
Composing Data Systems
At Datadog

Wendell Smith
Staff Engineer, Cross-Product Queries, Datadog

Alex Bianchi
Software Engineer, Cross-Product Queries, Datadog

Agenda

2

01 What is Datadog?

02 Why are we Interested in Datafusion?

03 What is Datafusion?

04 How are we using Datafusion?

All of your
monitoring and
security tools in
a single, unified

platform

Visit datadoghq.com

4

Datadog Through The Years

Our Current
Tech Stack
Challenge
We have multiple non-relational
engines from years of growth,
acquisitions, and optimizations.

Goal
Enable more complex queries
from multiple data sources

Events
JSON-like

Metrics
Timeseries

Resources
Tabular

Events
Queries

Elasticsearch
-like

Timeseries
Queries SQL

Queries

Not relational

Not very tabular

Fairly new,
small

Engines

Storage Systems

DDSQL
Editor

Composable
Data Systems

Goal

Single access point

SQL style syntax

Joins across data stores

Apache Arrow minimizes
conversion + marshaling costs

Datafusion’s extensibility let it
match user’s expected behavior

Substrait can be used across our
downstream data sources

Single-Node
Engine

Cross Product Queries

Today, we use the distributed SQL engine
Apache Trino; a tool designed to efficiently
query vast amounts of data.

Trino was not designed for high throughput,
real-time queries on small datasets

For these queries, we have our own execution
engine. But building out complete functionality
has had ups and downs.

Distributed Engine
Trino

Distributed Engine
Trino

Distributed
Engine

SQL Queries

98%
Of our cross product queries
could be executed in single
node.

We're looking to Datafusion for
high throughput, low-cost

queries.

What is

10

DataFusion is an extensible query engine
written in Rust that uses Apache Arrow as
its in-memory format. DataFusion’s target
users are developers building fast and
feature rich database and analytic
systems, customized to particular
workloads.

“
“

datafusion.apache.org
The website is pretty good, you

should take a look!

Apache Arrow

12

● Language-independent
● columnar memory format
● Efficient over the wire

communication (Flight)
● Built for efficient analytic

operations on modern
hardware (SimD)

Libraries are available for C, C++,
C#, Go, Java, JavaScript, Julia,
MATLAB, Python, R, Ruby, and Rust

Building fast and feature rich database and analytic
systems:

13

LLVM

C/C++ Frontend Rust Frontend Julia Frontend Swift Frontend . . .

Analytic Application

Domain
Specific
Language

Specialized Database

Application LogicCatalog

Analysis Engine

Multiple SQL
Dialects

Data Flow
AnalysisCustom

Operators File System Interface

…

Query Engine Extensibility

SQL Operations

DataFrame Operations

Multiple API’s

Parsing

Query-planning

UDF’s

Relational Composable

Columnar

Vectorized

Multi Threaded

Performant

Table Providers

Streaming

No Garbage Collector

Customized to Particular Workloads

15

● Time series databases (e.g.
InfluxDB 3.0 and Coralogix)

● Streaming SQL platforms (e.g.
Synnada and Arroyo).

Domain-Specific Database Systems Run-times for specialized query front-ends

SQL analysis tools Table formats

● Comet for Apache Spark
● Seafowl for PostgreSQL
● Vega
● InfluxQL

● Dask-sql
● SDF

Rust implementations of…
● Delta Lake
● Apache Iceberg
● Lance

Segmented
Query Stack

Today

Composable
Data Systems

Goal

Proprietary memory layouts
increase conversion overhead

Different execution engines lead
to inconsistent user experiences

Multiple query representations
limits interoperability

Apache Arrow minimizes
conversion + marshaling costs

Datafusion’s extensibility let it
match user’s expected behavior

Substrait can be used across our
downstream data sources

Event Queries
Aggregation, sort, limit

SQL Queries
JOINs, subqueries, CTEs

Event Reads
Filter and project on read

How we are using
Datafusion
at Datadog

Events
JSON-like

Metrics
Timeseries

Resources
Tabular

Event
Queries

Elasticsearch
-like

Timeseries
Queries

SQL
Queries

Engines

Storage Systems

Proof of Concept Now

Up next

Events Queries

Events Storage
Blob Store

Event
Queries

Elasticsearch
-like

Reducer

Reader Reader Reader

Queries from
users

Aggregations:
Group-by, Top-N

Reading: Projection,
Filter, Partial Aggregation

Data
Semi-structured JSON

documents
Parquet-like format

Reducer (Java)

Reader
(Go)

Reader
(Go)

Reader
(Go)

Timeseries
Queries

SQL
Queries

Different
languages?!

Datafusion as a shared common
engine across services

● Out of the box industry-supported
“framework”

● Consolidate contracts and behaviors
○ Single IR, single engine, single format

● Free time to focus on higher level problems
○ Text search, interactive queries, approximate

operators, shuffling, etc

Goal

Storage

Events
Queries

Elasticsearch
-like

Reducer

Reader Reader Reader

Maybe here tooDatafusion
here

Events Queries and Datafusion
How is it going?

Challenge: Matching Behaviors
● Requires flexibility: extensions to match existing

functionality
○ Custom coercions, approximations, exotic operators

● Efficient integration with our various storage formats
○ e.g. late materialization / Arrow translation: not all our

encodings are cheaply translatable

Status

● Currently shadowing queries on readers

● Seeing performance improvements and
discovering bugs in our existing engines

● Contributing back to community: Decoupling
logical/physical types

Storage

Events
Queries

Elasticsearch
-like

Reducer

Reader Reader Reader

Up next

POC

Distributed
Engine

Trino

Distributed
Engine

Trino

Planner
Apache
Calcite

Distributed
Engine

Trino

SQL Queries

SQL
Queries

Single-Node
Engine (Go)

Parser
Evaluator

Events
JSON-like

Metrics
Timeseries

Resources
Tabular

Datafusion?

Pushdown Planning

Single Node Engine
For high-throughput,
Low-cost queries

Distributed Engine
For large operations

Distributed
Engine

Trino

Distributed
Engine

Trino Substrait with
pushdowns

SQL Queries and Datafusion
How is it going?

Challenges

● Our own SQL dialect
○ ⇒ Separate parser

● Extension types
○ String sets (for tags), timeseries

● Efficiency requires pushdown operations
○ ⇒ Separate planner

● Different downstreams to integrate with
○ ⇒ Substrait (Contributions)

Status
● Proof of concept

○ Embedded library in Go service
○ Planner integration via substrait

● Basic SQL operations functional

● Events and Resources as sources (no Metrics)

Planner
Apache
Calcite

Distributed
Engine

Trino

SQL
Queries

Single-Node Engine

Events
JSON-like

Metrics
Timeseries

Resources
Tabular

Pushdown Planning

Logical
SubstraitParser

Evaluator

Datafusion
POC

Planner Integration
Calcite plans ≠ Datafusion plans

Ongoing Work

Integrating and Extending via Substrait
Using Substrait requires many extensions

Bridging Rust to Go
Embedding eases the transition, but FFI work is finicky

Consolidation
Standardizing across our different engines:
Substrait extensions, connectors, function behavior, …

Simplify Contracts
Substrait for plans

Arrow for data

Specialized Engines
with converging functionality

TODAY

Convergence
of implementation and behavior

VISION

Duplication of effort
(Reimplementation)

Custom IR / Formats
Different protobufs for each source

Behavior discrepancies
Re-inventing commodity operations

Library Reuse
Datafusion for same functions,

different places

Adaptability
Add or replace components, sources

Thank you!

