# SOAP – Spherical Overdensity and Aperture Processor

Bert Vandenbroucke, Joop Schaye, John Helly, Matthieu Schaller, Rob McGibbon

Generated by user "dc-mcgi1" on login8a.pri.cosma.local on Friday 30 August 2024, 15:20:37. SOAP version "e791a2c"

### 1 Introduction

SOAP computes different types of properties, depending on how particles are included (by radius, in projection...). For all types, we use the halo membership and centre of potential as determined by the input halo catalogue. This documentation is generated using the SOAP parameter file, and so the properties listed reflect those present in the current run of SOAP, rather than all possible properties.

# 2 Property types

**Subhalo quantities (SH)** are computed for each subhalo identified by the halo finder, irrespective of whether it is a field halo or a satellite (or even satellite of satellite and so on). They include all particles that they halo finder has determined are bound to the subhalo. Subhalo properties are contained within the group BoundSubhalo in the output file.

**Exclusive sphere quantities (ES)** are similar to subhalo quantities, but they include only the particles that are bound to the subhalo, and apply an additional radial cut (aperture). We use eight different aperture radii (10, 30, 50, 100, 300, 500, 1000, 3000 kpc), so that every (sub-)halo has eight of these. Exclusive sphere properties are contained within a group ExclusiveSphere/XXXkpc, where XXX is the corresponding aperture radius.

**Inclusive sphere quantities (IS)** use the same physical aperture radii as the exclusive sphere quantities, but include all particles within the radius, regardless of their membership status. They are stored within a group InclusiveSphere/XXXkpc.

Exclusive projected quantities (EP) are similar to exclusive sphere quantities, except that their aperture filter is applied in projection, and this for independent projections along the x-, y- and z-axis. Along the projection axis, we do not apply any radial cut, so that the depth corresponds to all particles bound to the (sub-)halo. With four projected aperture radii (10, 30, 50, 100 kpc), we then have twelve sets of projected aperture quantities for each (sub-)halo. Projected aperture quantities are stored in a group named ProjectedAperture/XXXkpc/projP, where XXX is the corresponding aperture radius, and P corresponds to a particular projection direction (x, y or z).

Spherical overdensity properties (SO) are fundamentally different from the three other types in that their aperture radius is determined from the density profile and is different for different halos. They always include all particles within a sphere around the centre of potential, regardless of halo membership. The radius is either the radius at which the density reaches a certain target value (50 crit, 100 crit, 200 crit, 500 crit, 1000 crit, 2500 crit, 200 mean, BN98) or a multiple of such a radius (5xR 500 crit). Details of the spherical overdensity calculation are given at the end of this document. Spherical overdensities are only computed for centrals, i.e. field halos. The inclusive sphere quantities are stored in a group SO/XXX, where XXX can be either XXX\_mean for density multiples of the mean density, XXX\_crit for density multiples of the critical density, BN98 for the overdensity definition of Bryan & Norman (1998), and YxR\_XXX\_ZZZ for multiples of some other radius (e.g. 5xR\_2500\_mean). The latter can only be computed after the corresponding density multiple SO radius has been computed. This is achieved by ordering the calculations.

**InputHalos** Some properties are directly copied from the original halo catalogue that was passed to SOAP. These are stored in a separate group, **InputHalos**.

**SOAP** Some properties are computed by SOAP using the other halo properties present in the catalogue. These are stored in a separate group, SOAP. This is just done for convenience; these quantities can be computed from the SOAP output alone.

The table below lists all the groups in the output file which containing datasets. Note that there will be three groups (x, y or z) for each ProjectedAperture variation. Each halo variation can have a filter applied to it. If a halo does not satisfy the filter then the variation will not be calculated for that halo. More information on filters can be found in the next section.

| Group name (HDF5)              | Group name (swiftsimio)                       | Inclusive? | Filter  |
|--------------------------------|-----------------------------------------------|------------|---------|
| BoundSubhalo                   | bound_subhalo                                 | ×          | -       |
| S0/200_crit                    | <pre>spherical_overdensity_200_crit</pre>     | 1          | -       |
| SO/50_crit                     | <pre>spherical_overdensity_50_crit</pre>      | 1          | general |
| S0/100_crit                    | <pre>spherical_overdensity_100_crit</pre>     | 1          | general |
| S0/200_mean                    | <pre>spherical_overdensity_200_mean</pre>     | 1          | -       |
| S0/500_crit                    | <pre>spherical_overdensity_500_crit</pre>     | 1          | -       |
| SO/5xR_500_crit                | <pre>spherical_overdensity_5xr_500_crit</pre> | 1          | general |
| S0/1000_crit                   | <pre>spherical_overdensity_1000_crit</pre>    | 1          | general |
| S0/2500_crit                   | <pre>spherical_overdensity_2500_crit</pre>    | 1          | general |
| SO/BN98                        | <pre>spherical_overdensity_bn98</pre>         | 1          | general |
| ExclusiveSphere/10kpc          | exclusive_sphere_10kpc                        | ×          | -       |
| ExclusiveSphere/30kpc          | exclusive_sphere_30kpc                        | ×          | -       |
| ExclusiveSphere/50kpc          | exclusive_sphere_50kpc                        | ×          | -       |
| ExclusiveSphere/100kpc         | exclusive_sphere_100kpc                       | ×          | -       |
| ExclusiveSphere/300kpc         | exclusive_sphere_300kpc                       | ×          | -       |
| ExclusiveSphere/500kpc         | exclusive_sphere_500kpc                       | ×          | general |
| ExclusiveSphere/1000kpc        | exclusive_sphere_1000kpc                      | ×          | general |
| ExclusiveSphere/3000kpc        | exclusive_sphere_3000kpc                      | ×          | general |
| InclusiveSphere/10kpc          | inclusive_sphere_10kpc                        | 1          | -       |
| InclusiveSphere/30kpc          | inclusive_sphere_30kpc                        | 1          | -       |
| InclusiveSphere/50kpc          | inclusive_sphere_50kpc                        | 1          | -       |
| InclusiveSphere/100kpc         | inclusive_sphere_100kpc                       | 1          | -       |
| InclusiveSphere/300kpc         | inclusive_sphere_300kpc                       | 1          | -       |
| InclusiveSphere/500kpc         | inclusive_sphere_500kpc                       | 1          | general |
| InclusiveSphere/1000kpc        | inclusive_sphere_1000kpc                      | 1          | general |
| InclusiveSphere/3000kpc        | inclusive_sphere_3000kpc                      | 1          | general |
| ProjectedAperture/10kpc/projP  | projected_aperture_10kpc_projP                | ×          | general |
| ProjectedAperture/30kpc/projP  | projected_aperture_30kpc_projP                | ×          | general |
| ProjectedAperture/50kpc/projP  | projected_aperture_50kpc_projP                | ×          | general |
| ProjectedAperture/100kpc/projP | projected_aperture_100kpc_projP               | ×          | general |
| SOAP                           | soap                                          | -          | _       |
| InputHalos                     | input_halos                                   | -          | -       |
| InputHalos/HBTplus             | input_halos_hbtplus                           | -          | -       |
| InputHalos/FOF                 | input_halos_fof                               | -          | -       |

#### **3** Property categories

Halo properties only make sense if the subhalo contains sufficient particles. Halo finders are often run with a configuration that requires at least 20 particles for a satellite subhalo. However, even for those particle numbers, a lot of the properties computed by SOAP will be zero (e.g. the gas mass within a 10 kpc aperture), or have values that are outliers compared to the full halo population because of undersampling. We can save a lot of disk space by filtering these out by applying appropriate cuts. Filtering means setting the value of the property to NaN; HDF5 file compression then very effectively reduces the data storage required to store these properties, while the size of the arrays that the end user sees remains unchanged. Evidently, we can also save on computing time by not computing properties that are filtered out.

Since different properties can have very different requirements, filtering is done in categories, where each category corresponds to a set of quantities that are filtered using the same criterion. Inclusive, exclusive or projected quantities with different aperture radii (or overdensity criteria) can be used to create profiles. In order for these profiles to make sense, we have to apply a consistent cut across all the different aperture radii (or overdensity criteria) for the same subhalo property type. Or in other words: the quantities for an inclusive sphere with a 10 kpc aperture radius will use the same filter mask as the quantities of the inclusive sphere with a 3000 kpc aperture radius, even though the latter by construction has many more particles.

**Basic quantities (basic)** are never filtered out, and hence are calculated for all objects in the input halo catalogue.

General quantities (general) use a filter based on the total number of particles bound to the subhalo.

**Gas quantities (gas)** use a filter based on the number of gas particles bound to the subhalo.

**DM quantities (dm)** use a filter based on the number of DM particles bound to the subhalo.

**Stellar quantities (star)** use a filter based on the number of star particles bound to the subhalo.

**Baryon quantities (baryon)** use a filter based on the number of gas and star particles bound to the subhalo.

Note that there are no quantities that use a BH or neutrino particle number filter.

The particle number thresholds are set in the parameter file. The different categories are summarised in the table below.

 $\begin{array}{lll} \mbox{Name} & \mbox{criterion} \\ \hline \mbox{basic} & \mbox{(all halos)} \\ \mbox{general} & N_{\rm gas} + N_{\rm dm} + N_{\rm star} + N_{\rm BH} \geq 100 \\ \mbox{gas} & N_{\rm gas} \geq 100 \\ \mbox{dm} & N_{\rm dm} \geq 100 \\ \mbox{star} & N_{\rm star} \geq 100 \\ \mbox{baryon} & N_{\rm gas} + N_{\rm star} \geq 100 \end{array}$ 

#### 4 Overview table

The table below lists all the properties that are computed by SOAP when run in HYDRO mode. For dark matter only (DMO) mode only the properties colored violet/purple are computed. This table is automatically generated by SOAP from the source code, so that all names, types, units, categories and descriptions match what is actually used and output by SOAP. For each quantity, the table indicates for which halo types the property is computed. Superscript numbers refer to more detailed explanations for some of the properties and match the numbers in the next section. If swiftsimio has been used to load a catalogue then the fields names are in snake\_case rather than CamelCase, e.g. CentreOfMass becomes centre\_of\_mass.

Note that quantities are given in the base units of the simulation snapshot. The attributes of each SOAP dataset contains all the relevant meta-data to convert between physical and co-moving units, i.e. information about how the quantity depends on the scale-factor, and what the conversion factor to and from CGS units is. All quantities are h-free. The conversion of the base units to CGS is given by:

 Unit
 CGS conversion

 L
 3.086e+24 cm

 M
 1.988e+43 g

 t
 3.086e+19 s

 T
 1 K

For example, a property whose units are listed as M/t will have units of velocity, where 1 M/t = 1 km/s. The scale factor is explicitly included for comoving properties (e.g. the units of HaloCentre are aL)

| Name                                                                                                                                                                                                     | Shape                                       | Type                                                          | Units                                                                                    | $\mathbf{SH}$         | $\mathbf{ES}$   | $\mathbf{IS}$             | $\mathbf{EP}$               | SO              | Category       | Compression                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------|-----------------|---------------------------|-----------------------------|-----------------|----------------|----------------------------------------------------------------------|
| Description                                                                                                                                                                                              |                                             |                                                               |                                                                                          |                       |                 |                           |                             |                 |                |                                                                      |
| BlackHolesDynamicalMass<br>Total BH dynamical mass.                                                                                                                                                      | 1                                           | float32                                                       | М                                                                                        | 1                     | 1               | 1                         | 1                           | 1               | basic          | $1.36693{\rm e}{\rm 10} \rightarrow 1.367{\rm e}{\rm 10}$            |
| BlackHolesSubgridMass<br>Total BH subgrid mass.                                                                                                                                                          | 1                                           | float32                                                       | М                                                                                        | 1                     | 1               | 1                         | 1                           | 1               | basic          | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$          |
| $\begin{array}{c} \text{CentreOfMass}^1 \\ \text{Centre of mass.} \end{array}$                                                                                                                           | 3                                           | float64                                                       | a · L                                                                                    | 1                     | 1               | 1                         | 1                           | 1               | basic          | 1 pc accurate                                                        |
| CentreOfMassVelocity <sup>1</sup><br>Centre of mass velocity.                                                                                                                                            | 3                                           | float32                                                       | $\mathbf{a}\cdot\mathbf{L}/\mathbf{t}$                                                   | 1                     | 1               | 1                         | 1                           | 1               | basic          | $0.1~{\rm km/s}$ accurate                                            |
| Concentration <sup>2</sup><br>Halo concentration assuming<br>length                                                                                                                                      | 1<br>g an NFV                               | float32<br>V profile.                                         | dimensionless<br>Minimum part                                                            | ×<br>icle r           | ×<br>adius      | $\mathbf{x}$ set t        | ×<br>o soft                 | ✓<br>ening      | basic          | $1.36693e10 \rightarrow 1.367e10$                                    |
| ConcentrationUnsoftened<br>Halo concentration assuming                                                                                                                                                   | 1<br>an NFW                                 | float32<br>7 profile. 1                                       | dimensionless<br>No particle softe                                                       | ×<br>ning.            | ×               | ×                         | ×                           | 1               | basic          | $1.36693e10 \rightarrow 1.367e10$                                    |
| DarkMatterConcentration <sup>2</sup><br>Concentration of dark matter<br>set to softening length                                                                                                          | 1<br>particles                              | float32<br>5 assuming                                         | dimensionless<br>g an NFW profil                                                         | ×<br>e. Mi            | ×<br>nimur      | ×<br>n par                | ×<br>ticle r                | ✓<br>adius      | basic          | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$          |
| DarkMatterConcentration-<br>Unsoftened<br>Concentration of dark matter                                                                                                                                   | 1<br>r particle                             | float32<br>s assumin                                          | dimensionless<br>g an NFW profi                                                          | X<br>le No            | X               | X                         | X                           | 🗸               | basic          | $1.36693{\rm e}{\rm 10} \rightarrow 1.367{\rm e}{\rm 10}$            |
| Halo concentration assuming<br>DarkMatterConcentration <sup>2</sup><br>Concentration of dark matter<br>set to softening length<br>DarkMatterConcentration-<br>Unsoftened<br>Concentration of dark matter | an NFW<br>1<br>particles<br>1<br>r particle | 7 profile. 1<br>float32<br>s assuming<br>float32<br>s assumin | No particle softe<br>dimensionless<br>g an NFW profil<br>dimensionless<br>g an NFW profi | e. Mir<br>×<br>k<br>× | ×<br>nimur<br>× | ×<br>n par<br>×<br>icle s | ×<br>ticle r<br>×<br>ofteni | ✓<br>adius<br>✓ | basic<br>basic | $1.36693e10 \rightarrow 1.367e1$<br>$1.36693e10 \rightarrow 1.367e1$ |

| Name<br>Description                                                      | Shape           | Type                   | Units                               | SH                    | ES           | IS | ΕP | SO | Category | Compression                                                 |
|--------------------------------------------------------------------------|-----------------|------------------------|-------------------------------------|-----------------------|--------------|----|----|----|----------|-------------------------------------------------------------|
| DarkMatterMass<br>Total DM mass.                                         | 1               | float32                | М                                   | 1                     | 1            | ~  | 1  | 1  | basic    | $1.36693e10 \to 1.367e10$                                   |
| EncloseRadius<br>Radius of the particle furthe                           | 1<br>st from tl | float32<br>he halo ce  | $\mathbf{a} \cdot \mathbf{L}$ entre | 1                     | ×            | ×  | ×  | ×  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| GasMass<br>Total gas mass.                                               | 1               | float32                | М                                   | 1                     | 1            | 1  | 1  | 1  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| GasMassFractionInMetals <sup>3</sup><br>Total gas mass fraction in m     | 1<br>etals.     | float32                | dimensionless                       | 1                     | 1            | 1  | ×  | 1  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| HalfMassRadiusStars <sup>4</sup><br>Stellar half mass radius.            | 1               | float32                | $\mathbf{a} \cdot \mathbf{L}$       | 1                     | 1            | 1  | 1  | ×  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| MaximumCircularVelocity <sup>5</sup><br>Maximum circular velocity v      | 1<br>vhen acco  | float32<br>ounting for | L/t<br>r particle softeni           | ✓<br>ng ler           | $\mathbf{X}$ | ×  | ×  | ×  | basic    | $1.36693e10 \rightarrow 1.367e10$                           |
| MaximumCircularVelocityRadius-<br>Unsoftened <sup>5</sup>                | 1               | float32                | a·L                                 | <ul> <li>I</li> </ul> | ×            | ×  | ×  | ×  | basic    | $1.36693e10 \rightarrow 1.367e10$                           |
| Radius at which MaximumC                                                 | Sircular Ve     | locityUns              | oftened is reache                   | ed.                   |              |    |    |    |          |                                                             |
| $\begin{array}{l} Maximum Circular Velocity-\\ Unsoftened^5 \end{array}$ | 1               | float32                | L/t                                 | 1                     | ×            | ×  | ×  | ×  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |

Maximum circular velocity when not accounting for particle softening lengths.

-1

| Name                                                                      | Shape          | Type    | Units         | $\mathbf{SH}$ | $\mathbf{ES}$ | IS | $\mathbf{EP}$ | SO | Category | Compression                                                 |
|---------------------------------------------------------------------------|----------------|---------|---------------|---------------|---------------|----|---------------|----|----------|-------------------------------------------------------------|
| Description                                                               |                |         |               |               |               |    |               |    |          |                                                             |
| MostMassiveBlackHoleID<br>ID of most massive black hol                    | 1<br>le.       | uint64  | dimensionless | 1             | 1             | 1  | 1             | 1  | basic    | Store less bits                                             |
| MostMassiveBlackHoleMass <sup>6</sup><br>Mass of most massive black l     | 1<br>hole.     | float32 | М             | 1             | 1             | 1  | 1             | 1  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| NoiseSuppressedNeutrinoMass <sup>7</sup><br>Noise suppressed total neutri | 1<br>ino mass. | float32 | М             | ×             | ×             | ×  | ×             | 1  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| NumberOfBlackHoleParticles<br>Number of black hole particl                | 1<br>es.       | uint32  | dimensionless | 1             | 1             | 1  | 1             | 1  | basic    | no compression                                              |
| NumberOfDarkMatterParticles<br>Number of dark matter parti                | 1<br>icles.    | uint32  | dimensionless | 1             | 1             | 1  | 1             | 1  | basic    | no compression                                              |
| NumberOfGasParticles<br>Number of gas particles.                          | 1              | uint32  | dimensionless | 1             | 1             | 1  | 1             | 1  | basic    | no compression                                              |
| NumberOfNeutrinoParticles<br>Number of neutrino particles                 | 1<br>3.        | uint32  | dimensionless | ×             | ×             | X  | ×             | 1  | basic    | no compression                                              |
| NumberOfStarParticles<br>Number of star particles.                        | 1              | uint32  | dimensionless | 1             | 1             | 1  | 1             | 1  | basic    | no compression                                              |
| RawNeutrinoMass <sup>7</sup><br>Total neutrino particle mass.             | 1              | float32 | М             | ×             | ×             | ×  | ×             | 1  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |

| _ | Name<br>Description                                             | Shape         | Type                  | Units                      | SH | ES | IS | EP | SO | Category | Compression                                                 |
|---|-----------------------------------------------------------------|---------------|-----------------------|----------------------------|----|----|----|----|----|----------|-------------------------------------------------------------|
|   | SORadius<br>Radius of a sphere satisfying                       | 1<br>a spheri | float32<br>cal overde | a · L<br>ensity criterion. | ×  | ×  | ×  | ×  | 1  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
|   | StarFormationRate <sup>8</sup><br>Total star formation rate.    | 1             | float32               | M/t                        | 1  | 1  | 1  | 1  | 1  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
|   | StarFormingGasMassFractionIn-<br>Metals <sup>8,3</sup>          | 1             | float32               | dimensionless              | 1  | 1  | 1  | ×  | 1  | basic    | $1.36693{\rm e}10 \to 1.367{\rm e}10$                       |
|   | Total gas mass fraction in me                                   | etals for     | gas that i            | s star-forming.            |    |    |    |    |    |          |                                                             |
|   | StellarMass<br>Total stellar mass.                              | 1             | float32               | М                          | 1  | 1  | 1  | 1  | 1  | basic    | $1.36693e10 \rightarrow 1.367e10$                           |
|   | StellarMassFractionInMetals<br>Total stellar mass fraction in   | 1<br>metals.  | float32               | dimensionless              | 1  | 1  | 1  | ×  | 1  | basic    | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| _ | TotalMass<br>Total mass.                                        | 1             | float32               | М                          | 1  | 1  | 1  | 1  | 1  | basic    | $1.36693e10 \rightarrow 1.367e10$                           |
| _ | BlackHolesLastEventScalefactor<br>Scale-factor of last AGN even | 1<br>nt.      | float32               | dimensionless              | 1  | 1  | 1  | 1  | 1  | general  | $1.36693e10 \rightarrow 1.367e10$                           |
|   | ComptonY <sup>9</sup><br>Total Compton y parameter.             | 1             | float64               | $L^2$                      | ×  | ×  | ×  | ×  | 1  | general  | $1.36693{\rm e}10 \to 1.367{\rm e}10$                       |

| Name                                                                                                             | Shape            | Type                  | Units                            | $\mathbf{SH}$ | $\mathbf{ES}$ | $\mathbf{IS}$ | $\mathbf{EP}$   | SO           | Category | Compression                                                 |
|------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|----------------------------------|---------------|---------------|---------------|-----------------|--------------|----------|-------------------------------------------------------------|
| Description                                                                                                      |                  |                       |                                  |               |               |               |                 |              |          |                                                             |
| ComptonYWithoutRecent-<br>AGNHeating <sup>9</sup><br>Total Compton y parameter.                                  | 1<br>Exclude     | float64<br>es gas tha | L <sup>2</sup><br>t was recently | ×             | ×<br>by A0    | ×<br>GN.      | ×               | 1            | general  | $1.36693 \mathrm{e}10  ightarrow 1.367 \mathrm{e}10$        |
| DopplerB <sup>10</sup><br>Kinetic Sunyaey-Zel'dovich e<br>lightcone observer.                                    | 1<br>effect, ass | float32<br>uming a l  | a·<br>ine of sight tov           | ×<br>wards tł | ×<br>ne pos   | $\mathbf{x}$  | $\times$ of the | ✓<br>e first | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| GasComptonYTemperature <sup>11</sup><br>ComptonY-weighted mean g                                                 | 1<br>as tempe    | float32<br>rature.    | Т                                | ×             | ×             | ×             | ×               | 1            | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| GasComptonYTemperatureCore-<br>Excision <sup>12,11</sup><br>ComptonY-weighted mean g                             | 1<br>as tempe    | float32<br>rature, ex | T<br>cluding the im              | ×<br>ner exci | ×<br>sed co   | ×             | ×               | 1            | general  | $1.36693{\rm e}10 \to 1.367{\rm e}10$                       |
| GasComptonYTemperature-<br>WithoutRecentAGNHeating <sup>11</sup><br>ComptonY-weighted mean g<br>AGN.             | 1<br>gas temp    | float32<br>erature, o | T<br>excluding gas               | that wa       | ×<br>as rec   | ×             | ×               | 🖌<br>ed by   | general  | $1.36693 e10 \rightarrow 1.367 e10$                         |
| GasComptonYTemperature-<br>WithoutRecentAGNHeatingCore-<br>Excision <sup>12,11</sup><br>ComptonY-weighted mean g | 1<br>as tempe    | float32<br>rature, ex | T<br>ccluding the in             | ×<br>ner exci | ×<br>ised c   | ×<br>ore a    | ×<br>nd gas     | ✓<br>s that  | general  | $1.36693e10 \rightarrow 1.367e10$                           |

was recently heated by AGN.

10

|                | float32                  | dimensionless                                                               | ×                                                                                                                 | 1                                                                                                                                   | ,                                                                                                                                                           |                                                                                                                                                                                               |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------|--------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | floot 20                 |                                                                             |                                                                                                                   | •                                                                                                                                   | V                                                                                                                                                           | X                                                                                                                                                                                             | 1                                                                                                                                                                                                              | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | 110at52                  | dimensionless                                                               | ×                                                                                                                 | 1                                                                                                                                   | 1                                                                                                                                                           | ×                                                                                                                                                                                             | 1                                                                                                                                                                                                              | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rature         | float32                  | Т                                                                           | 1                                                                                                                 | 1                                                                                                                                   | 1                                                                                                                                                           | ×                                                                                                                                                                                             | 1                                                                                                                                                                                                              | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \to 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| rature         | float32<br>, excludir    | T<br>ng the inner excis                                                     | ×<br>sed co                                                                                                       | ×<br>re.                                                                                                                            | ×                                                                                                                                                           | ×                                                                                                                                                                                             | 1                                                                                                                                                                                                              | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \to 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | float32                  | Т                                                                           | 1                                                                                                                 | ×                                                                                                                                   | ×                                                                                                                                                           | ×                                                                                                                                                                                             | 1                                                                                                                                                                                                              | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| rature         | , excludin               | ng cool gas with a                                                          | a temj                                                                                                            | peratu                                                                                                                              | re b                                                                                                                                                        | elow 1                                                                                                                                                                                        | e5 K.                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | float32                  | Т                                                                           | 1                                                                                                                 | ×                                                                                                                                   | ×                                                                                                                                                           | ×                                                                                                                                                                                             | 1                                                                                                                                                                                                              | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693\mathrm{e}10 \rightarrow 1.367\mathrm{e}1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| rature<br>.GN. | , excludir               | ng cool gas with                                                            | a tem                                                                                                             | perat                                                                                                                               | ure b                                                                                                                                                       | elow 1                                                                                                                                                                                        | le5 K                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                | float32                  | Т                                                                           | ×                                                                                                                 | ×                                                                                                                                   | ×                                                                                                                                                           | ×                                                                                                                                                                                             | 1                                                                                                                                                                                                              | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1 11           | ature:<br>rature:<br>GN. | float32<br>ature, excludir<br>float32<br>rature, excludir<br>GN.<br>float32 | float32 T<br>ature, excluding cool gas with a<br>float32 T<br>rature, excluding cool gas with<br>GN.<br>float32 T | float32 T ✓<br>sature, excluding cool gas with a temp<br>float32 T ✓<br>rature, excluding cool gas with a tem<br>GN.<br>float32 T × | float 32 T × ×<br>rature, excluding cool gas with a temperature<br>float 32 T × ×<br>rature, excluding cool gas with a temperature<br>GN.<br>float 32 T × × | float 32 T $\checkmark$ X X<br>stature, excluding cool gas with a temperature be<br>float 32 T $\checkmark$ X X<br>rature, excluding cool gas with a temperature b<br>GN.<br>float 32 T X X X | float 32 T $\checkmark$ X X X<br>stature, excluding cool gas with a temperature below 1<br>float 32 T $\checkmark$ X X X<br>rature, excluding cool gas with a temperature below 1<br>GN.<br>float 32 T X X X X | float32       T       Image: X mark       X mark       X mark       Image: X mark       Imark       Imark       Imar | float 32TImage: Image: I |

and gas that was recently heated by AGN.

| Name<br>Description                                                                                                          | Shape           | Type                   | Units                            | SH           | ES          | IS        | EP          | SO          | Category | Compression                                                 |
|------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------|----------------------------------|--------------|-------------|-----------|-------------|-------------|----------|-------------------------------------------------------------|
| $GasTemperatureWithoutCool-GasCoreExcision^{12}$                                                                             | 1               | float32                | Т                                | ×            | ×           | ×         | ×           | 1           | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Mass-weighted mean gas te K.                                                                                                 | mperature       | e, excludii            | ng the inner exc                 | ised co      | ore an      | id gas    | s belo      | w 1e5       |          |                                                             |
| $GasTemperatureWithoutRecent-AGNHeating^{13}$                                                                                | 1               | float32                | Т                                | 1            | 1           | 1         | ×           | 1           | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Mass-weighted mean gas te                                                                                                    | mperature       | e, excludir            | ng gas that was                  | recent       | y hea       | ted b     | oy AG       | N.          |          |                                                             |
| GasTemperatureWithoutRecent-<br>AGNHeatingCoreExcision <sup>12</sup><br>Mass-weighted mean gas te<br>recently heated by AGN. | 1<br>mperature  | float32<br>e, excludi  | T<br>ng the inner exc            | ×<br>eised c | ×<br>ore, a | ×<br>nd g | ×<br>as tha | ✓<br>at was | general  | $1.36693e10 \rightarrow 1.367e10$                           |
| HalfMassRadiusTotal <sup>4</sup><br>Total half mass radius.                                                                  | 1               | float32                | a · L                            | 1            | ×           | ×         | ×           | ×           | general  | $1.36693 e10 \rightarrow 1.367 e10$                         |
| HotGasMass<br>Total mass of gas with a ter                                                                                   | 1<br>mperature  | float32<br>e above 1e  | М<br>5 К.                        | ×            | ×           | ×         | ×           | 1           | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| MassFractionExternal <sup>14</sup><br>Fraction of mass that is bou                                                           | 1<br>ind to a s | float32<br>atellite ou | dimensionless<br>itside this FOF | ×<br>group.  | ×           | ×         | ×           | 1           | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| MassFractionSatellites <sup>14</sup><br>Fraction of mass that is bou                                                         | 1<br>ind to a s | float32<br>atellite in | dimensionless<br>the same FOF    | ×<br>group.  | ×           | ×         | ×           | 1           | general  | $1.36693e10 \rightarrow 1.367e10$                           |

| Name                                                                                                                     | Shape                                 | Type                               | Units                                                        | $\mathbf{SH}$          | $\mathbf{ES}$          | IS                   | $\mathbf{EP}$                 | SO                                                               | Category | Compression                                                 |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------|--------------------------------------------------------------|------------------------|------------------------|----------------------|-------------------------------|------------------------------------------------------------------|----------|-------------------------------------------------------------|
| Description                                                                                                              |                                       |                                    |                                                              |                        |                        |                      |                               |                                                                  |          |                                                             |
| MostMassiveBlackHoleAccretion-<br>Rate<br>Gas accretion rate of most n                                                   | 1<br>nassive bl                       | float32<br>ack hole.               | M/t                                                          | 1                      | 1                      | 1                    | ×                             | 1                                                                | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| MostMassiveBlackHoleLastEvent-<br>Scalefactor<br>Scale-factor of last AGN eve                                            | 1<br>nt for mo                        | float32<br>ost massiv              | dimensionless<br>e black hole.                               | 1                      | 1                      | 1                    | 1                             | 1                                                                | general  | $1.36693e10 \rightarrow 1.367e10$                           |
| MostMassiveBlackHolePosition<br>Position of most massive bla                                                             | 3<br>.ck hole.                        | float64                            | $\mathbf{a} \cdot \mathbf{L}$                                | 1                      | 1                      | 1                    | 1                             | 1                                                                | general  | 1 pc accurate                                               |
| MostMassiveBlackHoleVelocity<br>Velocity of most massive bla                                                             | 3<br>.ck hole r                       | float32<br>elative to              | $\mathbf{a} \cdot \mathbf{L}/\mathbf{t}$<br>the simulation v | ✓<br>volume            | ✓<br>e.                | 1                    | 1                             | 1                                                                | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| ProjectedTotalInertiaTensor-<br>Noniterative                                                                             | 3                                     | float32                            | $L^2$                                                        | Х                      | Х                      | ×                    | 1                             | ×                                                                | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| 2D inertia tensor computed<br>to the halo centre. Diagonal comp<br>calculated when we have more than                     | in a sing<br>ponents an<br>a 20 parti | le iteratic<br>nd one of<br>cles.  | on from the tota<br>f-diagonal value                         | l mass<br>as (1        | s distı<br>,1), (2     | ributi<br>2,2),      | on, re $(1,2)$ .              | elative<br>Only                                                  |          |                                                             |
| ProjectedTotalInertiaTensor-<br>ReducedNoniterative<br>Reduced 2D inertia tensor correlative to the halo centre. Diagona | 3<br>omputed<br>al compo              | float32<br>in a singl<br>nents and | dimensionless<br>e iteration from<br>one off-diagonal        | ×<br>the to<br>l value | ×<br>otal m<br>e as (1 | ×<br>nass d<br>1,1), | $\checkmark$ listrib $(2,2),$ | $\begin{array}{c} \times \\ \text{ution,} \\ (1,2). \end{array}$ | general  | $1.36693e10 \rightarrow 1.367e10$                           |
| Only calculated when we have more                                                                                        | e than 20                             | particles                          |                                                              |                        |                        |                      |                               |                                                                  |          |                                                             |

 $\frac{13}{3}$ 

| Name                                                                                            | Shape          | Type       | Units                      | $\mathbf{SH}$ | $\mathbf{ES}$ | $\mathbf{IS}$ | $\mathbf{EP}$ | SO     | Category | Compression                                                 |
|-------------------------------------------------------------------------------------------------|----------------|------------|----------------------------|---------------|---------------|---------------|---------------|--------|----------|-------------------------------------------------------------|
| Description                                                                                     |                |            |                            |               |               |               |               |        |          |                                                             |
|                                                                                                 |                |            |                            |               |               |               |               |        |          |                                                             |
| SpectroscopicLikeTemperature <sup>15</sup><br>Spectroscopic-like gas tempe                      | 1<br>erature.  | float32    | Т                          | X             | ×             | ×             | ×             | 1      | general  | $1.36693e10 \rightarrow 1.367e10$                           |
| $\begin{array}{l} {\rm SpectroscopicLikeTemperature-}\\ {\rm CoreExcision}^{12,15} \end{array}$ | 1              | float32    | Т                          | ×             | Х             | ×             | ×             | 1      | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Spectroscopic-like gas tempe                                                                    | erature. E     | Excludes g | as in the inner $\epsilon$ | excised       | l core        |               |               |        |          |                                                             |
| ${ m SpectroscopicLikeTemperature-} WithoutRecentAGNHeating^{15}$                               | 1              | float32    | Т                          | ×             | ×             | ×             | ×             | 1      | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Spectroscopic-like gas tempe                                                                    | erature. E     | Exclude ga | s that was recen           | tly he        | eated         | by A          | GN            |        |          |                                                             |
| SpectroscopicLikeTemperature-<br>WithoutRecentAGNHeatingCore-<br>Excision <sup>12,15</sup>      | 1              | float32    | Т                          | ×             | ×             | ×             | ×             | 1      | general  | $1.36693e10 \rightarrow 1.367e10$                           |
| Spectroscopic-like gas temper<br>gas in the inner excised core                                  | rature. E      | xclude gas | s that was recent.         | ly hea        | ted by        | AGI           | N. Exc        | cludes |          |                                                             |
| SpinParameter <sup>16</sup><br>Bullock et al. (2001) spin pa                                    | 1<br>arameter. | float32    | dimensionless              | 1             | 1             | 1             | ×             | 1      | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| StarFormingGasMass <sup>8</sup><br>Total mass of star-forming g                                 | 1<br>jas.      | float32    | М                          | 1             | 1             | 1             | ×             | ×      | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| StarFormingGasMassFractionIn-<br>Iron <sup>8,3</sup>                                            | 1              | float32    | dimensionless              | ×             | 1             | 1             | ×             | ×      | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |

Total gas mass fraction in iron for gas that is star-forming.

14

| Name                                                                                                                                    | Shape                                         | Type                                                | Units                                                           | $\mathbf{SH}$            | $\mathbf{ES}$           | IS                           | $\mathbf{EP}$                                                     | SO                            | Category | Compression                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------|--------------------------|-------------------------|------------------------------|-------------------------------------------------------------------|-------------------------------|----------|-------------------------------------------------------------|
| Description                                                                                                                             |                                               |                                                     |                                                                 |                          |                         |                              |                                                                   |                               |          |                                                             |
| StarFormingGasMassFractionIn-<br>Oxygen <sup>8,3</sup><br>Total gas mass fraction in o                                                  | 1<br>xygen for                                | float32<br>gas that                                 | dimensionless<br>is star-forming.                               | ×                        | 1                       | 1                            | ×                                                                 | ×                             | general  | $1.36693 e10 \rightarrow 1.367 e10$                         |
| ThermalEnergyGas <sup>17</sup><br>Total thermal energy of the                                                                           | 1<br>gas.                                     | float64                                             | $\frac{L^2 \cdot M}{t^2}$                                       | ×                        | ×                       | ×                            | ×                                                                 | 1                             | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| TotalInertiaTensor<br>3D inertia tensor computed<br>centre. Diagonal components and o<br>Only calculated when we have more              | 6<br>iteratively<br>one off-dia<br>ce than 20 | float32<br>y from the<br>agonal tria<br>) particles | $L^2$<br>total mass distangle as (1,1), (2                      | ✓<br>ributio<br>2,2), (3 | ×<br>on, rel<br>3,3), ( | $\mathbf{X}$ lative $(1,2),$ | $\begin{array}{c} \times \\ \text{to th} \\ (1,3), \end{array}$   | ×<br>e halo<br>(2,3).         | general  | $1.36693e10 \rightarrow 1.367e10$                           |
| TotalInertiaTensorNoniterative<br>3D inertia tensor computed<br>to the halo centre. Diagonal comp<br>(1,3), (2,3). Only calculated when | 6<br>in a sing<br>onents an<br>we have 1      | float32<br>cle iteration<br>d one off-<br>more than | $L^2$<br>on from the tota<br>diagonal triangle<br>20 particles. | ✓<br>al mass<br>e as (1  | ×<br>s distr<br>l,1), ( | $\mathbf{x}$ ributi 2,2),    | $\begin{array}{c} \times \\ \text{ion, re} \\ (3,3), \end{array}$ | $\checkmark$ elative $(1,2),$ | general  | $1.36693e10 \rightarrow 1.367e10$                           |
| TotalInertiaTensorReduced<br>Reduced 3D inertia tensor                                                                                  | 6<br>computed                                 | float32<br>iterative                                | dimensionless<br>ly from the tota                               | ✓<br>l mas               | ×<br>s disti            | ×<br>ributi                  | ×                                                                 | ×<br>elative                  | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |

to the halo centre. Diagonal components and one off-diagonal triangle as (1,1), (2,2), (3,3), (1,2),

(1,3), (2,3). Only calculated when we have more than 20 particles.

| Shape                           | Type                                                                                                      | Units                                                                                                                                                                                                                                                 | SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                               | float32                                                                                                   | dimensionless                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| mputed i<br>compone<br>hen we l | in a single<br>ents and c<br>have more                                                                    | e iteration from<br>one off-diagonal t<br>e than 20 partic                                                                                                                                                                                            | the to<br>triangles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otal m<br>.e as (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lass d $1,1),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (2,2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ution, $(3,3)$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3<br>ninosity                   | float64<br>in three                                                                                       | $\frac{\mathbf{L}^2 \cdot \mathbf{M}}{\mathbf{t}^3}$ bands.                                                                                                                                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3<br>ninosity                   | float64<br>in three b                                                                                     | $\frac{L^2 \cdot M}{t^3}$ bands. Excludes                                                                                                                                                                                                             | ×<br>gas in                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\mathbf{x}$ the in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ✓<br>l core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3<br>sity in th                 | float64<br>rree band                                                                                      | $\frac{\mathbf{L}^2 \cdot \mathbf{M}}{\mathbf{t}^3}$<br>S.                                                                                                                                                                                            | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3                               | float64                                                                                                   | $\frac{L^2 \cdot M}{t^3}$                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693\mathrm{e}10 \rightarrow 1.367\mathrm{e}1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| sity in th                      | ree band                                                                                                  | s. Excludes gas                                                                                                                                                                                                                                       | in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e inne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r exc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ised co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                               | float64                                                                                                   | $\frac{L^2 \cdot M}{t^3}$                                                                                                                                                                                                                             | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $1.36693e10 \rightarrow 1.367e1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                 | Shape<br>6<br>mputed f<br>compone<br>hen we l<br>3<br>minosity<br>3<br>sity in th<br>3<br>sity in th<br>3 | Shape Type<br>6 float32<br>mputed in a single<br>components and co-<br>hen we have more<br>3 float64<br>minosity in three 1<br>3 float64<br>ninosity in three band<br>3 float64<br>sity in three band<br>3 float64<br>sity in three band<br>3 float64 | ShapeTypeUnits6float32dimensionlessmputed in a single iteration from<br>components and one off-diagonal to<br>hen we have more than 20 particle3float64 $\frac{L^2 \cdot M}{t^3}$ minosity in three bands.3float64 $\frac{L^2 \cdot M}{t^3}$ ninosity in three bands.3float64 $\frac{L^2 \cdot M}{t^3}$ sity in three bands.3float64 $\frac{L^2 \cdot M}{t^3}$ sity in three bands.3float64 $\frac{L^2 \cdot M}{t^3}$ sity in three bands.Excludes gas3float64 $\frac{L^2 \cdot M}{t^3}$ | ShapeTypeUnitsSH6float32dimensionless\checkmark6float32dimensionless✓mputed in a single iteration from the to<br>components and one off-diagonal triangle<br>hen we have more than 20 particles.33float64 $\frac{L^2 \cdot M}{t^3}$ ×3float64 $\frac{L^2 \cdot M}{t^3}$ ×afloat64 $\frac{L^2 \cdot M}{t^3}$ ×afloat64 $\frac{L^2 \cdot M}{t^3}$ ×afloat64 $\frac{L^2 \cdot M}{t^3}$ ×sity in three bands.3float64 $\frac{L^2 \cdot M}{t^3}$ ×afloat64 $\frac{L^2 \cdot M}{t^3}$ ×afloat64 $\frac{L^2 \cdot M}{t^3}$ × | ShapeTypeUnitsSHES6float32dimensionless $\checkmark$ $\checkmark$ mputed in a single iteration from the total mcomponents and one off-diagonal triangle as (<br>hen we have more than 20 particles.3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ 3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ afloat64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ 3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ | ShapeTypeUnitsSHESIS6float32dimensionless $\checkmark$ $\times$ $\times$ mputed in a single iteration from the total mass of<br>components and one off-diagonal triangle as (1,1),<br>hen we have more than 20 particles. $x$ $\times$ 3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ $\times$ | ShapeTypeUnitsSHESISEP6float32dimensionless $\checkmark$ $\times$ $\times$ $\times$ $\times$ 6float32dimensionless $\checkmark$ $\times$ $\times$ $\times$ $\times$ mputed in a single iteration from the total mass distributioncomponents and one off-diagonal triangle as (1,1), (2,2),hen we have more than 20 particles.3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ $\times$ $\times$ 3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ $\times$ $\times$ | ShapeTypeUnitsSHESISEPSO6float32dimensionless $\checkmark$ $\times$ $\times$ $\checkmark$ < | ShapeTypeUnitsSHESISEPSOCategory6float32dimensionless $\checkmark$ $\times$ $\times$ $\times$ $\checkmark$ generalmputed in a single iteration from the total mass distribution,<br>components and one off-diagonal triangle as (1,1), (2,2), (3,3),<br>hen we have more than 20 particles.general3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ $\times$ $\checkmark$ 3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ $\checkmark$ $\checkmark$ 3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ $\times$ $\checkmark$ 4generalsity in three bands.Excludes gas in the inner excised core $\checkmark$ 3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ $\times$ $\checkmark$ 4generalsity in three bands. Excludes gas in the inner excised core $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 3float64 $\frac{L^2 \cdot M}{t^3}$ $\times$ $\times$ $\times$ $\checkmark$ $\checkmark$ 4general $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 5general $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ 4 $=$ $=$ $\bullet$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ |

16

AGN.

| Name                                                                   | Shape                 | Type                   | Units                     | $\operatorname{SH}$ | $\mathbf{ES}$ | $\mathbf{IS}$ | $\mathbf{EP}$ | SO    | Category | Compression                                                 |
|------------------------------------------------------------------------|-----------------------|------------------------|---------------------------|---------------------|---------------|---------------|---------------|-------|----------|-------------------------------------------------------------|
| Description                                                            |                       |                        |                           |                     |               |               |               |       |          |                                                             |
| XRayLuminosityInRestframe-<br>WithoutRecentAGNHeatingCore-<br>Excision | 3                     | float64                | $\frac{L^2 \cdot M}{t^3}$ | ×                   | ×             | ×             | ×             | 1     | general  | $1.36693e10 \rightarrow 1.367e10$                           |
| Total rest-frame Xray lumino                                           | osity in th           | nree bands             | s. Excludes gas t         | that v              | vas re        | cently        | y heat        | ed by |          |                                                             |
| AGN. Excludes gas in the inner exc                                     | ised core             |                        | Ŭ                         |                     |               | ·             |               | Ū     |          |                                                             |
| XRayLuminosityWithoutRecent-<br>AGNHeating                             | 3                     | float64                | $\frac{L^2 \cdot M}{t^3}$ | ×                   | ×             | ×             | ×             | 1     | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Total observer-frame Xray lu<br>by AGN.                                | minosity              | in three b             | ands. Excludes g          | gas th              | at was        | s rece        | ntly h        | eated |          |                                                             |
| $XRayLuminosityWithoutRecent-AGNHeatingCoreExcision^{12}$              | 3                     | float64                | $\frac{L^2 \cdot M}{t^3}$ | ×                   | ×             | ×             | ×             | 1     | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Total observer-frame Xray lu<br>by AGN. Excludes gas in the inner      | minosity<br>excised c | in three b<br>ore      | ands. Excludes g          | gas th              | at was        | s rece        | ntly h        | eated |          |                                                             |
| XRayPhotonLuminosity <sup>18</sup><br>Total observer-frame Xray pl     | 3<br>hoton lur        | float64<br>ninosity ii | 1/t<br>n three bands.     | ×                   | ×             | ×             | ×             | 1     | general  | $1.36693{\rm e}10 \to 1.367{\rm e}10$                       |
| XRayPhotonLuminosityCore-<br>Excision <sup>12</sup>                    | 3                     | float64                | 1/t                       | ×                   | ×             | ×             | ×             | 1     | general  | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Total observer-frame Xray p<br>excised core                            | ohoton lu             | minosity               | in three bands.           | Excl                | udes          | gas ii        | n the         | inner |          |                                                             |

| Description                                                                  | Shape     | Type        | Units          | SH     | ES      | IS     | EP     | SO     | Category | Compression                         |
|------------------------------------------------------------------------------|-----------|-------------|----------------|--------|---------|--------|--------|--------|----------|-------------------------------------|
| XRayPhotonLuminosityIn-<br>Restframe <sup>18</sup>                           | 3         | float64     | 1/t            | ×      | ×       | ×      | ×      | 1      | general  | $1.36693 e10 \rightarrow 1.367 e10$ |
| Total rest-frame Xray photon                                                 | luminos   | sity in thr | ee bands.      |        |         |        |        |        |          |                                     |
| XRayPhotonLuminosityIn-<br>RestframeCoreExcision                             | 3         | float64     | 1/t            | ×      | ×       | ×      | ×      | 1      | general  | $1.36693e10 \rightarrow 1.367e10$   |
| Total rest-frame Xray photon core                                            | luminos   | sity in thr | ee bands. Excl | udes g | as in t | the in | nner e | xcised |          |                                     |
| XRayPhotonLuminosityIn-<br>RestframeWithoutRecent-<br>AGNHeating             | 3         | float64     | 1/t            | ×      | ×       | ×      | ×      | 1      | general  | $1.36693e10 \rightarrow 1.367e10$   |
| heated by AGN.                                                               | n lumino  | sity in ti  | ree bands. Ex  | clude  | gas ti  | nat v  | vas re | cently |          |                                     |
| XRayPhotonLuminosityIn-<br>RestframeWithoutRecent-<br>AGNHeatingCoreExcision | 3         | float64     | 1/t            | ×      | ×       | ×      | ×      | 1      | general  | $1.36693e10 \rightarrow 1.367e10$   |
|                                                                              | n lumino  | osity in th | ree bands. Ex  | clude  | gas tl  | hat v  | vas re | cently |          |                                     |
| heated by AGN. Excludes gas in the                                           | e inner e | xcised cor  | e              |        |         |        |        |        |          |                                     |

heated by AGN.

| Name<br>Description                                                                                                     | Shape                                       | Type                                            | Units                                    | SH                     | ES                      | IS                                                             | EP                                                               | SO                    | Category | Compression                             |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------|------------------------------------------|------------------------|-------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-----------------------|----------|-----------------------------------------|
| XRayPhotonLuminosityWithout-<br>RecentAGNHeatingCore-<br>Excision <sup>12</sup>                                         | 3                                           | float64                                         | 1/t                                      | ×                      | ×                       | ×                                                              | ×                                                                | 1                     | general  | $1.36693\mathrm{e}10  ightarrow 1.36'$  |
| Total observer-frame Xray p<br>heated by AGN. Excludes gas in th                                                        | hoton lun<br>ne inner e                     | ninosity ir<br>xcised cor                       | n three bands. E                         | xclude                 | e gas t                 | that v                                                         | vas re                                                           | cently                |          |                                         |
| AngularMomentumGas <sup>19</sup><br>Total angular momentum o<br>mass velocity.                                          | 3<br>f the gas,                             | float32<br>relative                             | $L^2 \cdot M/t$<br>to the centre of      | ✓<br>poten             | ✓<br>ntial a            | ✓<br>.nd g                                                     | ×<br>as cen                                                      | ✓<br>tre of           | gas      | $1.36693\mathrm{e}10 \rightarrow 1.36'$ |
| DiscToTotalGasMassFraction<br>Fraction of the total gas ma                                                              | 1<br>ss that is                             | float32<br>co-rotatin                           | dimensionless<br>ng.                     | 1                      | 1                       | 1                                                              | ×                                                                | 1                     | gas      | $1.36693\mathrm{e}10 \rightarrow 1.36'$ |
| GasCentreOfMass<br>Centre of mass of gas.                                                                               | 3                                           | float64                                         | $\mathbf{a}\cdot\mathbf{L}$              | ×                      | ×                       | X                                                              | ×                                                                | 1                     | gas      | 1 pc accurate                           |
| GasCentreOfMassVelocity<br>Centre of mass velocity of g                                                                 | 3<br>as.                                    | float32                                         | $\mathbf{a}\cdot\mathbf{L}/\mathbf{t}$   | ×                      | ×                       | ×                                                              | ×                                                                | 1                     | gas      | 0.1  km/s accurate                      |
| GasInertiaTensor<br>3D inertia tensor computed<br>centre. Diagonal components and c<br>Only calculated when we have mor | 6<br>iterativel<br>one off-dia<br>e than 20 | float32<br>y from th<br>gonal tria<br>particles | $L^2$ e gas mass distrangle as (1,1), (2 | ✓<br>ibutio<br>,2), (3 | ×<br>on, rel<br>3,3), ( | $\begin{array}{c} \times \\ \text{ative} \\ 1,2), \end{array}$ | $\begin{array}{c} \times \\ \text{to the} \\ (1,3), \end{array}$ | ×<br>e halo<br>(2,3). | gas      | $1.36693\mathrm{e}10 \rightarrow 1.367$ |

| Description                                                                                                                                         |                                             |                                                      |                                                                             |                               |                          |                                                                  |                         |                                                              |     |                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|--------------------------|------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|-----|-------------------------------------------------------------|
| GasInertiaTensorNoniterative<br>3D inertia tensor compute<br>the halo centre. Diagonal comp<br>(1,3), (2,3). Only calculated whe                    | 6<br>d in a sing<br>onents and<br>n we have | float32<br>gle iteratio:<br>1 one off-d<br>more than | L <sup>2</sup><br>n from the gas n<br>iagonal triangle<br>20 particles.     | ✓<br>mass o<br>as (1          | ×<br>listrib<br>.,1), (2 | ×<br>ution,<br>2,2), (                                           | ×<br>, relat<br>(3,3),  | $\checkmark$ tive to $(1,2),$                                | gas | 1.36693 e10  ightarrow 1.367 e10                            |
| GasInertiaTensorReduced<br>Reduced 3D inertia tensor<br>the halo centre. Diagonal compe<br>(1,3), (2,3). Only calculated whe                        | 6<br>computed<br>onents and<br>n we have    | float32<br>l iterativel:<br>l one off-d<br>more than | dimensionless<br>y from the gas r<br>iagonal triangle<br>20 particles.      | ✓<br>mass o<br>as (1          | $\mathbf{X}$ listrib     | ×<br>ution,<br>2,2), (                                           | ×<br>, relat<br>(3,3),  | $\begin{array}{c} X \\ \text{tive to} \\ (1,2), \end{array}$ | gas | 1.36693e10  ightarrow 1.367e10                              |
| GasInertiaTensorReduced-<br>Noniterative<br>Reduced 3D inertia tensor<br>relative to the halo centre. Diagon<br>(1,2), (1,3), (2,3). Only calculate | 6<br>r compute<br>nal compo<br>d when we    | float32<br>d in a sing<br>nents and o<br>e have mor  | dimensionless<br>gle iteration from<br>one off-diagonal<br>e than 20 partic | ✓<br>n the<br>triang<br>cles. | ×<br>gas m<br>gle as (   | $\begin{array}{c} \times \\ \text{mass d} \\ (1,1), \end{array}$ | $\times$ listrib (2,2), | ✓<br>oution,<br>(3,3),                                       | gas | 1.36693e10  ightarrow 1.367e10                              |
| GasProjectedVelocityDispersion <sup>2</sup><br>Mass-weighted velocity dis<br>centre of mass velocity.                                               | <sup>0</sup> 1<br>spersion o                | float32<br>f the gas a                               | L/t<br>long the project                                                     | ×<br>tion a                   | ×<br>xis, re             | ×<br>elative                                                     | ✓<br>e to tl            | X<br>he gas                                                  | gas | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| GasVelocityDispersionMatrix <sup>21</sup><br>Mass-weighted velocity disvelocity. The order of the compo                                             | 6<br>spersion o<br>nents of th              | float32<br>f the gas.<br>ne dispersio                | $\frac{L^2}{t^2}$ Measured relation tensor is XX                            | ✓<br>ve to<br>YY Z            | ×<br>the ga<br>Z XY      | ×<br>as cen<br>XZ Y                                              | ×<br>tre of<br>Z.       | ×<br>f mass                                                  | gas | $1.36693e10 \rightarrow 1.367e10$                           |
| $HalfMassRadiusGas^4$                                                                                                                               | 1                                           | float32                                              | $\mathbf{a}\cdot\mathbf{L}$                                                 | 1                             | 1                        | 1                                                                | 1                       | ×                                                            | gas | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |

Shape Type Units SH ES IS EP SO Category Compression

| IalfMassRadiusGas <sup>4</sup> | 1 | float32 | $\mathbf{a} \cdot \mathbf{L}$ | $\checkmark$ | 1 | 1 | 1 | Х | $\operatorname{gas}$ | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
|--------------------------------|---|---------|-------------------------------|--------------|---|---|---|---|----------------------|-------------------------------------------------------------|
| Gas half mass radius.          |   |         |                               |              |   |   |   |   |                      |                                                             |

Name

| Name        | Shape | Type | Units | $\mathbf{SH}$ | $\mathbf{ES}$ | $\mathbf{IS}$ | $\mathbf{EP}$ | SO | Category | Compression |
|-------------|-------|------|-------|---------------|---------------|---------------|---------------|----|----------|-------------|
| Description |       |      |       |               |               |               |               |    |          |             |

KappaCorotGas<sup>22</sup> float32 dimensionless 1 1 1  $\checkmark$   $\times$ Х  $1.36693e10 \rightarrow 1.367e10$ gas Kappa-corot for gas, relative to the centre of potential and the centre of mass velocity of the gas. float 64  $\frac{L^2 \cdot M}{t^2}$ KineticEnergyGas<sup>23</sup> 1 Х X  $1.36693 {\rm e10} \rightarrow 1.367 {\rm e10}$ gas Total kinetic energy of the gas, relative to the gas centre of mass velocity. ProjectedGasInertiaTensor-3 float32 L<sup>2</sup>  $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ Х Х Х 1 Х gas

Noniterative 2D inertia tensor computed in a single iteration from the gas mass distribution, relative to the halo centre. Diagonal components and one off-diagonal value as (1,1), (2,2), (1,2). Only calculated when we have more than 20 particles.

ProjectedGasInertiaTensor-3float32dimensionless $\times$  $\times$  $\times$  $\times$  $\times$ gas1.36693e10  $\rightarrow$  1.367e10Reduced 2D inertia tensor computed in a single iteration from the gas mass distribution,<br/>relative to the halo centre. Diagonal components and one off-diagonal value as (1,1), (2,2), (1,2).<br/>Only calculated when we have more than 20 particles.00

AngularMomentumDarkMatter<sup>19</sup> 3 float32  $L^2 \cdot M/t$   $\checkmark$   $\checkmark$   $\checkmark$   $\checkmark$   $\checkmark$  dm 1.36693e10  $\rightarrow$  1.367e10 Total angular momentum of the dark matter, relative to the centre of potential and DM centre of mass velocity.

| Name                                                                                                                                                         | Shape                                      | Type                                              | Units                                                                      | SH                             | $\mathbf{ES}$                 | $\mathbf{IS}$               | EP                                                                | SO                                                           | Category | Compression                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|-------------------------------|-----------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|----------|-----------------------------------|
| Description                                                                                                                                                  |                                            |                                                   |                                                                            |                                |                               |                             |                                                                   |                                                              |          |                                   |
| DarkMatterInertiaTensor<br>3D inertia tensor computed<br>centre. Diagonal components and c<br>Only calculated when we have mor                               | 6<br>iterativel<br>ne off-dia<br>e than 20 | float32<br>y from th<br>agonal tria<br>particles  | $L^2$ e DM mass distrangle as (1,1), (2                                    | ✓<br>ributic<br>2,2), (3       | ×<br>on, rel<br>3,3), (       | $\mathbf{x}$ ative 1,2),    | $\begin{array}{c} X \\ \text{to the} \\ (1,3), \end{array}$       | ×<br>e halo<br>(2,3).                                        | dm       | $1.36693e10 \rightarrow 1.367e10$ |
| DarkMatterInertiaTensor-<br>Noniterative<br>3D inertia tensor computed<br>to the halo centre. Diagonal compo-<br>(1,3), (2,3). Only calculated when          | 6<br>in a sing<br>onents and<br>we have r  | float32<br>le interati<br>d one off-<br>nore than | L <sup>2</sup><br>ion from the DM<br>diagonal triangle<br>20 particles.    | ✓<br>I mass<br>e as (1         | ×<br>s distr<br>.,1), (       | $\mathbf{X}$ ributi $2,2),$ | ×<br>ion, re<br>(3,3),                                            | $\checkmark$ elative $(1,2),$                                | dm       | $1.36693e10 \rightarrow 1.367e10$ |
| DarkMatterInertiaTensorReduced<br>Reduced 3D inertia tensor of<br>the halo centre. Diagonal compon<br>(1,3), (2,3). Only calculated when                     | 6<br>omputed<br>ents and<br>we have r      | float32<br>iteratively<br>one off-d<br>nore than  | dimensionless<br>y from the DM r<br>iagonal triangle<br>20 particles.      | ✓<br>nass d<br>as (1,          | <b>×</b><br>istrib<br>,1), (2 | $\mathbf{X}$ ution<br>2,2), | $\mathbf{\times}$ , relat $(3,3),$                                | $\begin{array}{c} X \\ \text{tive to} \\ (1,2), \end{array}$ | dm       | $1.36693e10 \rightarrow 1.367e10$ |
| DarkMatterInertiaTensor-<br>ReducedNoniterative<br>Reduced 3D inertia tensor correlative to the halo centre. Diagona<br>(1,2), (1,3), (2,3). Only calculated | 6<br>omputed<br>l compon<br>when we        | float32<br>in a singlents and of<br>have mor      | dimensionless<br>e interation from<br>one off-diagonal<br>e than 20 partic | ✓<br>n the l<br>triang<br>les. | ×<br>DM m<br>le as (          | ×<br>nass c<br>1,1),        | $\begin{array}{c} \times \\ \text{listrib} \\ (2,2), \end{array}$ | ✓<br>ution,<br>(3,3),                                        | dm       | $1.36693e10 \rightarrow 1.367e10$ |
| DarkMatterProjectedVelocity-<br>Dispersion <sup>20</sup><br>Mass-weighted velocity dispersion<br>centre of mass velocity.                                    | 1<br>ersion of                             | float32<br>the DM a                               | L/t<br>long the project                                                    | ×<br>ion ax                    | ×<br>tis, rel                 | ×<br>lative                 | ✓<br>e to th                                                      | ×<br>e DM                                                    | dm       | $1.36693e10 \rightarrow 1.367e10$ |

|                                                                    |                            | Type                | Units                               | SH                 | ES             | IS            | EP             | SO              | Category | Compression                                                 |
|--------------------------------------------------------------------|----------------------------|---------------------|-------------------------------------|--------------------|----------------|---------------|----------------|-----------------|----------|-------------------------------------------------------------|
| DarkMatterVelocityDispersion-<br>Matrix <sup>21</sup>              | 6                          | float32             | $\frac{L^2}{t^2}$                   | 1                  | ×              | ×             | ×              | ×               | dm       | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Mass-weighted velocity dis<br>of mass velocity. The order of the   | persion of t<br>e componen | the dark name       | matter. Measur<br>dispersion tens   | ed rela<br>or is X | tive t<br>X YY | o the<br>ZZ I | e DM e<br>XY X | centre<br>Z YZ. |          |                                                             |
| HalfMassRadiusDarkMatter <sup>4</sup><br>Dark matter half mass rad | 1<br>ius.                  | float32             | $\mathbf{a} \cdot \mathbf{L}$       | 1                  | 1              | 1             | 1              | ×               | dm       | $1.36693e10 \rightarrow 1.367e10$                           |
| MaximumDarkMatterCircular-<br>Velocity                             | 1                          | float32             | L/t                                 | ✓                  | ×              | ×             | ×              | ×               | dm       | $1.36693e10 \rightarrow 1.367e10$                           |
| ticle softening lengths                                            | calculated                 | using da            | rk matter parti                     | cies wii           | en aco         | count         | ing io         | r par-          |          |                                                             |
| MaximumDarkMatterCircular-<br>VelocityRadius                       | 1                          | float32             | a · L                               | 1                  | ×              | ×             | ×              | ×               | dm       | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| Radius at which Maximum                                            | nDarkMatte                 | erCirculai          | rVelocity is read                   | ched.              |                |               |                |                 |          |                                                             |
| $Angular Momentum Stars^{19}$                                      | 3<br>of the stars          | float32<br>relative | $L^2 \cdot M/t$<br>to the centre of | ✓<br>of poter      | ✓<br>ntial a   | ✓<br>und_st   | X<br>tellar (  | ✓<br>centre     | star     | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |

| Name<br>Description                                                                                                                                   | Shape                                     | Type                                           | Units                                                    | SH                      | ES                     | IS                   | EP                            | SO                    | Category | Compression                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|----------------------------------------------------------|-------------------------|------------------------|----------------------|-------------------------------|-----------------------|----------|-------------------------------------------------------------|
| KappaCorotStars <sup>22</sup><br>Kappa-corot for stars, relat<br>the stars.                                                                           | 1<br>ive to the                           | float32<br>centre of                           | dimensionless<br>potential and th                        | ✓<br>ne cen             | ✓<br>tre of            | ✓<br>mass            | ×<br>s veloo                  | ×<br>city of          | star     | $1.36693 e10 \rightarrow 1.367 e10$                         |
| KineticEnergyStars <sup>23</sup><br>Total kinetic energy of the s                                                                                     | 1<br>stars, rela                          | float64<br>tive to the                         | $\frac{\underline{L^2 \cdot M}}{t^2}$ e stellar centre o | ×<br>of mas             | ✓<br>s velo            | ✓<br>city.           | ×                             | 1                     | star     | $1.36693 {\rm e}{\rm 10} \rightarrow 1.367 {\rm e}{\rm 10}$ |
| LuminosityWeightedMeanStellar-<br>Age<br>Luminosity weighted mean                                                                                     | 1<br>stellar age                          | float32<br>e. The we                           | t<br>ight is the r ban                                   | ✓<br>.d lum             | ✓<br>inosit            | ✓<br>y.              | ×                             | ×                     | star     | $1.36693e10 \rightarrow 1.367e10$                           |
| MassWeightedMeanStellarAge<br>Mass weighted mean stellar                                                                                              | 1<br>age.                                 | float32                                        | t                                                        | 1                       | 1                      | 1                    | ×                             | ×                     | star     | $1.36693e10 \rightarrow 1.367e10$                           |
| ProjectedStellarInertiaTensor-<br>Noniterative<br>2D inertia tensor computed<br>to the halo centre. Diagonal comp<br>calculated when we have more tha | 3<br>in a singl<br>ponents a<br>n 20 part | float32<br>le iteration<br>nd one of<br>icles. | L <sup>2</sup><br>n from the stella<br>f-diagonal value  | ×<br>as (1              | ×<br>s dist<br>,1), (2 | ×<br>ribut:<br>2,2), | ✓<br>ion, re<br>(1,2).        | ×<br>elative<br>Only  | star     | $1.36693e10 \rightarrow 1.367e10$                           |
| ProjectedStellarInertiaTensor-<br>ReducedNoniterative<br>Reduced 2D inertia tensor c<br>relative to the halo centre. Diagon                           | 3<br>omputed<br>al compo                  | float32<br>in a single<br>nents and            | dimensionless<br>e iteration from t<br>one off-diagona   | ×<br>the ste<br>l value | ×<br>ellar m<br>e as ( | ×<br>nass c<br>1,1), | $\checkmark$ listrib $(2,2),$ | ×<br>ution,<br>(1,2). | star     | $1.36693e10 \rightarrow 1.367e10$                           |

Only calculated when we have more than 20 particles.

24

| Name                                                                                                                                          | Shape                                      | Type                                              | Units                                                                     | $\mathbf{SH}$           | $\mathbf{ES}$                    | $\mathbf{IS}$                | $\mathbf{EP}$                                                     | SO                                                          | Category | Compression                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------|-------------------------|----------------------------------|------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------|----------|-----------------------------------|
| Description                                                                                                                                   |                                            |                                                   |                                                                           |                         |                                  |                              |                                                                   |                                                             |          |                                   |
| StellarCentreOfMass<br>Centre of mass of stars.                                                                                               | 3                                          | float64                                           | $\mathbf{a} \cdot \mathbf{L}$                                             | ×                       | 1                                | 1                            | ×                                                                 | 1                                                           | star     | 1 pc accurate                     |
| StellarCentreOfMassVelocity<br>Centre of mass velocity of st                                                                                  | 3<br>ars.                                  | float32                                           | $\mathbf{a}\cdot\mathbf{L}/\mathbf{t}$                                    | ×                       | 1                                | 1                            | ×                                                                 | 1                                                           | star     | $0.1~{\rm km/s}$ accurate         |
| StellarInertiaTensor<br>3D inertia tensor computed<br>halo centre. Diagonal components<br>(2,3). Only calculated when we have                 | 6<br>iterative<br>and one over more th     | float32<br>ly from t<br>off-diagon<br>han 20 pa   | $L^2$<br>he stellar mass<br>al triangle as (1<br>rticles.                 | ✓<br>distrik<br>,1), (2 | $\mathbf{x}$ pution $(2,2), (3)$ | ×<br>, rela<br>3,3),         | $\begin{array}{c} X \\ \text{ative t} \\ (1,2), \end{array}$      | (1,3),                                                      | star     | $1.36693e10 \rightarrow 1.367e10$ |
| StellarInertiaTensorNoniterative<br>3D inertia tensor computed<br>to the halo centre. Diagonal compo-<br>(1,3), (2,3). Only calculated when y | 6<br>in a singl<br>onents and<br>we have r | float32<br>e iteration<br>d one off-<br>nore than | L <sup>2</sup><br>n from the stella<br>diagonal triangle<br>20 particles. | ✓<br>ar mas<br>e as (1  | ×<br>s distr<br>.,1), (2         | $\mathbf{X}$ ributi<br>2,2), | $\begin{array}{c} \times \\ \text{ion, re} \\ (3,3), \end{array}$ | $\checkmark$ lative $(1,2),$                                | star     | $1.36693e10 \rightarrow 1.367e10$ |
| StellarInertiaTensorReduced<br>Reduced 3D inertia tensor co<br>to the halo centre. Diagonal compo-<br>(1,3), (2,3). Only calculated when y    | 6<br>omputed<br>onents and<br>we have r    | float32<br>iteratively<br>d one off-<br>nore than | dimensionless<br>y from the stella<br>diagonal triangle<br>20 particles.  | ✓<br>ar mas<br>e as (1  | ×<br>s distr<br>.,1), (2         | $\mathbf{X}$ ributi<br>2,2), | ×<br>ion, re<br>(3,3),                                            | $\begin{array}{c} X \\ \text{lative} \\ (1,2), \end{array}$ | star     | $1.36693e10 \rightarrow 1.367e10$ |
| StellarInertiaTensorReduced-<br>Noniterative<br>Reduced 3D inertia tensor co<br>relative to the halo centre. Diagonal                         | 6<br>omputed i<br>l compone                | float32<br>in a single<br>ents and o              | dimensionless<br>iteration from to<br>one off-diagonal                    | ✓<br>the ste            | ×<br>llar m<br>le as (           | ×<br>nass d<br>1,1),         | $\begin{array}{c} \times \\ \text{listrib} \\ (2,2), \end{array}$ | ✓<br>ution,<br>(3,3),                                       | star     | $1.36693e10 \rightarrow 1.367e10$ |

(1,2), (1,3), (2,3). Only calculated when we have more than 20 particles.

25

| Name<br>Description                                                                                                      | Shape                       | Type                               | Units                                                                                   | SH           | ES                 | IS                  | EP                  | SO                 | Category | Compression                                          |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------|-----------------------------------------------------------------------------------------|--------------|--------------------|---------------------|---------------------|--------------------|----------|------------------------------------------------------|
| StellarInitialMass<br>Total stellar initial mass.                                                                        | 1                           | float32                            | М                                                                                       | 1            | 1                  | 1                   | 1                   | 1                  | star     | $1.36693 e10 \rightarrow 1.367 e10$                  |
| StellarLuminosity <sup>24</sup><br>Total stellar luminosity in t                                                         | 9<br>he 9 GAN               | float32<br>/IA bands               | dimensionless                                                                           | 1            | 1                  | 1                   | 1                   | 1                  | star     | $1.36693 \mathrm{e}10  ightarrow 1.367 \mathrm{e}10$ |
| StellarMassFractionInIron<br>Total stellar mass fraction i                                                               | 1<br>n iron.                | float32                            | dimensionless                                                                           | ×            | 1                  | 1                   | ×                   | 1                  | star     | $1.36693e10 \rightarrow 1.367e10$                    |
| StellarMassFractionInOxygen<br>Total stellar mass fraction i                                                             | 1<br>n oxygen.              | float32                            | dimensionless                                                                           | ×            | 1                  | 1                   | ×                   | 1                  | star     | $1.36693e10 \rightarrow 1.367e10$                    |
| StellarProjectedVelocity-<br>Dispersion <sup>20</sup><br>Mass-weighted velocity disp<br>stellar centre of mass velocity. | 1<br>persion of             | float32<br>E the stars             | L/t<br>s along the proj                                                                 | ×            | ×<br>axis          | ×<br>, rela         | ✓<br>ative f        | ×<br>to the        | star     | $1.36693e10 \rightarrow 1.367e10$                    |
| StellarVelocityDispersionMatrix <sup>21</sup><br>Mass-weighted velocity disp<br>mass velocity. The order of the co       | 6<br>persion of<br>mponents | float32<br>the stars<br>of the dis | $\begin{array}{c} \frac{L^2}{t^2}\\ . & Measured rela\\ spersion tensor is \end{array}$ | ✓<br>tive t  | ×<br>o the<br>YY Z | ×<br>stella<br>Z XY | ×<br>ar cen<br>XZ Y | ×<br>tre of<br>YZ. | star     | $1.36693e10 \rightarrow 1.367e10$                    |
| AngularMomentumBaryons <sup>19</sup><br>Total angular momentum of<br>baryonic centre of mass velocity.                   | 3<br>f baryons              | float32<br>(gas and s              | $L^2 \cdot M/t$ stars), relative to                                                     | ✓<br>o the o | ✓<br>centre        | ✓<br>of po          | ×                   | ✓<br>al and        | baryon   | $1.36693e10 \rightarrow 1.367e10$                    |
| HalfMassRadiusBaryons<br>Baryonic (gas and stars) ha                                                                     | 1<br>lf mass ra             | float32<br>idius.                  | $\mathbf{a} \cdot \mathbf{L}$                                                           | 1            | 1                  | 1                   | 1                   | ×                  | baryon   | $1.36693e10 \rightarrow 1.367e10$                    |

| Name        | Shape | Type | Units | $\mathbf{SH}$ | $\mathbf{ES}$ | IS | $\mathbf{EP}$ | SO | Category | Compression |
|-------------|-------|------|-------|---------------|---------------|----|---------------|----|----------|-------------|
| Description |       |      |       |               |               |    |               |    |          |             |

| KappaCorotBaryons <sup>22</sup><br>Kappa-corot for baryo                     | 1<br>ons (gas and st                  | float32<br>tars), relat             | dimensionless<br>ive to the centre          | ✓<br>of p          | ✓<br>otentia         | ✓<br>al and           | ×<br>i the           | $\mathbf{x}$           | baryon  | $1.36693\mathrm{e}10 \rightarrow 1.3$ |
|------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|---------------------------------------------|--------------------|----------------------|-----------------------|----------------------|------------------------|---------|---------------------------------------|
| of mass velocity of the baryon                                               | ns.                                   |                                     |                                             |                    |                      |                       |                      |                        |         |                                       |
| HaloCatalogueIndex<br>Index of this halo in t                                | 1<br>he original hal                  | int64<br>o finder ca                | dimensionless<br>talogue (first ha          | ×<br>lo ha         | ×<br>s inde          | <b>X</b><br>x=0).     | ×                    | ×                      | Input   | no compression                        |
| HaloCentre<br>The centre of the sub<br>positions. For VR and HBT<br>subhalo. | 3<br>halo as given<br>plus this is ec | float64<br>by the ha<br>qual to the | a · L<br>lo finder. Used<br>position of the | ×<br>as re<br>most | ×<br>eferenc<br>boun | ×<br>ce for<br>id pai | ×<br>all r<br>rticle | ×<br>elative<br>in the | Input   | 1 pc accurate                         |
| IsCentral<br>Whether the halo find                                           | 1<br>er flagged the                   | int64<br>halo as ce                 | dimensionless<br>ntral (1) or satel         | ×<br>lite (        | ×<br>0).             | ×                     | ×                    | ×                      | Input   | no compression                        |
| NumberOfBoundParticles<br>Total number of partic                             | 1<br>cles bound to                    | int64<br>the subhal                 | dimensionless<br>o.                         | ×                  | ×                    | ×                     | ×                    | ×                      | Input   | no compression                        |
| Depth<br>Level of the subhalo in                                             | 1<br>n the merging                    | uint64<br>hierarchy.                | dimensionless                               | ×                  | ×                    | ×                     | ×                    | ×                      | HBTplus | no compression                        |
| DescendantTrackId<br>TrackId of the descend                                  | 1<br>lant of this su                  | int64<br>bhalo.                     | dimensionless                               | ×                  | ×                    | ×                     | ×                    | ×                      | HBTplus | no compression                        |
| HostFOFId                                                                    | 1                                     | int64                               | dimensionless                               | ×                  | X                    | ×                     | X                    | ×                      | HBTplus | no compression                        |

| Name                                                                                 | Shape          | Type        | Units                     | $\operatorname{SH}$ | $\mathbf{ES}$ | $\mathbf{IS}$ | $\mathbf{EP}$ | SO          | Category   | Compression                                     |
|--------------------------------------------------------------------------------------|----------------|-------------|---------------------------|---------------------|---------------|---------------|---------------|-------------|------------|-------------------------------------------------|
| Description                                                                          |                |             |                           |                     |               |               |               |             |            |                                                 |
|                                                                                      |                |             |                           |                     |               |               |               |             |            |                                                 |
| LastMaxMass                                                                          | 1              | float32     | М                         | ×                   | ×             | ×             | ×             | ×           | HBTplus    | $1.36693e10 \rightarrow 1.367e10$               |
| Maximum mass of this subh                                                            | alo across     | s its evolu | tionary history           |                     |               |               |               |             | Ŧ          |                                                 |
| LastMaxVmaxPhysical                                                                  | 1              | float32     | L/t                       | ×                   | ×             | ×             | ×             | ×           | HBTplus    | $1.36693 e10 \rightarrow 1.367 e10$             |
| Largest value of maximum of                                                          | circular ve    | elocity of  | this subhalo acro         | oss its             | evolu         | ltiona        | ary his       | story       |            |                                                 |
| NestedParentTrackId                                                                  | 1              | int64       | dimensionless             | ×                   | ×             | x             | ×             | ×           | HBTplus    | no compression                                  |
| TrackId of the parent of this                                                        | s subhalo.     |             |                           |                     |               |               |               |             | F - 000    |                                                 |
| SnapshotIndexOfBirth                                                                 | 1              | int64       | dimensionless             | ×                   | x             | x             | ×             | ×           | HBTplus    | no compression                                  |
| Snapshot when this subhalo                                                           | was form       | ned.        |                           |                     |               |               |               |             | F - 000    | ···                                             |
| SnapshotIndexOfLastMaxMass                                                           | 1              | uint64      | dimensionless             | ×                   | ×             | x             | ×             | ×           | HBTplus    | no compression                                  |
| Latest snapshot when this s                                                          | ubhalo ha      | its max     | ximum mass.               |                     |               |               |               |             | ing r brag |                                                 |
| SnapshotIndexOfLastMaxVmax                                                           | 1              | uint64      | dimensionless             | ×                   | ×             | x             | ×             | ×           | HBTplus    | no compression                                  |
| Latest snapshot when this s                                                          | ubhalo ha      | d its larg  | est maximum cir           | rcular              | veloc         | ity.          |               |             | iib i piùo |                                                 |
| TrackId                                                                              | 1              | uint64      | dimensionless             | ×                   | ×             | x             | ×             | ×           | HBTplus    | no compression                                  |
| Unique ID for this subhalo                                                           | which is c     | onsistent   | across snapshots          | 3.                  |               |               |               |             | IID I pius | no compression                                  |
| Contras                                                                              | 9              | floot 6 4   | - I                       | ~                   | $\sim$        | $\sim$        | ~             | ~           | EOE        | 1 no occurato                                   |
| Centres<br>Centre of mass of the host F                                              | э<br>OF halo o | f this sub  | a·L<br>halo. Zero for sat | <b>^</b>            | ∧<br>and h    | ∧<br>ostle    | ∧<br>ss sub   | ∧<br>halos. | гОг        | 1 pc accurate                                   |
|                                                                                      | or naio o      | 1 1110 540. |                           |                     | and n         | .00010        | 00 000        | iiaiob.     |            |                                                 |
| Masses                                                                               | 1              | float32     | Μ                         | ×                   | ×             | ×             | ×             | ×           | FOF        | $1.36693 {\rm e10} \rightarrow 1.367 {\rm e10}$ |
| Mass of the host FOF halo of this subhalo. Zero for satellite and hostless subhalos. |                |             |                           |                     |               |               |               |             |            |                                                 |

| Name        | Shape | Type | Units | $\mathbf{SH}$ | $\mathbf{ES}$ | IS | $\mathbf{EP}$ | SO | Category | Compression |
|-------------|-------|------|-------|---------------|---------------|----|---------------|----|----------|-------------|
| Description |       |      |       |               |               |    |               |    |          |             |

| Sizes                                                | 1                | uint64             | dimensionless                      | ×          | $\times$    | ×       | X          | ×            | FOF  | no compression |
|------------------------------------------------------|------------------|--------------------|------------------------------------|------------|-------------|---------|------------|--------------|------|----------------|
| Number of particles in the                           | ne host FO       | F halo of          | this subhalo. Ze                   | ero fo     | r satel     | lite a  | and h      | ostless      |      |                |
| subhalos.                                            |                  |                    |                                    |            |             |         |            |              |      |                |
| HostHaloIndex<br>Index (within the SOAF<br>subhalos. | 1<br>' arrays) o | int64<br>f the top | dimensionless<br>level parent of t | ×<br>his s | ×<br>ubhalo | ×<br>)1 | ×<br>for a | ×<br>central | SOAP | no compression |
| ${\rm IncludedInReducedSnapshot}$                    | 1                | int32              | dimensionless                      | ×          | ×           | ×       | ×          | ×            | SOAP | no compression |

Whether this halo is included in the reduced snapshot.

SubhaloRankByBoundMass 1 int32 dimensionless × × × × × SOAP no compression Ranking by mass of the halo within its parent field halo. Zero for the most massive halo in the field halo.

#### 5 Non-trivial properties

<sup>1</sup>The centre of mass and centre of mass velocity are computed using all particle types except neutrinos (since neutrinos can never be bound to a halo).

<sup>2</sup>The concentration is computed using the method described in Wang et al. (2023), but using a fifth order polynomial fit to the R1-concentration relation for 1 < c < 1000. Therefore we set a floor of 1 and a ceiling of 1000 for the values calculated by SOAP. This method assumes halos have an NFW profile, and is only calculated for the following SO variations:  $200_{crit}$ ,  $200_{mean}$ , and BN98. Neutrinos are included in the calculation of total concentration. The first moment of the density distribution, R1, can be estimated from the concentration. From R1 the Einasto concentration can be calculated. It also possible to estimate other properties, such as  $V_{max}$ , by using the R1 value and assuming an NFW profile.

<sup>3</sup>The oxygen and iron masses are computed from SmoothedElementMassFractions and not ElementMassFractions, since the latter were not output in the FLAMINGO snapshots. Metal mass fractions on the other hand are based on MetalMassFractions.

<sup>4</sup>**The half mass radius** is determined from linear interpolation of the cumulative mass profile obtained after sorting all particles by radius. For the projected halos (PA), SOAP uses the 2D radius (distance to the projection axis) instead of the 3D radius.

<sup>5</sup>The maximum circular velocity and the radius where it is reached are computed using

$$v_{\max} = \sqrt{\frac{GM(\le r)}{r}},\tag{1}$$

where the cumulative mass  $M(\leq r)$  includes all particles within the radius r, and includes the contribution of the particle(s) at r = 0. The radius is computed relative to the centre of potential. The softened  $v_{\max}$  value is calculated using the same method, except the particle radius has a floor of the softening length. An alternative way to calculate  $v_{\max}$  is to estimate it from the halo concentration by assuming an NFW profile. We store the radius of the unsoftened maximum circular velocity. If the softened and unsoftened maximum circular velocities are equal, then their radii will also be equal. If the values are not equal, then the radius of the softened maximum circular velocity will be the simulation softening length.

<sup>6</sup>The most massive black hole is identified based on the BH subgrid mass (i.e. the same mass that goes into BlackHolesSubgridMass).

<sup>7</sup>The neutrino masses exist in two flavours. RawNeutrinoMass is obtained by simply summing the neutrino particle masses, while the noise suppressed version, NoiseSuppressedNeutrinoMass is defined as

$$M_{\nu,\rm NS} = \sum_{i} m_i w_i + \frac{4\pi}{3} \rho_{\nu} R_{\rm SO}^3, \qquad (2)$$

where  $w_i$  are the neutrino weights (which can be negative), and  $\rho_{\nu}$  is the background density of neutrinos that is also used in the SO radius calculation. The latter is obtained from the snapshot header.

<sup>8</sup>When distinguishing between star-forming and non star-forming gas and computing the total star formation rate, we have to be careful about the interpretation of the StarFormationRates dataset in the snapshots, since negative values in that dataset are used to store another quantity, the last scale factor when that particular gas particle was star-forming. Star-forming gas is then gas for which StarFormationRates is strictly positive, and the total star formation rate is the sum of only the strictly positive values.

<sup>9</sup>The Compton y parameter is computed as in McCarthy et al. (2017):

$$y = \sum_{i} \frac{\sigma_T}{m_e c^2} n_{e,i} k_B T_{e,i} \frac{m_i}{\rho_i},\tag{3}$$

where  $\sigma_T$  is the Thomson cross section,  $m_e$  the electron mass, c the speed of light and  $k_B$  the Boltzmann constant.  $n_{e,i}$  and  $T_{e,i}$  are the electron number density and electron temperature for gas particle i, while  $V_i = m_i/\rho_i$  is the SPH volume element that turns the sum over all particles i within the inclusive sphere into a volume integral. Note that the snapshot already contains the individual  $y_i$  values for the SPH particles, computed from the cooling tables during the simulation.

<sup>10</sup>**The Doppler B parameter** is computed as in Roncarelli et al. (2018):

$$b = \frac{\sigma_T}{c} \sum_i n_{e,i} v_{r,\text{obs},i} \frac{m_i}{\rho_i A_{\text{obs}}},\tag{4}$$

where  $\sigma_T$  is the Thomson cross section, c the speed of light,  $n_{e,i}$  the electron number density for gas particle i, with  $V_i = m_i/\rho_i$  the corresponding SPH particle volume. The relative *peculiar* velocity is taken relative to the box and along a line of sight towards a particular observer, so

$$v_{r,\text{obs},i} = \vec{v}_i \cdot \frac{(\vec{x}_i - \vec{x}_{\text{obs}})}{|\vec{x}_i - \vec{x}_{\text{obs}}|},\tag{5}$$

with  $\vec{x}_i$  and  $\vec{v}_i$  the physical position and velocity of particle *i*, and  $\vec{x}_{obs}$  the arbitrary observer position.

The surface area  $A_{\text{obs}}$  that turns the volume integral into a line integral is that of the aperture for which b is computed, i.e.  $A_{\text{obs}} = \pi R_{\text{SO}}^2$ .

As the observer position we use the position of the observer for the first lightcone in the simulation, or the centre of the box if no lightcone was present. This choice is arbitrary and can be adapted. Since  $\vec{x}_{obs}$  can in principle coincide with  $\vec{x}_i$ , we make sure  $v_{r,obs,i}$  is set to zero in this case to avoid division by zero.

<sup>11</sup>The Compton Y-weighted temperature is computed as

$$T = \frac{1}{\sum_{i} y_i} \sum_{i} y_i T_i,\tag{6}$$

<sup>12</sup>Core excised quantities Excludes the inner region of the halo when computing the quantity. It is only calculated for  $SO/5OO_crit$ . Any core excised calculation only uses the particles for which

$$0.15R_{500c} \le \mathbf{r} \ge R_{500c} \tag{7}$$

<sup>13</sup>The mass-weighted temperature is computed as

$$T = \frac{1}{\sum_{i} m_i} \sum_{i} m_i T_i, \tag{8}$$

and the GasTemperatureWithoutRecentAGNHeating variant uses the same definition, but excludes particles that satisfy

$$\texttt{LastAGNFeedbackScaleFactors}_i \ge a - 15 \text{Myr} \tag{9}$$

and

$$0.1\Delta T_{\rm AGN} \le T_i \le 10^{0.3} \Delta T_{\rm AGN},\tag{10}$$

using the same parameters as used internally by SWIFT and with a the current scale factor.

<sup>14</sup>The satellite mass fractions is obtained by summing the masses of all particles within the inclusive sphere that are bound to a subhalo that is not the central subhalo, and dividing this by  $M_{\rm SO}$ . This uses the same membership information that is also used to decide what particles need to be included in the exclusive sphere and projected aperture properties. For MassFractionSatellites we only consider particles with the same FOF ID as the most bound particle in the central subhalo. For MassFractionExternal we include all particles with a FOF ID not equal to the most bound particle in the central subhalo.

<sup>15</sup>The spectroscopic-like temperature is computed as

$$T_{SL} = \frac{\sum_{i} \rho_{i} m_{i} T_{i}^{1/4}}{\sum_{i} \rho_{i} m_{i} T_{i}^{-3/4}}$$
(11)

<sup>16</sup>**The spin parameter** is computed following Bullock et al. (2021):

$$\lambda = \frac{|\vec{L}_{\text{tot}}|}{\sqrt{2}Mv_{\text{max}}R},\tag{12}$$

where  $\vec{L}_{tot}$  is the total angular momentum of all particles within radius R, and M their total mass. The angular momentum is computed relative to the centre of potential and the total centre of mass velocity. Since subhalos do not have a natural radius associated with them, we use the radius where the softened  $v_{max}$  is reached.

<sup>17</sup>**The thermal energy** of the gas is computed from the density and pressure, since the internal energy was not output in the FLAMINGO snapshots. The relevant equation is

$$u = \frac{P}{(\gamma - 1)\rho},\tag{13}$$

with  $\gamma = 5/3$ .

<sup>18</sup>X-ray quantities are computed directly from the X-ray datasets in the snapshot. They are either in the emission rest-frame, or in the observed-frame of a z = 0 observer, using the redshift of the snapshot as the emission redshift . The three bands are always given in the same order as in the snapshot:

- 1. eRosita low/soft (0.2 2.3 keV)
- 2. eRosita high/hard (2.3 8 keV)
- 3. ROSAT (0.5 2 keV)

<sup>19</sup>**The angular momentum** of gas, dark matter and stars is computed relative to the centre of potential (cop) and the centre of mass velocity of that particular component, and not to to the total centre of mass velocity. The full expression is

$$\vec{L}_{\text{comp}} = \sum_{i=\text{comp}} m_i \left( \vec{x}_{r,i} \times \vec{v}_{\text{comp},r,i} \right), \qquad (14)$$

with the sum i over all particles of that particular component (bound to the halo), and

$$\vec{x}_{r,i} = \vec{x}_i - \vec{x}_{\rm cop},\tag{15}$$

$$\vec{v}_{\text{comp},r,i} = \vec{v}_i - \vec{v}_{\text{com,comp}},\tag{16}$$

where

$$\vec{v}_{\rm com,comp} = \frac{\sum_{i=\rm comp} m_i \vec{v}_i}{\sum_{i=\rm comp} m_i}.$$
(17)

For FLAMINGO, we also compute the angular momentum for baryons, where the sum is then over both gas and star particles.

 $^{20}$ **The projected velocity dispersion** is computed along the projection axis. Along this axis, the velocity is a 1D quantity, so that the velocity dispersion is simply 1 value.

<sup>21</sup>The velocity dispersion matrix is defined as

$$V_{\text{disp,comp}} = \frac{1}{\sum_{i=\text{comp}} m_i} \sum_{i=\text{comp}} m_i \vec{v}_{\text{comp},r,i} \vec{v}_{\text{comp},r,i}, \qquad (18)$$

where we compute the relative velocity as before, i.e. w.r.t. the centre of mass velocity of the particular component of interest. While it is strictly speaking a  $3 \times 3$  matrix, there are only 6 independent components. We use the following convention to output those 6 components as a 6 element array:

$$V'_{\rm disp} = \begin{pmatrix} V_{xx} & V_{yy} & V_{zz} & V_{xy} & V_{xz} & V_{yz} \end{pmatrix}.$$
 (19)

Other velocity dispersion definitions can be derived from this general form. The one-dimensional velocity dispersion can be calculated as

$$\sigma = \sqrt{\frac{V_{xx} + V_{yy} + V_{zz}}{3}} \tag{20}$$

 $^{22}\kappa_{\text{corot}}$  is computed as in Correa et al. (2017):

$$\kappa_{\rm corot, comp} = \frac{K_{\rm corot, comp}}{K_{\rm comp}},\tag{21}$$

with the kinetic energy given by

$$K_{\rm comp} = \frac{1}{2} \sum_{i=\rm comp} m_i |\vec{v}_{\rm comp,r,i}|^2, \qquad (22)$$

the corotational kinetic energy given by

$$K_{\text{corot,comp}} = \sum_{i=\text{comp}} \begin{cases} K_{\text{rot,comp},i}, & L_{\text{comp},p,i} > 0, \\ 0, & L_{\text{comp},p,i} \le 0, \end{cases}$$
(23)

the corotational kinetic energy given by

$$K_{\text{corot,comp}} = \sum_{i=\text{comp}} \begin{cases} K_{\text{rot,comp},i}, & L_{\text{comp},p,i} > 0, \\ 0, & L_{\text{comp},p,i} \le 0, \end{cases}$$
(24)

the rotational kinetic energy given by

$$K_{\text{rot,comp},i} = \frac{1}{2} \frac{L_{\text{comp},p,i}^2}{m_i R_i^2},\tag{25}$$

the projected angular momentum along the angular momentum direction given by

$$L_{\text{comp},p,i} = \vec{L}_i \frac{\vec{L}_{\text{comp}}}{|\vec{L}_{\text{comp}}|},\tag{26}$$

and the orthogonal distance to the angular momentum vector given by

$$R_{i}^{2} = |\vec{x}_{r,i}|^{2} - \left(\vec{x}_{r,i} \frac{\vec{L}_{\rm comp}}{|\vec{L}_{\rm comp}|}\right),$$
(27)

where the angular momentum vector and the relative position and velocity are the same as above for consistency.

 $^{23}$ The kinetic energy of the gas and stars is computed using the same relative velocities as used for other properties, i.e. relative to the centre of mass velocity of the gas and stars respectively.

<sup>24</sup>Luminosities are given in the GAMA bands and are always using the same order as in the snapshots: u, g, r, i, z, Y, J, H, K. These are restframe dust-free AB-luminosities of the star particles. These were computed using the BC03 (GALAXEV) models convolved with different filter bands and interpolated in log-log ( $f(\log(Z), \log(age)) = \log(flux)$ ) as used in the dust-free modelling of Trayford et al. (2015). The luminosities are given in dimensionless units. They have been divided by 3631 Jy already, i.e. they can be turned into absolute AB-magnitudes (rest-frame absolute maggies) directly by applying -2.5 log10(L) without additional corrections.

# 6 Spherical overdensity calculations

The radius at which the density reaches a certain threshold value is found by linear interpolation of the cumulative mass profile obtained after sorting the particles by radius. The approach we use is different from that taken by VR, where both the mass and the radius are obtained from independent interpolations on the mass and density profiles (the latter uses the logarithm of the density in the interpolation). The VR approach is inconsistent, in the sense that the condition



Figure 1: Density profile (top row) and cumulative mass profile (bottom row) for an example halo in a 400 Mpc FLAMINGO box. The orange lines show  $\rho_{\text{target}}$  and  $R_{\text{SO}}$  and  $M_{\text{SO}}$  as determined by SOAP, while the green line is the cumulative mass profile at fixed  $\rho_{\text{target}}$ . The two left columns correspond to a run where  $R_{\text{SO}}$  is fixed by interpolating on the density profile (so in the top row plot), while the second two columns determine  $R_{\text{SO}}$  by interpolating on the cumulative mass in the bottom row plots. The right column for each pair of columns shows a zoom of the left column.

$$\frac{4\pi}{3}R_{\rm SO}^3\rho_{\rm target} = M_{\rm SO},\tag{28}$$

is not guaranteed to be true, and will be especially violated for large radial bins (the bins are generated from the particle radii by sorting the particles, so we have no control over their width). We instead opt to guarantee this condition by only finding  $R_{\rm SO}$  or  $M_{\rm SO}$  by interpolation and using eq. (28) to derive the other quantity.

While the interpolation of the logarithmic density profile to find  $R_{\rm SO}$  is more straightforward, we found that it can lead to significant deviations between the value of  $M_{\rm SO}$  and the cumulative mass in neighbouring bins that can be more than one particle mass, as illustrated in Fig. 1. The reason for this is that the cumulative mass profile at fixed density increases very steeply with radius, so that a small difference in  $R_{\rm SO}$  leads to a relatively large difference in  $M_{\rm SO}$ . Conversely, fixing  $M_{\rm SO}$  will lead to an  $R_{\rm SO}$  that only deviates a little bit from the  $R_{\rm SO}$  found by interpolating the density profile. However, doing so requires us to find the intersection of the cumulative mass profile at fixed density (green line in Fig. 1) with the actual cumulative mass profile, which means solving the following equation:

$$\frac{4\pi}{3}\rho_{\text{target}}R_{\text{SO}}^3 = M_{\text{low}} + \left(\frac{M_{\text{high}} - M_{\text{low}}}{R_{\text{high}} - R_{\text{low}}}\right) \left(R_{\text{SO}} - R_{\text{low}}\right), \tag{29}$$

where  $R/M_{\rm low/high}$  are the bounds of the intersecting bin (which we find in the density profile). This third degree polynomial equation has no unique solution, although in practice only one of the three possible complex solutions is real. We find this solution by using a root finding algorithm within the intersecting bin (we use Brent's method for this).

For clarity, this is the full set of rules for determining the SO radius in SOAP:

- 1. Sort particles according to radius and construct the cumulative mass profile.
- 2. Discard any particles at zero radius, since we cannot compute a density for those. The mass of these particles is used as an r = 0 offset for the cumulative mass profile. Since the centre of potential is the position of the most bound particle, there should always be at least one such particle.
- 3. Construct the density profile by dividing the cumulative mass at every radius by the volume of the sphere with that radius.
- 4. Find intersection points between the density profile and the target density, i.e. the radii  $R_{1,2}$  and masses  $M_{1,2}$  where the density profile goes from above to below the threshold:
  - (a) If there are none, analytically compute  $R_{\rm SO} = \sqrt{3}M_1/(4\pi R_1 \rho_{\rm target})$ , where  $R_1$  and  $M_1$  are the first non zero radius and the corresponding cumulative mass. This is a special case of Eq. (29). Unless there are multiple particles at the exact centre of potential position, this radius estimate will then be based on just two particles.
  - (b) In all other cases, we use  $R_{1,2}$  and  $M_{1,2}$  as input for Eq. (29) and solve for  $R_{SO}$ . The only exception is the special case where  $R_1 = R_2$ . If that happens, we simply move further down the line until we find a suitable interval.
- 5. From  $R_{\rm SO}$ , we determine  $M_{\rm SO}$  using Eq. (28).

Neutrinos – if present in the model – are included in the inclusive sphere calculation (and only here, since neutrino particles cannot be bound to a halo) by adding both their weighted masses (which can be negative), as well as the contribution from the background neutrino density. The latter is achieved by explicitly adding the cumulative mass profile at constant neutrino density to the total cumulative mass profile before computing the density profile. This is the only place where neutrinos explicitly enter the algorithm, except for the neutrino masses computed for the SOs. Neutrinos are not included in the calculation of the centre of mass and centre of mass velocity.

## 7 Group membership files

Before SOAP can be run we generate a set of files which contain halo membership information for each particle in the SWIFT snapshot. The datasets in these files are stored in the same order and with the same partitioning between files as the datasets in the snapshots. This allows SOAP to read halo membership information for sub-regions of the simulation volume without reading the full halo-finder output. These files may also be useful for visualising the input halo catalogue.

The group membership files are HDF5 files with one group for each particle type, named PartType0, PartType1, ... as in the snapshots. Each group contains the following datasets:

- 1. GroupNr\_bound: for each particle in the corresponding snapshot file this contains the array index of the subhalo which the particle is bound to. If a particle is not bound to any subhalo it will have GroupNr\_bound=-1.
- 2. Rank\_bound: the ranking by total energy of this particle within the subhalo it belongs to, or -1 if the particle is not bound to any subhalo. The particle with the most negative total energy has Rank\_bound=0.
- 3. GroupNr\_all: (VELOCIraptor only) for each particle in the corresponding snapshot file this contains the array index of the VR group which the particle belongs to, regardless of whether it is bound or unbound. Particles in no group have GroupNr\_all=-1.
- 4. FOFGroupIDs: the 3D FOF group the particle is part of. This field is only present if a FOF snapshot is listed in the parameter file. This field is present in the snapshots themselves, but for FLAMINGO hydro simulations the FOF was regenerated. If this field is present it will overwrite the value from the snapshots when SOAP is run.

The GroupNr values stored here are zero based array indexes into the full subhalo catalogue, and not the subhalos IDs. For example the first group in the VELOCIraptor catalogue has GroupNr=0 and ID=1.

The script 'make\_virtual\_snapshot.py' will combine snapshot and group membership files into a single virtual snapshot file. This virtual file can be read by swiftsimio and gadgetviewer to provide halo membership information alongside other particle properties. Using the virtual file along with the spatial masking functionality within swiftsimio means it is possible to quickly load all the particles bound to a given subhalo.