/qstat_show

1010 0000 (0xA0) SLSB_P_OUTPUT_NOT_INIT Set: qdio_main.c/qdio_init_buf_states
Ref: qdio_main.c/get_outbound_ buffer_frontier
Ref: qdio_debug.c/qstat_show

1010 0001 (0xA1) SLSB_P_OUTPUT_EMPTY Ref: qdio_main.c/get_outbound_ buffer_frontier
Ref: qdio_debug.c/qstat_show

0110 0010 (0x62) SLSB_CU_OUTPUT_PRIMED Ref: qdio_main.c/get_outbound_ buffer_frontier
Set: qdio_main.c/handle_outbound
Ref: qdio_debug.c/qstat_show

1010 1110 (0xAE) SLSB_P_OUTPUT_HALTED Ref: qdio_main.c/get_outbound_ buffer_frontier
Ref: qdio_debug.c/qstat_show

1010 1111 (0xAF) SLSB_P_OUTPUT_ERROR Ref: qdio_main.c/get_outbound_ buffer_frontier
Ref: qdio_debug.c/qstat_show

1111 1111 (0xFF) SLSB_ERROR_DURING_LOOKUP Storage reference errors – access exceptions

READ CONFIGURATION DATA Command (0xFA)

Returns adapter configuration information. Linux utilizes 64 bytes of the potentially supplied
information. The minimum configuration record supported is 96-bytes, containing an
Emulation NED and I/0 Device NED and a specific NEQ.

The Linux QETH device driver uses the READ CONFIGURATION DATA command addressed
to the adapter group device's data subchannel to determine some elements of the adapter's
physical or emulated configuration. It is by use of the READ CONFIGURATION DATA
information that the QETH driver is able to determine if the adapter is a physical OSA Express
adapter or a z/VM Guest LAN adapter.

The configuration record includes

� Bytes 0-31 – Emulation Node Element Descriptor (NED)

Harold Grovesteen Page 34 of 62

Queued Direct Input Output

� Bytes 32-63 – I/O Device Node Element Descriptor (NED)

� Bytes 64-95 – Node Element Qualifier (NEQ)

Refer to IBM manual SA22-7204-01, Enterprise Systems Architecture/390 Common I/O
Device Commands, for NED and NEQ structure layouts. Detailed below are specific uses of
the node element structures use by the Linux QETH drivers and supplied by the network
adapter QDIO data device.

Emulation Node Element Descriptor

Bytes 10,11 of the Emulation NED, the Plant of Manufacture field, contain in EBCDIC, the
characters 'VM' when the adapter is a z/VM Guest LAN.

Bytes 30,31 of the Emulation NED, the tag field, contain, the CHPID in byte 30 and the unit
address in byte 31.

I/O Device Node Element Descriptor

Byte 31 of the I/O Device Node Element Descriptor, the second byte of the tag field, contains
the Control Unit Logical Address.

Node Element Qualifier

The Node Element Qualifier is not referenced by Linux.

SENSE Command (0x04)

The SENSE command provides device specific sense data. SENSE data generated by the
QDIO device is displayed, but not analyzed by Linux. The content and nature of the
information can not be determined. Linux does not typically issue a SENSE command. Linux
relies upon concurrent sense being set in the subchannel's Path Management Control Word.
A maximum of 32-bytes of sense data may be stored in the Extended-Control Word of the
Interrupt-Response Block.

SENSE ID Command (0xE4)

A QDIO data device provides both basic and extended identification information in the data
returned by SENSE ID. The QDIO data device will return 20-bytes of data:

� 8 bytes of basic identification information

� 12 bytes of extended identification information from three 4-byte CIW's.

Basic Identification Information

Control unit and device model information is provided by the basic identification information.
The following basic identification information is provided by QDIO devices.

Harold Grovesteen Page 35 of 62

Queued Direct Input Output

Device Validity CU Type CU Model Device Type Device Model Extended

Bytes 0 1,2 3 4,5 6 7

OSA Express 0xFF 0x1731 0x01 0x1732 0x01 0x00

SCSI 0xFF 0x1731 0x03 0x1732 0x03 0x00

Privileged SCSI 0xFF 0x1731 0x03 0x1732 0x04 0x00

Hipersocket 0xFF 0x1731 0x05 0x1732 0x05 0x00

OSA for NCP 0xFF 0x1731 0x06 0x1732 0x06 0x00

Extended Identification Information

The extended identification information immediately follows the basic identification
information.

The extended identification information takes the form of Command Information Words. A
Command Information Word (CIW) provides channel command information. Each 32-bit CIW
has the following format.

Bits Field Description

0,1 Entry Type Bit zero is set to 0, bit one is set to 1.

2,3 Reserved All bits set to zero

4-7 Command Type 0x0 = QDIO Read Configuration Data command
0x3 = QDIO Establish command
0x4 = QDIO Activate command

8-15 Command 0xFA = QDIO Read Configuration Data Command
0x1B = QDIO Establish command
0x1F = QDIO Activate command

16-31 Command Count Read Configuration Data command = 96
Establish command = 4096
Activate command = 0

Harold Grovesteen Page 36 of 62

Queued Direct Input Output

CPU Instructions
Three CPU instructions are related to the QDIO feature:

� EXTRACT QUEUE BUFFER STATE provided by the QEBSM facility,

� SIGNAL ADAPTER provided by the base QDIO feature,

� SET QUEUE BUFFER STATE provided by QEBSM facility, and

� SUBSYSTEM VARY STATUS provided by AIF.

EQBS – EXTRACT QUEUE BUFFER STATE

EQBS R1,R2,R3,M4

0xB99C R3 M4 R1 R2

EXTRACT QUEUE BUFFER STATE performs in hardware what had been performed
previously in software by the qdio_do_eqbs function qdio_main.c provided in the “Usage”
section.

This instruction requires the QEBSM facility to be provided by the Channel Subsystem. This
facility is indicated in the general channel subsystem characteristics data by bit 58 being set
to 1. This facility is only available with z/Architecture.

If QEBSM is neither available nor enabled for the adapter SQBS will generate an operation
exception program interrupt. The state of QEBSM for a specific adapter can be determined
from the Subsystem Queue Description provided by the CHSC targeted to the adapter's data
device subchannel.

The SLSB that is being targeted by the instruction is identified not by its storage address but
by providing the:

� subchannel token (see Subchannel Queue Description) in the operand 3's odd register
and

� queue index number in operand 1 (specified by the program in the Queue Descriptor
Record).

The address of the targeted SLSB is then determined based upon the information provided in
the Queue Descriptor Record, SLIB and QIB of the targeted queue.

EQBS is an interruptible instruction.

At the start of the instruction:

� Operand 1, bits 0-31 contains the starting buffer queue index number and bits 32-63
the starting SLSB buffer number to be set.

Harold Grovesteen Page 37 of 62

Queued Direct Input Output

The queue index number corresponds to the index of the queue as specified in the
ESTABLISH queue data record. Input queues are numbered from 0 to number of input
queues minus 1 and output queues are numbered from the number of input queues to
the number of output queues plus the number of input queues minus 1.

If “in.qs” is the number of input queues and “out.qs” are the number of output queues
specified in the Queue Data Record:

input queue numbers are: 0 <= input_queue_number < in.qs and

output queue numbers are: in.qs <= output_queue_number < (in.qs + out.qs)

� Operand 2, contains in bit 0 an indicator of whether input buffers are to be
automatically acknowledged. When bit 0 is 1, input buffers are automatically
acknowledged, otherwise they are not.

Auto acknowledgment converts buffer states of SLSB_P_INPUT_PRIMED (0x82) to
SLSB_P_INPUT_ACK (0x81). Technically this converts a buffer that is input primed
and owned by the program (the adapter has provided input to the program) to a
program owned empty buffer. The buffer is not actually “empty” because the control
unit does not own it for new input. Only when the “empty” buffer is transferred back to
control unit ownership is the buffer truly available for new input and can then be
considered empty.

� Operand 3 is an even/odd pair of registers.

� The even register of the pair contains in bits 32-63 the number of buffers,
starting with the buffer identified by operand 1, whose state is desired to be
examined.

� The odd register of the pair contains the 64-bit subchannel token used to identify
the queue. The token is provided to the program my means of the Subchannel
Queue Descriptor information by means of the CHANNEL SUBSYSTEM CALL
issued to the channel subsystem.

The source of the token in Linux is: irq_ptr->ssqd_desc.sch_token.

� Operand 4 is set to zero by Linux. If the mask has a role and what it might be is
impossible to determine by Linux usage of the instruction.

At the conclusion of the instruction:

� Operand 1, bits 0-31, contains the buffer number of the next buffer state to be
extracted.

� Operand 2 contains in bits 56-63 the extracted state of the examined buffers.

� Operand 3's even/odd pair of registers :

� The even register

� bits 0-31, contains a return code and

� bits 32-64 contains the number of buffers states not examined as

Harold Grovesteen Page 38 of 62

Queued Direct Input Output

requested. The count provided at the start of the instruction is
decremented for each successfully examined buffer states.

� The odd register is unchanged.

Return Code Values (bits 0-31 of operand three's even register):

� 0x00, 0 - all buffer states successfully processed.

� 0x20, 32 – all buffer states successfully processed and next buffer state different

� 0x60, 96 – not all buffers processed

� 0x61, 97 – not all buffers processed (The meaning of the low order bit being set is not
able to be determined from the Linux code.)

� otherwise, an ACTIVATE CHECK CONDITION has occurred for SQBS.

Example usage: drivers/s390/cio/qdio.h

/* call in qdio_main.c prototype in qdio.h */
do_eqbs(q->irq_ptr->sch_token, /* u64 token */
 state, /* unsigned char *state */
 nr, /* int queue */
 &tmp_start, /* int *start */
 &tmp_count, /* int *count */

 auto_ack); /* int ack */

static inline int do_eqbs(u64 token, unsigned char *state, int queue,
 int *start, int *count, int ack)
{
 register unsigned long _ccq asm ("0") = *count;
 register unsigned long _token asm ("1") = token;
 unsigned long _queuestart = ((unsigned long)queue << 32) | *start;
 unsigned long _state = (unsigned long)ack << 63;

 asm volatile(/* RRF3 format R1 R2 R3M4 */
 " .insn rrf,0xB99c0000,%1,%2,0,0"
 /* Output: */
 : /* %0 */ "+d" (_ccq), /* %r0 */
 /* %1 */ "+d" (_queuestart), /* compiler selected, R1 */
 /* %2 */ "+d" (_state) /* compiler selected, R2 */
 /* Input */
 : /* %3 */ "d" (_token) /* %r1 */
 /* Clobber */
 : "memory", "cc");
 *count = _ccq & 0xff;
 *start = _queuestart & 0xff;
 *state = _state & 0xff;

 return (_ccq >> 32) & 0xff;
}

Harold Grovesteen Page 39 of 62

http://lxr.linux.no/linux+v2.6.30.4/+code=_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=_state
http://lxr.linux.no/linux+v2.6.30.4/+code=state
http://lxr.linux.no/linux+v2.6.30.4/+code=_queuestart
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=_token
http://lxr.linux.no/linux+v2.6.30.4/+code=_state
http://lxr.linux.no/linux+v2.6.30.4/+code=_queuestart
http://lxr.linux.no/linux+v2.6.30.4/+code=_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=ack
http://lxr.linux.no/linux+v2.6.30.4/+code=_state
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=queue
http://lxr.linux.no/linux+v2.6.30.4/+code=_queuestart
http://lxr.linux.no/linux+v2.6.30.4/+code=token
http://lxr.linux.no/linux+v2.6.30.4/+code=_token
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=ack
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=queue
http://lxr.linux.no/linux+v2.6.30.4/+code=state
http://lxr.linux.no/linux+v2.6.30.4/+code=token
http://lxr.linux.no/linux+v2.6.30.4/+code=u64
http://lxr.linux.no/linux+v2.6.30.4/+code=do_eqbs
http://lxr.linux.no/linux+v2.6.30.4/+code=inline

Queued Direct Input Output

Usage

drivers/s390/cio/qdio_main.c

/**
 * qdio_do_eqbs - extract buffer states for QEBSM
 * @q: queue to manipulate
 * @state: state of the extracted buffers
 * @start: buffer number to start at
 * @count: count of buffers to examine
 * @auto_ack: automatically acknowledge buffers
 *
 * Returns the number of successfully extracted equal buffer states.
 * Stops processing if a state is different from the last buffers state.
 */
static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state,
 int start, int count, int auto_ack)
{
 unsigned int ccq = 0;
 int tmp_count = count, tmp_start = start;
 int nr = q->nr;
 int rc;

 BUG_ON(!q->irq_ptr->sch_token);
 qdio_perf_stat_inc(&perf_stats.debug_eqbs_all);

 if (!q->is_input_q)
 nr += q->irq_ptr->nr_input_qs;
again:
 ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count,
 auto_ack);
 rc = qdio_check_ccq(q, ccq);

 /* At least one buffer was processed, return and extract the remaining
 * buffers later.
 */
 if ((ccq == 96) && (count != tmp_count)) {
 qdio_perf_stat_inc(&perf_stats.debug_eqbs_incomplete);
 return (count - tmp_count);
 }

 if (rc == 1) {
 DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "EQBS again:%2d", ccq);
 goto again;
 }

 if (rc < 0) {
 DBF_ERROR("%4x EQBS ERROR", SCH_NO(q));
 DBF_ERROR("%3d%3d%2d", count, tmp_count, nr);
 q->handler(q->irq_ptr->cdev,
 QDIO_ERROR_ACTIVATE_CHECK_CONDITION,
 0, -1, -1, q->irq_ptr->int_parm);
 return 0;
 }
 return count - tmp_count;

Harold Grovesteen Page 40 of 62

http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=int_parm
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=QDIO_ERROR_ACTIVATE_CHECK_CONDITION
http://lxr.linux.no/linux+v2.6.30.4/+code=cdev
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=handler
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=DBF_ERROR
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=SCH_NO
http://lxr.linux.no/linux+v2.6.30.4/+code=DBF_ERROR
http://lxr.linux.no/linux+v2.6.30.4/+code=rc
http://lxr.linux.no/linux+v2.6.30.4/+code=again
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=DBF_WARN
http://lxr.linux.no/linux+v2.6.30.4/+code=DBF_DEV_EVENT
http://lxr.linux.no/linux+v2.6.30.4/+code=rc
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=debug_eqbs_incomplete
http://lxr.linux.no/linux+v2.6.30.4/+code=perf_stats
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_perf_stat_inc
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_check_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=rc
http://lxr.linux.no/linux+v2.6.30.4/+code=auto_ack
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_start
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=state
http://lxr.linux.no/linux+v2.6.30.4/+code=sch_token
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=do_eqbs
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=again
http://lxr.linux.no/linux+v2.6.30.4/+code=nr_input_qs
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=is_input_q
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=debug_eqbs_all
http://lxr.linux.no/linux+v2.6.30.4/+code=perf_stats
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_perf_stat_inc
http://lxr.linux.no/linux+v2.6.30.4/+code=sch_token
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=BUG_ON
http://lxr.linux.no/linux+v2.6.30.4/+code=rc
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_start
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=auto_ack
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=state
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_q
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_do_eqbs

Queued Direct Input Output

}

EQBS is used in the generic function qdio_main.c/get_buf_state. get_buf_state will call
get_buf_states which will determine if the program can use EQBS or extract the information
itself. Where get_buf_state or get_buf_states are used implies the situations in which EQBS
is used.

SIGA – SIGNAL ADAPTER

SIGA D2(B2)

0xB274 B2 D2

SIGNAL ADAPTER requests a QDIO interface to perform various functions. Arguments are
provided to the adapter being signaled in general registers. The results of the instruction are
indicated by setting of the condition code.

The following arguments are provided in assigned registers:

� General Register 0 – the function being signaled to the adapter and method of adapter
identification:

Bits 0-55 are set to 0

Bit 56 is set to

� 0 if General Register 1 contains a subchannel identification, or

� 1 if General Register 1 contains a subchannel token.

A subchannel token is only available if QEBSM is available. QEBSM is
restricted to z/Architecture mode.

Bits 57-64 identifies the SIGNAL ADAPTER function being signaled:

� 0 = Standard Output function (single packet of frame per queue buffer, SBAL)

� 1 = Input function

� 2 = Synchronize function

� 3 = Enhanced Output function (multiple packets or frames per queue buffer,
SBAL). Use of multiple packets or frames is referred to as “packing mode”.

Linux only uses the subchannel token option with the output or enhanced output
functions. It should be presumed to be available for the other functions as well.

� General Register 1 – the subchannel identification or, if QEBSM is available and
enabled, the subchannel token of the adapter being signaled. Register 0, bit 56, will be
set to 1 if general register 1 contains a subchannel token.

� General Register 2 – an input or output queue mask, depending upon the function
requested.

Harold Grovesteen Page 41 of 62

Queued Direct Input Output

� General Register 3 – an input queue mask when both an input and output queue mask
are required, the output mask being contained in register 2.

Notes on Linux usage: Operand 2 is always 0 when used by Linux. This results in SIGA 0(0),
that is, both the base and displacement are zero in the machine instruction. It is therefore
impossible to determine if operand 2 has any use. The above behavior suggests that
operand 2 is actually ignored by SIGNAL ADAPTER. If the second operand is used, it likely
points to a structure that contains information comparable to that supplied in general registers
0-3 as described above.

Queue Mask

The queue mask is a sequence of 32-bits numbered from most-significant bit to least starting
with with zero and ending with 31. Each numbered bit corresponds to an established queue
described by a Queue Description record. The queue mask therefore identifies one or more
queues targeted by a function. Bits corresponding to queues that have not been established
are ignored.

Signal Synchronize (Function 2)

The Synchronize Function updates either the adapter's SLSB or program's SLSB with the
other's state block information. Buffer states in the program's SLSB indicating control unit
ownership will cause the adapter's SLSB to be updated for that buffer. Buffers in the
adapter's SLSB indicating ownership by the program will cause the program's SLSB to be
updated.

Programming Note

The signal synchronize function is required during output operations before determining
output buffer completion status when:

� OSA or FiberChannel adapters do not support PCI output interrupts or

� a multicast queue is used with a Hipersocket adapter.

The signal synchronize function is required for anytime the program needs to inform the
adapter of SLSB state change or needs to update its representation of the state maintained
by the adapter.

Example Usage: drivers/s390/cio/qdio_main.c

static inline int do_siga_sync(struct subchannel_id schid,
 unsigned int out_mask, unsigned int in_mask)

{
register unsigned long __fc asm ("0") = 2;
register struct subchannel_id __schid asm ("1") = schid;
register unsigned long out asm ("2") = out_mask;
register unsigned long in asm ("3") = in_mask;
int cc;

asm volatile(

Harold Grovesteen Page 42 of 62

Queued Direct Input Output

" siga 0\n"
" ipm %0\n"
" srl %0,28\n"

 /* Output: */
: /* %0 */ "=d" (cc) /* Compiler selected, IPM R1 */

 /* Input: */
: /* %1 */ "d" (__fc), /* %r0 */

 /* %2 */ "d" (__schid), /* %r1 */
 /* %3 */ "d" (out), /* %r2 */
 /* %3 */ "d" (in) /* %r3 */
 /* Clobber: */
 : "cc");

return cc;
}

Signal Input (Function 1)

Output operations are initiated for the input queue identified by the queue mask in general
register 2 associated with the data device associated with the subchannel identified by
register 1.

The input operations will cause data to be placed in the areas identified by the SBAL
associated with SLSB's in the SLSB_CU_INPUT_EMPTY state. Upon completion of the
transfer, each SBAL data area will contain one or more fragments of a single inbound unit of
adapter data.

The Input function has an implied SIGNAL ADAPTER Synchronize function, updating the
adapter with the now available input buffers.

If inbound packing mode is used, the QETH header must reside completely in a single SBALE
storage area. It may not span in the storage areas of two SBALE's.

Note: Linux inbound processing tends to rely heavily on the packet contents for length, not the
SBALE data. More analysis is required to determine if all of the output uses of SBALE's are
found on the input side. It is reasonable to assume it is possible. However, no requirement
appears to exist requiring an emulation adapter to support all of the options that appear in the
output case for input.

Condition Codes:

0 = successful execution

1 = should not occur, is an error

2 = subchannel busy or adapter busy

3 = an error occured.

Example usage:

static inline int do_siga_input(struct subchannel_id schid, unsigned int
mask)
{

Harold Grovesteen Page 43 of 62

Queued Direct Input Output

register unsigned long __fc asm ("0") = 1;
register struct subchannel_id __schid asm ("1") = schid;
register unsigned long __mask asm ("2") = mask;
int cc;

asm volatile(
" siga 0\n"
" ipm %0\n"
" srl %0,28\n"

 /* Output: */
: /* %0 */ "=d" (cc)

 /* Input: */
: /* %1 */ "d" (__fc),

 /* %2 */ "d" (__schid),
 /* %3 */ "d" (__mask)
 /* Clobber: */
 : "cc", "memory");

return cc;
}

Signal Output (Function 0) and Signal Enhanced Output (Function 3)

Output operations are initiated for the output queue identified by the queue mask in general
register 2 associated with the data device associated with the subchannel or the subchannel
token (if Register 0, bit 56 is set to 1) identified by register 1.

The output operation starts with the next buffer in the queue to be processed by the adapter if
it has been primed for output and ownership has been passed to the adapter.

General register 0 contains either 0 if the operation is for one frame or packet per buffer or 3 if
the operation is for multiple frames or packets. Multiple frames or packets requires the mmwc
queue description field to be greater than 1. Use of multiple frames or packets per queue
buffer is referred to as “packing mode”.

Following execution of the instruction general register bit 0 in ESA/390 mode, or bit 32, in
z/Architecture mode, will be set to one if the adapter is busy and unable to process output
buffers, zero otherwise. All other register bits are set to zero at completion of the instruction.

General register 1 contains the subchannel of the data device being addressed

General register 2 contains the output queue mask of the output queue being targeted for
output.

Following execution of the instruction bit 0, in ESA/390 mode, or bit 32, in z/Architecture
mode, will be set to one if the adapter is busy and unable to process output buffers, zero
otherwise. All other register bits of general register zero are set to zero at completion of the
instruction. The busy indication will be provided only in conjunction with condition code 2
being set.

Exceptions

Access exceptions may be recognized while accessing buffer data.

Condition Codes:

Harold Grovesteen Page 44 of 62

Queued Direct Input Output

0 = successful execution

1 = should not occur, is an error

2 = subchannel busy or adapter busy

3 = an error occured.

Programming Note

When a Hipersocket adapter sets the busy indication in general register 0 in conjunction with
condition code 2, the program should take down the queue. Guest LAN's may also set this
condition during reconfiguration. In the latter case, the queues should be taken down only if
the condition persists (see Linux 2.4.37.9, drivers/s390/qdio.c).

Example usage:

static inline int do_siga_output(unsigned long schid, unsigned long mask,
 unsigned int *bb, unsigned int fc)

{
register unsigned long __fc asm("0") = fc;
register unsigned long __schid asm("1") = schid;
register unsigned long __mask asm("2") = mask;
int cc = QDIO_ERROR_SIGA_ACCESS_EXCEPTION;

asm volatile(
" siga 0\n"
"0: ipm %0\n"
" srl %0,28\n"
"1:\n"
EX_TABLE(0b, 1b)
: "+d" (cc), "+d" (__fc), "+d" (__schid), "+d" (__mask)
: : "cc", "memory");

*bb = ((unsigned int) __fc) >> 31;
return cc;

}

SQBS – SET QUEUE BUFFER STATE

SQBS R1,R3,D2(B2)

0xEB R1 R3 B2 DL2 DH2 0x8A

SET QUEUE BUFFER STATE performs in hardware what had been performed previously in
software by the qdio_do_sqbs function qdio_main.c provided in the “Usage” section.

This instruction requires the QEBSM facility to be provided by the Channel Subsystem. This
facility is indicated in the general channel subsystem characteristics data by bit 58 being set
to 1. This facility is only available with z/Architecture.

If QEBSM is neither available nor enabled for the adapter SQBS will generate an operation
exception program interrupt. The state of QEBSM for a specific adapter can be determined

Harold Grovesteen Page 45 of 62

Queued Direct Input Output

from the Subsystem Queue Description provided by the CHSC targeted to the adapter's data
device subchannel.

The SLSB that is being targeted by the instruction is identified not by its storage address but
by providing the:

� subchannel token (see Subchannel Queue Description) in the operand 3 odd register
and

� queue index number in operand 1 (specified by the program in the Queue Descriptor
Record).

The address of the targeted SLSB is then determined based upon the information provided in
the adapter's Queue Descriptor Record, SLIB and QIB of the targeted queue.

At the start of the instruction:

� Operand 1, bits 0-31 contains the starting buffer queue index number and bits 32-63
the starting SLSB buffer number to be set.

The queue index number corresponds to the index of the queue as specified in the
ESTABLISH queue data record. Input queues are numbered from 0 to number of input
queues minus 1 and output queues are numbered from the number of input queues to
the number of output queues plus the number of input queues minus 1.

If “in.qs” is the number of input queues and “out.qs” are the number of output queues
specified in the queue data record:

input queue numbers are: 0 <= input_queue_number < in.qs and

output queue numbers are: in.qs <= output_queue_number < (in.qs + out.qs)

� Operand 2, rather than being used as an address, contains the state to which the
queue buffer states are to be changed. The queue is identified by Operand 1 and the
even register of the Operand 3 pair.

� Operand 3 is an even/odd pair of registers.

� The even register of the pair contains the number of buffers, starting with the
buffer identified by operand 1, whose state is desired to be changed.

� The odd register of the pair contains the 64-bit queue token used to identify the
queue. The source of the token is: irq_ptr->ssqd_desc.sch_token

Upon completion of the instruction:

� Operand 1 contains in bits 56-63 the index of the first queue whose state was not
changed.

� Operand 3's even register contains:

� a return code in bits 0-31, see qdio_check_ccq() for meaning, and

� the number of buffers whose states were not inspected for change of the total
originally requested in bits 32-63.

Harold Grovesteen Page 46 of 62

Queued Direct Input Output

Example usage: drivers/s390/cio/qdio.h

static inline int do_sqbs(u64 token, unsigned char state, int queue,
 int *start, int *count)
{
 /* Rx output %r0 will contain the count */

register unsigned long _ccq asm ("0") = *count;
/* Input %r1 contains the token */
register unsigned long _token asm ("1") = token;

unsigned long _queuestart = ((unsigned long)queue << 32) | *start;

asm volatile(/* R1R3 D2B2
“ .insn rsy,0xeb000000008A,%1,0,0(%2)”

/* Output: */
: /* %0 */ “+d” (_ccq), /* %r0 */
 /* %1 */ “+d” (_queuestart) /* Compiler selected, R1 */

/* Input: */
: /* %2 */ “d” ((unsigned long)state), /* Compiler selected, B2 */
 /* %3 */ “d” (_token) /* %r1 */

/* Clobber */
: “memory”, “cc”);

*count = _ccq & 0xff;
*start = _queuestart & 0xff;
return (_ccq >> 32) & 0xff; /* Returns the return code */

The functionality of SQBS is provided by the function set_buf_states in qdio_main.c. This
function uses SQBS if QEBSM is available or performs the following logic if it is not present:

for (i = 0; i < count; i++) {
 xchg(&q->slsb.val[bufnr], state);
 bufnr = next_buf(bufnr);
}

 return count;

xchg atomically sets state of the buffer in the SLSB. next_buf will increment the buffer
number, wrapping back to zero if the count goes beyond the last buffer. This code snippet
defines the operation of the SQBS instruction.

SQBS may be interrupted. As each buffer is processed the count of buffers to change (in the
even register of the operand 3 pair) is decremented by one and the buffer number is
incremented by one, wrapping at the end of the queue's buffer. The instruction may be
executed with the updated values to continue execution until all of the desired buffers have
been changed.

Usage

drivers/390/cio/qdio_main.c

Harold Grovesteen Page 47 of 62

http://lxr.linux.no/linux+*/+code=count
http://lxr.linux.no/linux+*/+code=bufnr
http://lxr.linux.no/linux+*/+code=next_buf
http://lxr.linux.no/linux+*/+code=bufnr
http://lxr.linux.no/linux+*/+code=state
http://lxr.linux.no/linux+*/+code=bufnr
http://lxr.linux.no/linux+*/+code=val
http://lxr.linux.no/linux+*/+code=slsb
http://lxr.linux.no/linux+*/+code=q
http://lxr.linux.no/linux+*/+code=xchg
http://lxr.linux.no/linux+*/+code=i
http://lxr.linux.no/linux+*/+code=count
http://lxr.linux.no/linux+*/+code=i
http://lxr.linux.no/linux+*/+code=i
http://lxr.linux.no/linux+v2.6.30.4/+code=_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=_queuestart
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=queue
http://lxr.linux.no/linux+v2.6.30.4/+code=_queuestart
http://lxr.linux.no/linux+v2.6.30.4/+code=token
http://lxr.linux.no/linux+v2.6.30.4/+code=_token
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=queue
http://lxr.linux.no/linux+v2.6.30.4/+code=state
http://lxr.linux.no/linux+v2.6.30.4/+code=token
http://lxr.linux.no/linux+v2.6.30.4/+code=u64
http://lxr.linux.no/linux+v2.6.30.4/+code=do_sqbs
http://lxr.linux.no/linux+v2.6.30.4/+code=inline

Queued Direct Input Output

/**
 * qdio_do_sqbs - set buffer states for QEBSM
 * @q: queue to manipulate
 * @state: new state of the buffers
 * @start: first buffer number to change
 * @count: how many buffers to change
 *
 * Returns the number of successfully changed buffers.
 * Does retrying until the specified count of buffer states is set or an
 * error occurs.
 */
 static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start,
 int count)
 {
 unsigned int ccq = 0;
 int tmp_count = count, tmp_start = start;
 int nr = q->nr;
 int rc;

 if (!count)
 return 0;

 BUG_ON(!q->irq_ptr->sch_token);
 qdio_perf_stat_inc(&perf_stats.debug_sqbs_all);

 if (!q->is_input_q)
 nr += q->irq_ptr->nr_input_qs;
 again:
 ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count);
 rc = qdio_check_ccq(q, ccq);
 if (rc == 1) {
 DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "SQBS again:%2d", ccq);
 qdio_perf_stat_inc(&perf_stats.debug_sqbs_incomplete);
 goto again;
 }
 if (rc < 0) {
 DBF_ERROR("%4x SQBS ERROR", SCH_NO(q));
 DBF_ERROR("%3d%3d%2d", count, tmp_count, nr);
 q->handler(q->irq_ptr->cdev,
 QDIO_ERROR_ACTIVATE_CHECK_CONDITION,
 0, -1, -1, q->irq_ptr->int_parm);
 return 0;
 }
 WARN_ON(tmp_count);
 return count - tmp_count;
 }

qdio_do_sqbs() is used in function

SQBS is used in the generic function qdio_main.c/set_buf_state. set_buf_state will call
set_buf_states which will determine if the program can use SQBS or must set the state itself.
Where set_buf_state or set_buf_states are used implies the situations in which SQBS is
used.

Harold Grovesteen Page 48 of 62

http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=WARN_ON
http://lxr.linux.no/linux+v2.6.30.4/+code=int_parm
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=QDIO_ERROR_ACTIVATE_CHECK_CONDITION
http://lxr.linux.no/linux+v2.6.30.4/+code=cdev
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=handler
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=DBF_ERROR
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=SCH_NO
http://lxr.linux.no/linux+v2.6.30.4/+code=DBF_ERROR
http://lxr.linux.no/linux+v2.6.30.4/+code=rc
http://lxr.linux.no/linux+v2.6.30.4/+code=again
http://lxr.linux.no/linux+v2.6.30.4/+code=debug_sqbs_incomplete
http://lxr.linux.no/linux+v2.6.30.4/+code=perf_stats
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_perf_stat_inc
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=DBF_INFO
http://lxr.linux.no/linux+v2.6.30.4/+code=DBF_DEV_EVENT
http://lxr.linux.no/linux+v2.6.30.4/+code=rc
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_check_ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=rc
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_start
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=state
http://lxr.linux.no/linux+v2.6.30.4/+code=sch_token
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=do_sqbs
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=again
http://lxr.linux.no/linux+v2.6.30.4/+code=nr_input_qs
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=is_input_q
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=debug_sqbs_all
http://lxr.linux.no/linux+v2.6.30.4/+code=perf_stats
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_perf_stat_inc
http://lxr.linux.no/linux+v2.6.30.4/+code=sch_token
http://lxr.linux.no/linux+v2.6.30.4/+code=irq_ptr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=BUG_ON
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=rc
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=nr
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_start
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=tmp_count
http://lxr.linux.no/linux+v2.6.30.4/+code=ccq
http://lxr.linux.no/linux+v2.6.30.4/+code=count
http://lxr.linux.no/linux+v2.6.30.4/+code=start
http://lxr.linux.no/linux+v2.6.30.4/+code=state
http://lxr.linux.no/linux+v2.6.30.4/+code=q
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_q
http://lxr.linux.no/linux+v2.6.30.4/+code=qdio_do_sqbs

Queued Direct Input Output

set_buf_state references:

qdio_main.c/qdio_stop_polling
qdio_main.c/inbound_primed

set_buf_states references:

qdio_main.c/set_buf_state
qdio_main.c/init_buf_states
qdio_main.c/qdio_stop_polling
qdio_main.c/inbound_primed
qdio_main.c/handle_inbound
qdio_main.c/handle_outbound

SVS – SUBSYSTEM VARY STATUS

SVS R1,R2

0xB265 R1 R2

SUBSYSTEM VARY STATUS is provided with TDD. Adapter interrupt facility indicators are
manipulated by SVS. Operands 1 and 2 are even odd register pairs. Operand 1 identifies the
function and targeted indicator and Operand 2 provided information about the state of the
indicator.

Most of the description below is based upon assumptions and guesses of how this instruction
might operate and may be inaccurate in the general case. Most of this information is inferred
from the in-line assembler template in the example.

Operand 1 – Even register

Identifies the targeted indicator.

This is a guess based upon the apparent context of this instruction. How such an
identification is supplied by the program is unclear.

Operand 1 – Odd register

A function code is supplied by Operand 1's odd registers

Operand 2 – Even register

The value of the indicator (before or after instruction execution is unclear and may be
dependent upon the function)

Operand 2 – Odd register

A time value is stored.

Whether this represents the time since the last interrupt or the time until the next

Harold Grovesteen Page 49 of 62

Queued Direct Input Output

scheduled interrupt or something else is possible.

SVS Clear Global Summary (Function 3)

Clear Global Summary clears any pending adapter interrupts implied by accumulated
triggering of the summary indicator. Operand 1's even register contents are ignored.

Example usage:

static inline unsigned long do_clear_global_summary(void)
{

register unsigned long __fn asm("1") = 3;
register unsigned long __tmp asm("2");
register unsigned long __time asm("3");

asm volatile(
" .insn rre,0xb2650000,2,0"
: "+d" (__fn), "=d" (__tmp), "=d" (__time));

return __time;
}

Linux only uses the second operand's odd register when using SVS. Data returned by the
instruction, indicated by the “+” or “-” constraints are ignored in the Linux example. Other
functions this instruction might perform are purely speculative.

Reference:

drivers/s390/cio/qdio_thinint.c/tiqdio_thinint_handler

Harold Grovesteen Page 50 of 62

Queued Direct Input Output

Architecture and Evolution
Although there were numerous networking enhancements between OSA and OSA Express,
the major feature change was the incorporation of QDIO. The read/write subchannels remain
in OSA Express adapters. Many more network configuration commands were added by OSA
Express to allow dynamic configuration of the adapter (commands that might have been
similar with OSA, but static and issued by a proprietary utility) for Layer-2 or Layer-3
operations. However, network frames and packets no longer use the read/write subchannels
but utilize the new QDIO interface. Although a detailed comparison between OSA and OSA
Express has not been done, it is likely that the adapter network commands and responses are
very similar in overall structure and design to the original OSA, non-QDIO adapters. It is
abundantly obvious that OSA Express adapters were not a wholesale functional redesign, at
least as far the the program is concerned, but merely added QDIO to the OSA adapters. The
functional interface of OSA adapters was the foundation for OSA Express.

This section provides some speculation on the internal implementation and evolution of the
QDIO program interface. This section also approaches the topic of potential design decisions
that will need to be made with regard to potential emulation of QDIO and network adapters
that utilize QDIO. To some degree these discussions also expose the limitations that exist
with source code reverse engineering.

Adapter Main Storage Interface

Examination of the Linux zfcp and qeth implementations suggests the data device is emulated
by the channel subsystem. Both implementations use the single Linux qdio driver for the data
device. In hardware terms, if the SCSI fiber channel adapter and the OSA Express adapters
actually implemented the identical interface themselves, then each would have to have
common code to do so. While this is entirely possible, it is also easy to conceive that the
QDIO interface itself is external to the adapters and the adapters themselves utilize a different
proprietary interface internal to the mainframe for communication with the channel subsystem.

The channel subsystem is in fact a program that utilizes the CPU on a real mainframe and the
adapters are part of the mainframe I/O cage. Where the exact functional boundary exists is
not significant from the point of view of program usage. However, it is informative with
regards to a potential emulation of the feature.

Historically, the OSA Express adapter was the first to utilize QDIO. OSA Express devices
were first available on ESA/390 systems. Later, fiber channel SCSI devices were added
under z/Architecture. There is one strikingly unique difference between the SCSI and OSA
Express usages of QDIO. The System Buffer Address List (SBAL) is strictly read-only when
QDIO is used by OSA Express devices. However, the SCSI usage of QDIO actually modifies
data in the System Buffer Address List as does Hipersocket adapters. This suggests that one
of the innovations that occurred internal to the mainframe was providing access by the
adapter to the SBAL, either directly by providing its address or indirectly by providing some

Harold Grovesteen Page 51 of 62

Queued Direct Input Output

other mechanism that allows the SBAL entry content to be accessed and altered by the
adapter.

One of the major enhancements of OSA Express 3 over OSA Express 2 is the data router
feature. This OSA feature allows the adapter to store network frames or packets directly into
main storage. Previously this was not possible. This suggests that originally the interface
between the adapter and the channel subsystem did not expose the SBAL to the adapter, and
hence, the QDIO feature in the channel subsystem had act as the intermediary between the
program's usage of main storage for QDIO operations and the physical hardware adapter,
receiving data from the earlier OSA Express adapters and writing the date to main storage or
reading the data from main storage and providing it to the adapter.

This perspective is consistent with published descriptions of the data router feature and the
differences between how OSA Express 2 and 3 operate. While IBM has articulated that OSA
Express 2 queues the network packet or frame while OSA Express 3 does not, the reality is
that the adapter must queue the Layer-2 frame read from the external network and then
handle it as a Layer-2 frame or a Layer-3 packet. The implementation reality is more likely
that the real queuing in the earlier OSA Express adapters was the result of the QDIO-to-
adapter interface. Clearly the adapter had the ability to deliver to physical main storage data,
because the Channel Subsystem operates from physical main storage, just different portions
of it than does a program executing in a logical partition that interacts with a QDIO adapter.

This second observation is also helpful in defining an emulation of QDIO and how it might be
structured. It also is consistent with the view that QDIO exists as a separate implementation
from the the adapter itself as suggested above.

QEBSM Considerations

It is difficult looking at the Linux QDIO driver what capabilities are provided strictly in a z/VM
environment and those available in a LPAR configuration. The following has been identified
as elements that exist in the z/VM environment:

1. SIE assists for QDIO, likely enabled is the SIE control block. Note a new SIE option in
the has been identified in use by Linux KVM. It is possible this enables QDIO assists
for either the KVM case in an LPAR or the vSIE z/VM case when Linux KVM is
executing in a z/VM virtual machine.

2. QEBSM CPU instruction (requires SIE QDIO assists to be enabled)

3. Millicode execution of SIGNAL ADAPTER Input or Output functions or elimination
entirely of the need to issue SIGNAL ADAPTER instructions when QEBSM is being
used. Elimination of SIGNAL ADAPTER instruction use is possible via the adapter
characteristics supplied by the channel subsystem. Some scenarios must exist that
eliminate some of all of the SIGNAL adapter uses because the Linux QDIO driver code
supports this. The z/VM descriptions do not make it clear which is the case. The
descriptions do make it clear that z/VM is not entered for virtual machine QDIO
transfers when QEBSM is used with QDIO assists.

Further, it is clear where the SIGNAL ADAPTER Output function is involved, a case

Harold Grovesteen Page 52 of 62

Queued Direct Input Output

exists where the QEBSM token is used. In this case SIGA has not been eliminated. I
suspect that the real differentiator for QDIO assistance with SIGA is whether the
subchannel token is used or the subchannel ID. In the case of the former, QDIO
Assistance is provided.

4. Automatic SIGNAL ADAPTER Synchronize when an Adapter Interrupt occurs

5. Automatic SIGNAL ADAPTER Synchronize when an PCI output interrupt occurs

All of these capabilities are focused on performance improvements, not functional
improvements. The last two options could be provided by z/VM (or PR/SM) without the need
of SIE assists. If so, it is also clear that z/VM can emulate Adapter Interrupts. The use of the
term “hypervisor” in the Linux comments also makes it unclear whether z/VM is being
referenced or PR/SM, the LPAR case. Note PR/SM performance enhancements would also
benefit z/VM that could utilize them as well as Linux running in an LPAR.

For QEBSM to be effective, it requires that QDIO Assists are enabled by z/VM for the virtual
machine. This suggests that QEBSM is not part of an LPAR implementation. The following
table attempts to articulate the potential options:

Performance Enhancement LPAR z/VM Virtual Machine

QDIO SIE Assists Not applicable Applicable

QEBSM Not applicable Applicable

SIGA SIE support Not applicable Applicable

QEBSM elimination of SIGA Not applicable Possible

Adapter Interrupt Facility Applicable Applicable

Sync on Adapter Interrupt Possible Possible

Sync on PCI out Interrupt Possible Possible

The entire question of z/VM Guest LAN or vSWITCH emulation and the underlying role of SIE
and z/VM's support of it raises a number of unanswerable questions concerning how this
functions. The SIE question is really only a concern from the perspective of enabling QDIO
Assists within an emulation to support execution of z/VM in the emulated environment. While
much effort has been applied to determining how QEBSM operates in this document, it is
clear that for an LPAR emulation of QDIO, it is not required and maybe is not even available.
Many unanswered questions remain for an emulation of SIE QDIO Assists for z/VM in
addition to the QEBSM instruction itself.

Without QIOAssists support, z/VM would operate with its traditional pre-QEBSM functionality.

The subchannel token would appear to provide the key linkage between the z/VM virtual
machine, its virtual OSA Express adapter, its shadow tables and network operations with the
physical installed OSA Express adapter. How exactly the token is established and to what it
actually relates is impossible to ascertain from the Linux source code.

Harold Grovesteen Page 53 of 62

Queued Direct Input Output

Adapter Functionality

All adapter functionality is defined by the

� SENSE ID information that defines the adapter (OSA Express vs. Hipersocket vs. OSN
interface),

� READ CONFIGURATION DATA configuration record (physical vs. z/VM emulation),

� set of adapter characteristics and

� general channel subsystem characteristics (QDIO, AIF, TDD).

An adapter emulation can control how the program interacts with the emulated adapter by
controlling what is presented through these four sources of program information.

Similar approaches are possible for network configuration not addressed in detail in this
document.

Harold Grovesteen Page 54 of 62

Queued Direct Input Output

Appendix A – GCC Useful References
This section provides an overview of key GCC facilities and their relationship to
understanding the operation of the Linux QETH Driver.

s390 32-bit ABI Types

ABI Type sizeof() in bytes Alignment zSeries Type GNU Assembler

char 1 1 byte .byte

short 2 2 halfword .hword

int 4 4 (full)word .long

long 4 4 (full)word .long

long long 8 8 doubleword .quad

pointer 4 4 (full)word .long

s390 64-bit ABI Types

ABI Type sizeof() in bytes Alignment zSeries Type GNU Assembler

char 1 1 byte .byte

short 2 2 halfword .hword

int 4 4 (full)word .long

long 8 8 doubleword .quad

pointer 8 8 doubleword .quad

In-line Assembler

In-line assembler is defined by the asm statement. “Volatile” will ensure the compiler does
not eliminate the code.

asm [volatile]

 (assembler-template

 : output-constraint [,output-constraint]

 : input-constraint [,input-constraint]

 : clobber [,clobber]

)

Harold Grovesteen Page 55 of 62

Queued Direct Input Output

Explicit register variables are established with a declaration:

register long variable asm (“n”);

The above statement will assign “variable” to the machine register n.

To place a value in the register:

register long variable asm (“n”) = parameter;

Constraints are applied to the assembler-template instruction(s) by identifying the input or
output constraint that applies. Constraints are numbered 0 to n starting with the first output
constraint as 0 and continuing to the end of the constraints.

Constraints

Constraints are specified by a constraint string followed by the a C expression in parenthesis:

“x” (variable)

Constraint Type Meaning

m simple Memory operand allowed

o simple An offsetable memory operand is allowed

V simple A memory operand that is not offsetable

< simple A memory operand with autodecrement
addressing

> simple A memory operand with autoincrement
addressing

r simple A register operand that is a general register

i simple An immediate operand is allowed.

n simple An immediate operand with a known value is
allowed.

s simple An immediate operand that is not an explicit
integer. May be accompanied by additional
constraints.

g simple Any register, memory or immediate integer is
allowed, except for registers that are not general
registers.

X simple Any operand whatsoever is allowed.

p simple An operand that is a valid memory address if
allowed.

= modifier Operand is write-only.

+ modifier Operand is both read and write.

Harold Grovesteen Page 56 of 62

Queued Direct Input Output

Constraint Type Meaning

a machine Address register (general purpose register other
than 0)

c machine Condition code register.

d machine Data register

f machine Floating point register

I machine Unsigned 8-bit constant (0-255)

J machine Unsigned 12-bit constant (0-4095)

K machine Signed 16-bit constant (-32768-32767)

L machine Value appropriate for displacement, short
(0..4095) or long (-524288..524287)

M machine Constant integer with a value of 0x7fffffff

N[0-9][H,Q]
[D,S,H][0,F]

machine Multiple part constraint:
� 0-9 – Number of the part counting from

the least significant
� H,Q – Mode of the part
� D,S,H – Mode of the containing operand
� 0,F – value of the other parts (F=all bits

set)
The constraint matches if the specified part of a
constant has a value different from its other
parts.

Q machine Memory reference without index register and with
short displacement

R machine Memory reference with index register and short
displacement

S machine Memory reference without index register and with
long displacement

T machine Memory reference with index register and with
long displacement

U machine Pointer with short displacement

W machine Pointer with long displacement

Y machine Shift count operand

Harold Grovesteen Page 57 of 62

Queued Direct Input Output

Appendix B – Linux Modules
QDIO support is provided by three modules in the directory drivers/s390/cio:

� qdio_main.c – Support for QDIO operations

� qdio_setup.c – QDIO device initialization functions used by qdio_main.c

� qdio_thinint.c – Generic QDIO Adapter Interrupt Facility interrupt handler

Other driver modules only communicate with qdio_main.c directly. The following table shows
the relationship between qdio_main.c and the adapter specific driver modules.

LIne qdio_main.c qeth_core_main.c zfcp_qdio.c

265 qdio_init_buf_states

qdio_establish

979 qdio_get_ssqd_desc

qeth_core_hardsetup_card

1000 qdio_cleanup

qeth_qdio_clear_card

1035 qdio_shutdown

zfcp_qdio_close

zfcp_qdio_open

1109 qdio_free

qdio_cleanup zfcp_qdio_destroy

qdio_initialize

1138 qdio_initialize

qeth_qdio_establish

1157 qdio_allocate

qdio_initialize

1217 qdio_establish

qdio_initialize qeth_mpc_initialize zfcp_qdio_open

qeth_qdio_establish

1293 qdio_activate

qeth_qdio_activate zfcp_qdio_open

1505 do_QDIO

qeth_init_qdio_queues zfcp_qdio_resp_put_back

qeth_flush_buffers zfcp_qdio_send

zfcp_qdio_open

Harold Grovesteen Page 58 of 62

Queued Direct Input Output

Harold Grovesteen Page 59 of 62

Queued Direct Input Output

Appendix C – Linux Interrupt and I/O Handling

QETH Handlers

QETH devices use two forms of handlers, queue handlers and I/O interrupt handlers.

Queue Handlers

Which discipline (Layer-2 or Layer-3) an adapter will be configured to use will dictate the
input and output discipline handler. The discipline handlers provide queue processing for
input or output.

Layer-2:

� qeth_l2_main.c/qeth_l2_qdio_input_handler,

� qeth_core_main.c/qeth_qdio_output_handler

Layer-3:

� qeth_l3_main.c/qeth_l3_qdio_input_handler,

� qeth_core_main.c/qeth_qdio_output_handler

The QDIO driver uses a standard structure to initialize the QDIO operations. The QETH
handler's input_handler and output_handler are supplied in the initialization data as specified
in the card's discipline structure.

The QDIO driver manages a structure for each queue. This queue structure contains a
handler field that points to the card's discipline input handler for input queues or the card's
discipline output handler for output queues. This handler is usually referenced by q->handler.

I/O Interrupt Handlers

The CCW device also has a handler to process device hardware I/O interrupts:

� qeth_core_main.c/qeth_irq (QETH read/write devices)

� qdio_main.c/qdio_init_handler (when QDIO operations are initialized)

The second QDIO interrupt handler replaces the default qeth_irq handler used by the QETH
driver prior to the adapter's data device has been initialized.

I/O interrupts in general also have a handler:

� cio.c/do_IRQ

The general I/O interrupt handler will call either the registered Adapter Interrupt handler or the
CCW device handler.

Harold Grovesteen Page 60 of 62

Queued Direct Input Output

Adapter Interrupt Handlers

If Adapter Interrupts are used by the adapter, the QDIO driver will establish and register an
adapter interrupt that handles all QDIO adapter interrupts. Linux bases this on the I/O
subclass. QDIO adapter interrupts are handled by:

� qdio_thinint.c/tiqdio_thinint_handler

I/O Interrupts

All input/output interrupts are handled by drivers/s390/cio/cio.c's do_IRQ function.

When an adapter interrupt is identified it is passed to the do_adapter_IO function of
drivers/s390/cio/airq.c. Adapter interrupt handling starts with the do_IRQ function.

Standard I/O interrupts are passed to the driver interrupt handler registered for the
subchannel, sch->driver->irq(sch). The address of subchannel structure is located from the
interrupt parameter. Linux uses the address of the subchannel structure as the interrupt
parameter.

QDIO Adapter Interrupts

Adapter interrupts are handled by drivers/s390/cio/airq.c's do_adapter_IO function. A state
change for any one of the adapter's queue is indicated by a one byte counter being
incremented. An indicator's location is set by means of the Set Subchannel Indicator CHSC
call issued to the adapter's data device. Each adapter interrupt has its own handler when
registered. The handler is associated in Linux to the I/O subclass associated with the adapter
interrupt. QDIO uses drivers/s390/cio/qdio_thinint.c/tiqdio_thinint_handler to process adapter
interrupts.

QDIO Data Device I/0 Interrupt Handlers

Type Input Processing Output Processing

I/O interrupt cio/cio.c/do_IRQ cio/cio.c/do_IRQ

I/O interrupt handler cio/qdio_main.c/qdio_int_handler net/qdio_main.c/qdio_int_handler

PCI interrupt handler cio/qdio_main.c/qdio_int_handler_pci cio/qdio_main.c/qdio_int_handler_pci

I/O interrupt tasklet cio/qdio_main.c/qdio_inbound_processing cio/qdio_main.c/qdio_outbound_processing

The I/O interrupt tasklet will call the appropriate adapter queue handler.

QDIO Data Device Adapter Interrupt Handlers

Type Input Processing Output Processing

Adapter Interrupt airq.c/do_adapter_IO Not supported for outbound

QDIO adapter ints. cio/qdio_thinint.c/tiqdio_thinint_handler Not supported for outbound

Harold Grovesteen Page 61 of 62

Queued Direct Input Output

Type Input Processing Output Processing

Adapter Int. tasklet cio/qdio_main.c/tiqdio_inbound_processing Not supported for outbound

The Adapter interrupt tasklet will call the appropriate adapter queue handler.

QETH Adapter Queue Handlers

QETH queue handlers are called by either the I/O interrupt tasklet or the Adapter interrupt
tasklet.

Type Input Processing Output Processing

Layer-2 Queues net/qeth_l2_main.c/
qeth_l2_qdio_input_handler

net/qeth_core_main.c/
qeth_qdio_output_handler

Layer-2 Buffer net/qeth_l2_main.c/
qeth_l2_process_inbound_buffer

Layer-3 Queues net/qeth_l3_main.c/
qeth_l3_qdio_input_handler

net/qeth_core_main.c/
qeth_qdio_output_handler

QETH Read/Write Device I/O Interrupt Handlers

The QETH driver provides its own interrupt handler for the pair of channel interface devices
used to configure the network adapters.

Type Input Processing Output Processing

I/O interrupt cio/cio.c/do_IRQ cio/cio.c/do_IRQ

Read/Write Device net/qeth_core_main.c/qeth_irq net/qeth_core_main.c/qeth_irq

Harold Grovesteen Page 62 of 62

	Introduction
	Group Device
	Adapter

	Features and Facilities
	Queued Direct Input/Output Feature (QDIO)
	Design Limits
	QDIO Data Device

	Adapter Interrupt Facility (AIF)
	QDIO Extended State Block Management Facility (QEBSM)
	Time Delay Disablement Facility (TDD)

	QDIO Operations Overview
	Adapter Initialization
	Adapter Recognition
	Network Adapter Operations
	QDIO Operations

	Queue Establishment
	Input Preparation
	Input Buffer Usage

	Input Recognition
	Programmed Controlled Interrupt Signaling
	Adapter Interrupt Signaling

	Input Processing
	Output Preparation
	TCP Segmentation Offload Buffer Usage
	Non-packing Mode Output Buffer Usage
	Packing Mode Output Buffer Usage

	Output Initiation
	Output Completion

	Networking Facility and Feature Usage
	Assigned Storage
	I/O Interruption Identification Word

	Channel Subsystem Calls
	Channel Subsystem Characteristics Call
	Request/Response Layout
	General Characteristics

	Subchannel Subsystem Call
	Request/Response Layout
	schid

	Subsystem Queue Description Call
	Request/Response Layout
	Subsystem Queue Description
	flags
	qdioac1 – Adapter Characteristics
	qfmt

	QDIO Data Device Commands
	Error Reporting
	CLEAR SUBCHANNEL Function
	HALT SUBCHANNEL Function
	ACTIVATE Command (X'1F')
	Asynchronous Interrupts

	ESTABLISH Command (X'1B')
	Queue Description Record (QDR)
	Queue Descriptor, Format 0 (QDF0)
	skeys

	Queue Information Block (QIB)
	Network Adapter Parameter Data
	PCI Threshold Parameter – 'PCIT'
	Block Timer Parameter – 'BLKT'

	Storage List Information Block (SLIB)
	Storage List (SL)
	Storage Block Address List (SBAL)
	Storage Block Address List Entry (SBALE)
	flags

	Storage List State Block (SLSB)

	READ CONFIGURATION DATA Command (0xFA)
	Emulation Node Element Descriptor
	I/O Device Node Element Descriptor
	Node Element Qualifier

	SENSE Command (0x04)
	SENSE ID Command (0xE4)
	Basic Identification Information
	Extended Identification Information

	CPU Instructions
	EQBS – EXTRACT QUEUE BUFFER STATE
	Usage

	SIGA – SIGNAL ADAPTER
	Queue Mask
	Signal Synchronize (Function 2)
	Signal Input (Function 1)
	Signal Output (Function 0) and Signal Enhanced Output (Function 3)

	SQBS – SET QUEUE BUFFER STATE
	Usage

	SVS – SUBSYSTEM VARY STATUS
	SVS Clear Global Summary (Function 3)

	Architecture and Evolution
	Adapter Main Storage Interface
	QEBSM Considerations
	Adapter Functionality

	Appendix A – GCC Useful References
	s390 32-bit ABI Types
	s390 64-bit ABI Types
	In-line Assembler
	Constraints

	Appendix B – Linux Modules
	Appendix C – Linux Interrupt and I/O Handling
	QETH Handlers
	Queue Handlers
	I/O Interrupt Handlers
	Adapter Interrupt Handlers

	I/O Interrupts
	QDIO Adapter Interrupts
	QDIO Data Device I/0 Interrupt Handlers
	QDIO Data Device Adapter Interrupt Handlers
	QETH Adapter Queue Handlers
	QETH Read/Write Device I/O Interrupt Handlers

