craftinginterpreters_zh.md 2024-09-25

craftinginterpreters_zh

[FELLIE]
FEMBERHE (Crafting Interpreters) HPIENF -
X2—MNEEKTHWEIFINE - RIE Rcraftinginterpreters - BINEBEREMNEX S - IR BELFIE,

ZHE—TVNERBEQIESLox i - 23 A)avafICSRIL 7 AFPE BRI ERTESR - jloxHclox - HPRIEZRIE
SRERMT Bava P RIRNUES - 2R BavaR B REABEASKICIBNEIEETT | BENRA YRR ENE
PABALE - S Y — 1B LR BSRIERERS -

ZHPHAFRRERESAERBHRE - AR - FEEIELFRBRSEANES E8-STPESH
THBNSH - #ERESNEHERZEDE— N ILETORBESRRA - NE LRSBRSRANEL
NFEBAREFENIURESM LFET -

NRIBAZIEB R IREBE N LERGR - BIWEEFZRY - BNTWERS5EXTE - »ZEBCFEINMR - HHE
ZHA -

BT AABEARS - EFXERBHERIAEZREZL - BRRES - ABOFTERAKWENL - FEOTIEX
REXFEEHIBZA -

MRBUEBRBEXBNFESBRER - oJURMIEE -

5 AIINS

Biffixieyuheng R EEL FISZ 1 - AR BEELH markdown X R EF ##Eread-onlyIn B - H#RELAK
7 BRI -

1. BI= Introduction

Fairy tales are more than true: not because they tell us that dragons exist, but because they tell us that
dragons can be beaten.

1/932

https://readonly.link/books/https://raw.githubusercontent.com/GuoYaxiang/craftinginterpreters_zh/main/book.json
https://github.com/munificent/craftinginterpreters
http://www.craftinginterpreters.com/
https://github.com/xieyuheng
https://github.com/readonlylink/readonlylink

craftinginterpreters_zh.md 2024-09-25

—— Neil Gaiman, Coraline
EEWSELEETIN FRERABSZRENENEE - MRS FERMNLIIFEHY -

I'm really excited we're going on this journey together. This is a book on implementing interpreters for
programming languages. It's also a book on how to design a language worth implementing. It's the
book | wish | had when | first started getting into languages, and it's the book I've been writing in my
head for nearly a decade.

RENRNERIE— LB EREIRE - RR—ARTHGRESSIBESR0S - U A2 FO@EY
—ERIANESNS - RUFBRERARESONERFLRINSHIAS KABRERTFECES
TRIEHET -

In these pages, we will walk step by step through two complete interpreters for a full-featured
language. | assume this is your first foray into languages, so I'll cover each concept and line of code
you need to build a complete, usable, fast language implementation.

EABR HNIH—D LN B -—MINEFTENESHH DN cBNERSRII - HBRXEEFE—RIER
BIES - AN EWE—ITE - I - RENESAFNE RSN -

In order to cram two full implementations inside one book without it turning into a doorstop, this text
is lighter on theory than others. As we build each piece of the system, | will introduce the history and
concepts behind it. I'll try to get you familiar with the lingo so that if you ever find yourself in a cocktail
party full of PL (programming language) researchers, you'll fit in.

ATE—RBPEHR D TENTI - MEBRXER—N M - AEEIC LLEEMNYEER - TR HRS
WEMREN - WRNTATEENHNENRR - RESRNULEREXLETE - BIEEETHPL (REES)
RARBEBEZF - TEEREMAES -

But we're mostly going to spend our brain juice getting the language up and running. This is not to say
theory isn't important. Being able to reason precisely and formally about syntax and semantics is a vital
skill when working on a language. But, personally, | learn best by doing. It's hard for me to wade
through paragraphs full of abstract concepts and really absorb them. But if I've coded something, run
it, and debugged it, then | get it.

BRNEBAZZERBAUX NESTEERX - IAAZRBIEAEE - £F > JBESH - SEBXNEEHN
BXATHEEM ATV ENEEMZ-MEREEZNREE - B2 - R TAMS - HELEBFPEIURERI - X
X - BRAMSFEFRRMBBSWEEAEILEREINE Y - B2 - R (RIEEL) FE /R
B8 - T IEE TR - BAKMBA T

That's my goal for you. | want you to come away with a solid intuition of how a real language lives and

breathes. My hope is that when you read other, more theoretical books later, the concepts there will
firmly stick in your mind, adhered to this tangible substrate.

2R ERVBE - AR ENIER—T] EIENES Z2NOEEMITRY - HHEZSMRRHIREM
IS BN BEN XERSIFEFRMBERNES - K TXIEENEMZ L -

1.1 Why Learn This Stuff ?

11T AT ARFEIXLE?

2/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Every introduction to every compiler book seems to have this section. | don’t know what it is about
programming languages that causes such existential doubt. | don't think ornithology books worry
about justifying their existence. They assume the reader loves birds and start teaching.

BARERDENSSUTFHEX—8D - RAHBEEZHFZEESHM—IEAFEXERNREE - HAAA
BRFHEBONTILAECHEE - BENRERZENTE - REHBHF -
But programming languages are a little different. | suppose it is true that the odds of any of us creating
a broadly successful general-purpose programming language are slim. The designers of the world’s
widely-used languages could fit in a Volkswagen bus, even without putting the pop-top camper up. If

joining that elite group was the only reason to learn languages, it would be hard to justify. Fortunately,
it isn't.

BEREESA—~AE - TNl - WEMNPHOEA—DARER - EBUR—FZRIINERREESNY
AEMER/N - XEHEE - RIFX MR EWOZEAWESHORITI] - —WARXRRFEELMERFT - B
AR ERIKREN £ - IRMARMERFAZFZSINESHE—RA - BLAMREILAESIEY - =5/
= - SSRFFIEWLE -

1.1.1 Little languages are everywhere
1.1.1 MNEEEERARE

For every successful general-purpose language, there are a thousand successful niche ones. We used
to call them “little languages”, but inflation in the jargon economy led today to the name “"domain-
specific languages”. These are pidgins tailor-built to a specific task. Think application scripting
languages, template engines, markup formats, and configuration files.

NTE-—MANBRES - BELTRHAINN/NRES - RNDNEERENRNES" - BREBZENSKE
NAET"SFHEES (BIDSL) "MBIR - IEZANFEAFEFEHRFLRES A2 - WINAREFEAE
= BRGIZE - IR AMEEXH -

(Make] (XSLT]J (Inform) (YAML) (ANTLR) (CFML) (SWIG)
(IDL) (Emacs Lisp) (Jinja) (cpp) (INI} (JSON) (Vim Script]
(lex) (Sed) (Bash) (yacc) (Mustache) (AWK) (CSS) (HTML)
(Sesh) (XML) (Batch) (SaQL) (bison) (Guile) (XAML)

Almost every large software project needs a handful of these. When you can, it's good to reuse an

existing one instead of rolling your own. Once you factor in documentation, debuggers, editor support,
syntax highlighting, and all of the other trappings, doing it yourself becomes a tall order.

NFE8MRERETNEHFE - LEXFNTE - ARG - REERIAENIR - MAZECSHFEM -
—BEERRE - BulEE - RESIE BASRETNNAEEMIERNER - BCSKMmE L —JURERE

% o

3/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82

craftinginterpreters_zh.md 2024-09-25

But there's still a good chance you'll find yourself needing to whip up a parser or something when
there isn't an existing library that fits your needs. Even when you are reusing some existing
implementation, you'll inevitably end up needing to debug and maintain it and poke around in its guts.

B2 SIUENEAEREENFEN - MIIRREAUEANECTFE - MENRNEMAA - EIEITER
—LEMAERSKIMEY - AT R HEREAMLEF - AEEHARETER -

1.1.2 Languages are great exercise
1.1.2 ESE2REFRE

Long distance runners sometimes train with weights strapped to their ankles or at high altitudes where
the atmosphere is thin. When they later unburden themselves, the new relative ease of light limbs and
oxygen-rich air enables them to run farther and faster.

KEZHNRENSEMNR A LEY) - SBEZSHENS BRI XIETIIL - S NECSHRBLUE -
BENKANESNZSHR FHNENGEE - FEl]dUBEER - BIR -

Implementing a language is a real test of programming skill. The code is complex and performance
critical. You must master recursion, dynamic arrays, trees, graphs, and hash tables. You probably use
hash tables at least in your day-to-day programming, but how well do you really understand them?
Well, after we've crafted our own from scratch, | guarantee you will.

S -TNESENRERENEEER - (C(BRER - MEMERRRE - MUNZESDT - hSHAE - -
MiEHRR - CEHBREFEVEREERER BHEENENNEREESZSE ? I/ - SHIMMLTAR
MWfEm2iE - RBECIER -

While | intend to show you that an interpreter isn't as daunting as you might believe, implementing

one well is still a challenge. Rise to it, and you'll come away a stronger programmer, and smarter about
how you use data structures and algorithms in your day job.

SARBIRPRERHAGEEBNIES AER BRI —MFHERSRDAZR— MK - Z27TE - B8E
BA—TEBRANERFR - AEERE LIEPEEE MR ERBIEEHWHNEX -

1.1.3 One more reason
1.1.3 53— EE

This last reason is hard for me to admit, because it's so close to my heart. Ever since | learned to
program as a kid, | felt there was something magical about languages. When | first tapped out BASIC
programs one key at a time | couldn’t conceive how BASIC itself was made.

HERE—TRERRMEAN - BABE2RAVDEBHNER - BANFNHEZZRELR - HRESESHEPHIH
NE - ARE—R—MR—MRMBEABASICEE R - HAEEERBASICES AZZ2UAIHIIFLH KA -

Later, the mixture of awe and terror on my college friends' faces when talking about their compilers
class was enough to convince me language hackers were a different breed of human—some sort of
wizards granted privileged access to arcane arts.

Ak - HEWARZARNMIRICMNINRERFREN - [EPPRRRIDENRBEULERMAE - ESREE
S—MA - BT LURIZERARR I -

Il

4/932

craftinginterpreters_zh.md 2024-09-25

It's a charming image, but it has a darker side. / didn't feel like a wizard, so | was left thinking | lacked
some in-born quality necessary to join the cabal. Though I've been fascinated by languages ever since |
doodled made up keywords in my school notebook, it took me decades to muster the courage to try

|u

to really learn them. That “magical” quality, that sense of exclusivity, excluded me.

XE2—TMEANFER - BEEtAREN—ME - HEREECSAG NN - FIFHIANABECSRZIMARALPAFERITT
Kbl - REBNREFRELA LHERBELR - R—ENESEL - BRI A TEFNNEREESE
HEIEMZSIEA] - BBfp 105 a0m - BEFPHEMERIRLTE - T EIS -

When | did finally start cobbling together my own little interpreters, | quickly learned that, of course,
there is no magic at all. It's just code, and the people who hack on languages are just people.

SRELFEHERBCR/NERSEN - HRRERE - REAGRBREE - BRENE - MALERFESHA
MRAZEBA -

g %

There are a few techniques you don't often encounter outside of languages, and some parts are a little
difficult. But not more difficult than other obstacles you've overcome. My hope is that if you've felt
intimidated by languages, and this book helps you overcome that fear, maybe I'll leave you just a tiny
bit braver than you were before.

A ERBTEES ZAFREHEE MABLNHBAE - BRRLESROLMEEEEE - REL
MRENBESHITN - DRABEBDHCERLORE - I FRRUEEMAEBEH— -

And, who knows, maybe you will make the next great language. Someone has to.
me - wBAE - RFSOEE T —MEANIES - EREEBAM -

1.2 How the Book is Organized
1.2 ABWERS

This book is broken into three parts. You're reading the first one now. It's a couple of chapters to get
you oriented, teach you some of the lingo that language hackers use, and introduce you to Lox, the
language we'll be implementing.

BEEABAA=DED - CAELEESENZFE—HD - XD TERLEEARS - HE—LESEERER
WITIE - FEENT BRI REIABNES Lox.

Each of the other two parts builds one complete Lox interpreter. Within those parts, each chapter is
structured the same way. The chapter takes a single language feature, teaches you the concepts behind
it, and walks through an implementation.

HHE NN RIWE— e BRI LoxiERE=: - EXLER N - BIETWELHZHEN - E—F L
—PMEEMEER - AEERNNNEE - FEDNTATZIMTE -

It took a good bit of trial and error on my part, but | managed to carve up the two interpreters into
chapter-sized chunks that build on the previous chapters but require nothing from later ones. From the
very first chapter, you'll have a working program you can run and play with. With each passing chapter,
it grows increasingly full-featured until you eventually have a complete language.

5/932

craftinginterpreters_zh.md 2024-09-25

HIE T ADVHEERIRE - BRAEAZMINMEXAMRERZBED oM 7 —E/N\R - B—/\RORNEEHZET
ERE/LENEM L - EAREEEETHMR - NE—EF % - B - Mo TNERN IERR -
BEETRHER TRIEEREFEE BERRELHE—TENES -

Aside from copious, scintillating English prose, chapters have a few other delightful facets:
BRYREVBEENRANEE ETPESE2—LEHENRE :
1.2.1 The code

1.2.1 K13

We're about crafting interpreters, so this book contains real code. Every single line of code needed is
included, and each snippet tells you where to insert it in your ever-growing implementation.

RBZRTHIFRERERA - IUEPSEZEENNE - MEENS—TRBEFEESER - MEESME
R EEHZENEHERIEAZ LM PNFTLMAE -

Many other language books and language implementations use tools like Lex and Yacc, so-called
compiler-compilers that automatically generate some of the source files for an implementation from
some higher level description. There are pros and cons to tools like those, and strong opinions—some
might say religious convictions—on both sides.

WEHEMKES BEMES LI EERLex M Yacc3XFHN TR - IR ZFTBNRIEFESR-RiFR - JUN LB
BERYN (BX) MAPENER—LEXLARX G - KETEFFAEE - MAXGEHAERMEKR--FLEA
ol R EREAZED -

We will abstain from using them here. | want to ensure there are no dark corners where magic and
confusion can hide, so we'll write everything by hand. As you'll see, it's not as bad as it sounds and it
means you really will understand each line of code and how both interpreters work.

HMNZXEAZERARXLETE - HEREREINEJXASHERBOER - FURNSEEFEMRENE - BN
TRERR - ZFARBNERBLER - EAREREFCREEBERE—TRBLUEAT @RS TES -

A book has different constraints from the “real world” and so the coding style here might not always
reflect the best way to write maintainable production software. If | seem a little cavalier about, say,
omitting or declaring a global variable, understand | do so to keep the code easier on your
eyes. The pages here aren't as wide as your IDE and every character counts.

ATES BPABHNELEFR NRABEEXAR - AEXENCENEIEAAZRE U LEFHEFRR
HHRERN - JERNELEBEZZALERYN - LbERprivate i ZFEPREZFLE IBERIXFHMEN T
ULREESEENE - BIUARIDEE A - FIAB— P FHFERDR -

Also, the code doesn't have many comments. That's because each handful of lines is surrounded by
several paragraphs of honest-to-God prose explaining it. When you write a book to accompany your
program, you are welcome to omit comments too. Otherwise, you should probably use // a little more
than | do.

o - KBUAZAEXRZHERE - XREEAE—Mo BTG - #ERA 7 —LENREEN XX =R EATHE
B SIRE—ABRESHRNERN - WHRRTSEERE - &0 - RolBEMZEEREREZH //,

6/932

https://en.wikipedia.org/wiki/Lex_(software)
https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/Lex_(%E8%BD%AF%E4%BB%B6)
https://en.wikipedia.org/wiki/Yacc
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82

craftinginterpreters_zh.md 2024-09-25

While the book contains every line of code and teaches what each means, it does not describe the
machinery needed to compile and run the interpreter. | assume you can slap together a makefile or a
project in your IDE of choice in order to get the code to run. Those kinds of instructions get out of date
quickly, and | want this book to age like XO brandy, not backyard hooch.

BARAXARFEZ TE-THE FHER7TE-TRBENE N - BEREELRFNCTERSRMFONG - &
RIR RO LAE 2 th 3 = L — P makefile - 3&E QE—DNONXAIDERRI— DT - KL TER - BipLE
MIZBBRRASEN - HEEXABEEXOB=—FEX - MAZBXIRE (—H53H) -

1.2.2 Snippets

1.2.2 hE

Since the book contains literally every line of code needed for the implementations, the snippets are
quite precise. Also, because | try to keep the program in a runnable state even when major features are
missing, sometimes we add temporary code that gets replaced in later snippets.

EARXABE S 7KIMAABNE TR - FRLUCIE R BRABZSEE - 105 - BIERERD EZINENNE -
TEEREFRFETBITRE - BIERMNENZANRNCE - XENBREEEREMNCBRRER -

A snippet with all the bells and whistles looks like this:

— PN EENRIBRERYEEWN MR

if (isDigiti{c)) {
number () :
} else {
Lox.error(line, "Unexpected character.");

]

In the center, you have the new code to add. It may have a few faded out lines above or below to show
where it goes in the existing surrounding code. There is also a little blurb telling you in which file and
where to place the snippet. If that blurb says “replace _ lines”, there is some existing code between the
faded lines that you need to remove and replace with the new snippet.

DEIZZARMAVFICE - XEONBH EES FEOBEE—EXEHTT - LEREERBEREFNMUE - B&
ME—NBNTA SFEEMIXGPUREBERERBRER - MRETREE replace _lines” - RIATEXLE
NiTZEE-LERENNBFEN - ABERAMNKBLRE -

1.2.3 Asides

1.2.3 FHME

Asides contain biographical sketches, historical background, references to related topics, and
suggestions of other areas to explore. There's nothing that you need to know in them to understand
later parts of the book, so you can skip them if you want. | won't judge you, but | might be a little sad.

BIMEPEIZEICENT - MEER - WHREBAN SIS EMEZEBRRNVIHE - BTFRA B
VIZBABREEEN D - A LUREFZERT CA] - AR - EROESBLENEY - U BT HHR
71932

craftinginterpreters_zh.md 2024-09-25
RE - wE8FERE - SERNEAERFEAMENEET Z/5]
1.2.4 Challenge

1.2.4 Hkbk

Each chapter ends with a few exercises. Unlike textbook problem sets which tend to review material
you already covered, these are to help you learn more than what's in the chapter. They force you to
step off the guided path and explore on your own. They will make you research other languages, figure
out how to implement features, or otherwise get you out of your comfort zone.

BEZRHSE—LEHIE - AMEHERBPINIBERFRTERMSHANAS - XESRZERN 7 HEPTFES]
BZHMIR - MANNZREPHAR - BNZBEEELNERENESL - BTERER - BIIFEREGHREE
ES - FARWMIKIMINGE - RYEWR - REELELEGFEX -

Vanquish the challenges and you'll come away with a broader understanding and possibly a few bumps
and scrapes. Or skip them if you want to stay inside the comfy confines of the tour bus. It's your book.

FeiRpbaL - EFRBE ZAERE - WO EERR—LER - IRCBBERFETNHFEXNAN - oI E
]~ #PEEIRIE 4,

1.2.5 Design notes
1.2.5 IRITEEIC

Most “programming language” books are strictly programming language implementation books. They
rarely discuss how one might happen to design the language being implemented. Implementation is
fun because it is so precisely defined. We programmers seem to have an affinity for things that are
black and white, ones and zeroes.

ARZHRBEBES HREMLETBEX LHNREES LHHFE - RN WE RI/AEEKIMENES - SKHZFA
AR - Z2ERANENEXZREBHERN - RINBFZUFRENED - 1FI0XFRIEMAS,

Personally, | think the world only needs so many implementations of FORTRAN 77. At some point, you
find yourself designing a new language. Once you start playing that game, then the softer, human side
of the equation becomes paramount. Things like what features are easy to learn, how to balance
innovation and familiarity, what syntax is more readable and to whom.

MPAMS - FNAEFRRABEZXAZHIFORTRAN 77523 - EEDIE - B AKNBE S EERIT—IPHAE
= o —BEHGEXEM - DEAPREN - AMEN—EMESEREE - BUNMEINESTES - NEEelH
MABE ZBEEFE - BB EES RN ERR A6,

All of that stuff profoundly affects the success of your new language. | want your language to succeed,
so in some chapters | end with a “design note”, a little essay on some corner of the human aspect of
programming languages. I'm no expert on this—I don’t know if anyone really is—so take these with a
large pinch of salt. That should make them tastier food for thought, which is my main aim.

FIEREHSNBHMEBESHAINFERZNTMN - HHEZLWESIEMRT) - BIERLESETH - -
BRUZLERE XEZRTHREESHWANTEN—EXE - RAAZEXTENER—RAHBEZEA

8/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82

craftinginterpreters_zh.md 2024-09-25

ABEMBBEXLE - R - BERERRXE AR AN - XFRE - XEXFER)
X IERFHAYE R -

FBERNGREZERNEM -

1.3 The First Interpreter
1.3 B— RS

We'll write our first interpreter, jlox, in Java. The focus is on concepts. We'll write the simplest, cleanest
code we can to correctly implement the semantics of the language. This will get us comfortable with
the basic techniques and also hone our understanding of exactly how the language is supposed to
behave.

R HlavafREE— PR Rjlox » (RER) TBRIRZEE - HITHRERE R - T2 - BUE
ASSHNZBESRVEX - BEFEBHEHRINATEREA - AEENESRNEARAIER -

Java is a great language for this. It's high level enough that we don't get overwhelmed by fiddly
implementation details, but it's still pretty explicit. Unlike scripting languages, there tends to be less
complex machinery hiding under the hood, and you've got static types to see what data structures
you're working with.

JavaB— T JREGXMPIASHES - CRIRFEBS - HMASHEMNRISSIATAER - BREINEIFE AR
B - SHRESAENE - ENEERBRBATEZRANE - RolIEARSKERER EEVNIBNEIES
1y o

| also chose Java specifically because it is an object-oriented language. That paradigm swept the
programming world in the 90s and is now the dominant way of thinking for millions of programmers.
Odds are good you're already used to organizing code into classes and methods, so we'll keep you in
that comfort zone.

HEFRJavad BRFINRE - mZRATE2—FMHEHENRNES - XMEXNEIOFRFESES fEZMRELT - W
STHNHEBEREFRANERBLL N - REYELSEIR TRRBARRIZEMGED - BIERIHLEE
FENHEPES] -

While academic language folks sometimes look down on object-oriented languages, the reality is that
they are widely used even for language work. GCC and LLVM are written in C++, as are most JavaScript
virtual machines. Object-oriented languages are ubiquitous and the tools and compilers for a language
are often written in the same language.

BARAFAESTRANEAERONRIES - BFX L BIBEIREES TEPHOHR ZER - GCCHMLLVMZ
RC++HmER - KZHavaScriptE UM L2 X4 - EENRAESTAAE - AR EZESHNTENRE
RBERERAE—TESHRENNT,

And, finally, Java is hugely popular. That means there's a good chance you already know it, so there’s
less for you to learn to get going in the book. If you aren't that familiar with Java, don't freak out. | try
to stick to a fairly minimal subset of it. | use the diamond operator from Java 7 to make things a little
more terse, but that's about it as far as “advanced” features go. If you know another object-oriented
language like C# or C++, you can muddle through.

/A - JavalFBRTT - FERECREUEBZE FBE Y - FIMMRBEINFARED 7 - WREALAE
Java - WIEAZEHEL - RRERFEAEWER/NFE - HERlava 7PHNEF CEFERBELEREEE - B

9/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

BN INEEMS - NEME - MREYRECEBNENES (HINCHC++) - BRABIEA -

By the end of part II, we'll have a simple, readable implementation. What we won't have is a fast one. It
also takes advantage of the Java virtual machine’s own runtime facilities. We want to learn how Java
itself implements those things.

EE_EDERN - HIIHER-—1TERS 2N - BEEHNBENAZZ2— M ATHNESHERS - &R
M avalE ML B BB TIRIE - BIVBEZ S JavaR S 2T SKINX LR TR -

1.4 The Second Interpreter
1.4 B EFRER

So in the next part, we start all over again, but this time in C. C is the perfect language for
understanding how an implementation really works, all the way down to the bytes in memory and the
code flowing through the CPU.

FRUAE N —8R7 - BAVMSLTTE - EX—REBRHCES - CESE2ERSIREER LEATANTEES - —H
HRNEFPHNFTIARECPUIS -

A big reason that we're using C is so | can show you things C is particularly good at, but that does
mean you'll need to be pretty comfortable with it. You don't have to be the reincarnation of Dennis
Ritchie, but you shouldn’t be spooked by pointers either.

HMNEACEEN—TEZRRZ - RO MIOERROESHABRNAA - BEXHFARKRELFRIFE AL
FRE - BANEFHES-E3F (Dennis Ritchie) ¥t - (B AR HISEHITE -

If you aren't there yet, pick up an introductory book on C and chew through it, then come back here

when you're done. In return, you'll come away from this book an even stronger C programmer. That's
useful given how many language implementations are written in C: Lua, CPython, and Ruby’s MR, to

name a few.

MRR (WCHEE) ERBB—F - HW—ARTCHAIH - FAHEIE - S5ER/BEX - fFARIER - AXAES
PRFAAN—PNERFNCEFR - AIIBBEZ/ VESSKIZRCE MM Lua, CPythonFIRuby #J MRIZ -+ X
BNz -

In our C interpreter, clox, we are forced to implement for ourselves all the things Java gave us for free.
We'll write our own dynamic array and hash table. We'll decide how objects are represented in
memory, and build a garbage collector to reclaim it.

FEHNWCAEREZRCloxP A8 - HITABEABCEIMBLIavae BIRFLTNNARA - HITEHEEECHSE
ANEFRR - BHMPFRENREAGFPHRAASR - FEE—MOEROWESEKOEWE -

Our Java implementation was focused on being correct. Now that we have that down, we'll turn to also
being fast. Our C interpreter will contain a compiler that translates Lox to an efficient bytecode
representation (don’t worry, I'll get into what that means soon) which it then executes. This is the same
technique used by implementations of Lua, Python, Ruby, PHP, and many other successful languages.

M JavahkR SEM S T TIEME M - RTINS E7TH 7 - BBARINMAELZ £, BINCEBRRFES - RE
N9 - RRE RSN LoXEEMABUNF B (AHEL HRRMSHBXZMNTARR) ZEESHNT
YWRAMFT - X5Lua, Python, Ruby, PHPFIFZHEE MINESHISLIIFAERORAMEE -

10/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82

craftinginterpreters_zh.md 2024-09-25

We'll even try our hand at benchmarking and optimization. By the end, we'll have a robust, accurate,
fast interpreter for our language, able to keep up with other professional caliber implementations out
there. Not bad for one book and a few thousand lines of code.

BNEZZ2HHATEENDFME - BRE - AT AIBESRE—1EK - &M - REERESR - FFEED
AERETEMTWAKFRSN - T —ABN/LFTHABRREEAET -

M BRSERAGNERTETRNE IR - WRERASMEIERRFEE—#F - SNEAXHFELS - L
28 #)] - Haskell CurryFiWilliam Alvin HowardilERR 7 B 12 B —H#EMM M NS HE : Curry-Howard[E#H, A2:
pidgins - JERRIBE - —TREZRMEIE A3: YaccR— 1ML R - BEBWEEXGHERRERNWEEG - EIEE
BR— MR RmERPREFESR - EARBFIUE compiler-compiler” - B4R F2RHIImIFSR © YaccH A ZEEL
BPfE—1 XMEATABEMRAN"Yacc"—Yet Another Compiler-Compiler(5 —“NCompiler-Compiler),
EXREB—MELNTERZBison - BRNEFIRT YaccHlyakiIRE - 2— TNARIE - "4 EE5RNTAEBEE
SKIEXN EEMENERRHATENR - BREERNBEIARPLIXLEINEE - FEANETERRIRNERSL TR
SRR PR B)IRE - A5 RABRZESEENRUMETI - BN —0ESABERAMIINITT - F L
NANA - KEANEENSERMERT - 6. FELRNITES AT REENRIRERBENEESP -
AT IFERR—IIBES IR - BIET] - HUS—MESRE XY - BolEREI—MES (8FE58
WESHEENES) REMEFER - ZIBRAN'BE" - RINEEAEFERRERASRKRERIRE ORISR
BEORMAEBESHRNESE 7 — M aiFss - Mo RN RiER R IF—RIRORmIE:R - WE - &80
DERAECHARESRNEHRFRARREEEESNAREKEER - HFEUDMS — 1 RFEPEFRVNSHRIFR
K- ZFEMMBN'BZE BYECHSISERNBECHRER - 28 BIEXNEFiE/E sea-locks” - 1BE1R11
o] PUsEfE clocks” - IRMRERMIET UEFH B AR X BEEFEIE clochs”, A9 MRRMUAXRE— R HBRFR
BB E— AR FERME - T—F— -

CHALLENGES
&

1. There are at least six domain-specific languages used in the little system | cobbled together to write
and publish this book. What are they?

EHRENZNNRGAD ZVEAMRBEILIES (DSL) - BIIRHA?

2. Get a "Hello, world!" program written and running in Java. Set up whatever Makefiles or IDE projects
you need to get it working. If you have a debugger, get comfortable with it and step through your
program as it runs.

ERJavadmEFH 71— 1N"Hello, world!"#2F - BLE — MREZEAImakefileZ IDEIN B 1L BREFER - IREB R
2 IBLEAET T HEBRRGOTRXBELS AR -

3. Do the same thing for C. To get some practice with pointers, define a doubly-linked list of heap-
allocated strings. Write functions to insert, find, and delete items from it. Test them.

MCUETTRIFFRIRIE - A7 HI AR - dUEX—MEDEFFHEHNNEEER - BERBLUEA - B
BBREPRIE - MIXRERIREL -

DESIGN NOTE: WHAT'S IN A NAME?

11/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82
https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
https://github.com/munificent/craftinginterpreters
https://github.com/munificent/craftinginterpreters
https://en.wikipedia.org/wiki/Doubly_linked_list
https://en.wikipedia.org/wiki/Doubly_linked_list

craftinginterpreters_zh.md 2024-09-25
IRIEID | BMETA?

One of the hardest challenges in writing this book was coming up with a name for the language it
implements. | went through pages of candidates before | found one that worked. As you'll discover on
the first day you start building your own language, naming is deviously hard. A good name satisfies a
few criteria:

1. It isn’t in use. You can run into all sorts of trouble, legal and social, if you inadvertently step on
someone else’s name.

2. It's easy to pronounce. If things go well, hordes of people will be saying and writing your
language's name. Anything longer than a couple of syllables or a handful of letters will annoy
them to no end.

3. It’s distinct enough to search for. People will Google your language’s name to learn about it,
so you want a word that's rare enough that most results point to your docs. Though, with the
amount of Al search engines are packing today, that's less of an issue. Still, you won't be doing
your users any favors if you name your language “for".

4. It doesn’t have negative connotations across a number of cultures. This is hard to guard for,
but it's worth considering. The designer of Nimrod ended up renaming his language to “Nim”
because too many people only remember that Bugs Bunny used “Nimrod” (ironically, actually) as
an insult.

If your potential name makes it through that gauntlet, keep it. Don't get hung up on trying to find an
appellation that captures the quintessence of your language. If the names of the world's other
successful languages teach us anything, it's that the name doesn’t matter much. All you need is a
reasonably unique token.

EXABERERNRE Z —FRNEMKINESINIEF - H8 THF/IINERZTHE -1 aER - SRE
—RKAEHREBCHESH - (RS AIMRAZIFEEEN - —MFRFERE/L ML

1. ERER - MREANOERTAARNEZE - BORESBRIR AR S R -

2BHRE - MR—INF - H2BRZASHMELWEBES BN - B/ ETH/ L NZENEAAS
= EMAIIPE AT LRI -

3. BEBIAE - ZBTHE - A12GoogleRNESHEFERTHRE - FIMRBEE— M E BTN EIE - DUE
RSP RERBIIEEIRAINN - A - BEEALEREERSIZHENIEN - XEE A2 AKXROA
7 B2 NREFESHEA for' - BUWAFEXALSBEEED -

4 EZHUED - FHEEREMS X - XREE - BR2EFAER - NimrodWiZHTRELNEESEn A
A" Nim" - HAKZHARICEBugs BunnyfE " Nimrod"tFA—fRfg=E (HXZINRI) -

MRMBENBFZBEI 7 2R - MREBTIE - AZUETSH— T EEBIEIRESHERBZR - IRFEHF
HMAINHNEBESHNRBFHE TR AWE - BRERFHAEE - BAFENRZ—MIZIRERIRIC -

2. N E A Map of the Territory

You must have a map, no matter how rough. Otherwise you wander all over the place. In “The Lord of
the Rings” | never made anyone go farther than he could on a given day.

—J.R.R. Tolkien

12/932

craftinginterpreters_zh.md 2024-09-25
MUHMBEA—KIME - TIEEEZ4ME - ENIRMSERELA - £ (EAFAE) b BARUEEODAERE—X
ERBEMtNFrEERASEE -

We don't want to wander all over the place, so before we set off, let's scan the territory charted by
previous language implementers. It will help us understand where we are going and alternate routes

others take.

ARG - FRRERNI 8280 - IERATTNE— T UBINESSSH BTSRRI L - BReHEIHA]
7 EEZA IR BRI A E M A R R R RS -

First, let me establish a shorthand. Much of this book is about a language’s implementation, which is
distinct from the language itself in some sort of Platonic ideal form. Things like “stack”, “bytecode”, and
“recursive descent”, are nuts and bolts one particular implementation might use. From the user's
perspective, as long as the resulting contraption faithfully follows the language’s specification, it's all

implementation detail.

B REMPMERRER - K BWARHBOABTHERTESHNILY B5 Z5AFXMRARAAEEERA
PRARE - B0, "FTE N EEATNE ZRNFAASE MR ERNPOEERNELAEZER - N\HFNAE
i - RBRAFERKREREBTRLMBREESNE XEHZRAAIZMINIAROHSERATHET -

/NZLBY AN

We're going to spend a lot of time on those details, so if | have to write “language implementation”
every single time | mention them, I'll wear my fingers off. Instead, I'll use “language” to refer to either a

language or an implementation of it, or both, unless the distinction matters.

FNRZTERZHBEXLEMT £ - FIUNRBEREROIHEETEESSEIN - BRNFRABHERE - 18
- BRIFAEENKR - ENHEHERES RKEX—MESHNZESH LN - AREES -

2.1 The Parts of a Language
2.1 BESHEED

Engineers have been building programming languages since the Dark Ages of computing. As soon as
we could talk to computers, we discovered doing so was too hard, and we enlisted their help. | find it
fascinating that even though today’s machines are literally a million times faster and have orders of

magnitude more storage, the way we build programming languages is virtually unchanged.

BUHENNREBRCLSE - IRMIM—EEWEREES - SHMNILMTEN I EORME - FHIOTRIDXEF
AT - TERNSKERWFED - RESRABNZ - IESKNBHEKR 7 —BHE FRZEETX
TIANHER - BHNUEBREESHWHA/LFRENE -

Though the area explored by language designers is vast, the trails they've carved through it are few.
Not every language takes the exact same path—some take a shortcut or two—but otherwise they are
reassuringly similar from Rear Admiral Grace Hopper's first COBOL compiler all the way to some hot
new transpile-to-JavaScript language whose “documentation” consists entirely of a single poorly-

edited README in a Git repository somewhere.

REBESRIMMFARERNIUEILE - B>HANEEEMERECIRLRE L - FIFESHESHEXATEHRENERE
(BESXBE—TPeAMRERE) - BRIEZI - WBZEDFFGrace HopperfI38—1COBOLYR Fas - —HZI—L&
ARV AR B R JavaScriptifViE S (JSH "X "E 22 EHGHEEF—NRIEFRZRIREADMEA R

W

1) - HEREBCRELE - XL ATORE -

S

>

137932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82

craftinginterpreters_zh.md 2024-09-25
| visualize the network of paths an implementation may choose as climbing a mountain. You start off at
the bottom with the program as raw source text, literally just a string of characters. Each phase
analyzes the program and transforms it to some higher-level representation where the semantics—

what the author wants the computer to do—becomes more apparent.

HIE—NMESEINOBERENBEEMEELEARL - MNREEFE - BFREREIEXE - K ERE—5
F - BIMRESNEFETON - FPREERRABESERORILN - MMEEX (fFEREUEN MM

2.) TEEMAL -

Eventually we reach the peak. We have a bird’s-eye view of the users’'s program and can see what their
code means. We begin our descent down the other side of the mountain. We transform this highest-

level representation down to successively lower-level forms to get closer and closer to something we

know how to make the CPU actually execute.
BRARNVRE TIEIN - HAAIUBHAFPHNER - IUBEIMMINKBSINZET4 - BIOVFBMUNS 8T
W - FNPX DN ESROFRRENEERNESHNBERANF I - NSRS ETIIFF B IEILCPUR
IEMTHER -

VIRTUAL
@ ﬁ MACHINE

\souacz CODE HIGH LEVEL LANGUM BYTECODE/ MACHINE CODE/

Let's trace through each of those trails and points of interest. Our journey begins on the left with the

N
wwww
nlllﬂuw

bare text of the user's source code:

IERMEBEX —RRBEMRRIAE - ZMNRENCLREFRABIAESCA TS

viajr] ”average:(m][_i—Lrﬂl_Jmea":{)/Tl;

2.1.1 Scanning

2.1.1 3

The first step is scanning, also known as lexing, or (if you're trying to impress someone) lexical
analysis. They all mean pretty much the same thing. | like “lexing” because it sounds like something an
evil supervillain would do, but I'll use “scanning” because it seems to be marginally more

commonplace.

14 /932

craftinginterpreters_zh.md 2024-09-25

E— 521 - MREFFBIOEEM (lexing LEBIBSE lexical analysis) FHFIEEA I 40 BA -
REWTEATR M - FARIFERSE 2 TROBRARELMOSEE - BREZAAH - BN
TEHM— L -

A scanner (or lexer) takes in the linear stream of characters and chunks them together into a series of
something more akin to “words”. In programming languages, each of these words is called a token.
Some tokens are single characters, like (and ,. Others may be several characters long, like numbers
(123), string literals (), and identifiers (min).

AR (ENa AR EWAEFZR - FPREInR—RIER LT R1E"WERA - #REESF - XEF
WE—MEEMRCAELNERTT - BEEARTEENFR - LB, - EtOER/ L P FRFKRW - LEEEF
(123) ~ FHEHFETT () FIFRRR (min) o

Some characters in a source file don't actually mean anything. Whitespace is often insignificant and
comments, by definition, are ignored by the language. The scanner usually discards these, leaving a
clean sequence of meaningful tokens.

IR oy — L&

LR DORBERMUEX - EREBELREEN - IR - NEXTEBLEXR - SWEMIE
SR - TR BEES

SEFXEFR BTN TANBEXWEERTFS -

var average = (]min + | max ||| |/|]|2]| |3
2.1.2 Parsing
2.1.2 BEDR

The next step is parsing. This is where our syntax gets a grammar—the ability to compose larger
expressions and statements out of smaller parts. Did you ever diagram sentences in English class? If so,
you've done what a parser does, except that English has thousands and thousands of “keywords” and
an overflowing cornucopia of ambiguity. Programming languages are much simpler.

N L@, XMERNNDEPERIEENOM T — B ZEBHE/ N D EHBRARNRARNED - R
HRBR O EAEREE ? IRE - (REf Y BTSRMEEE - XAET - REPERT LA RE
FRMARENEN - MARESBEHREE -

A parser takes the flat sequence of tokens and builds a tree structure that mirrors the nested nature of
the grammar. These trees have a couple of different names—"parse tree” or “abstract syntax tree”—
depending on how close to the bare syntactic structure of the source language they are. In practice,
language hackers usually call them “syntax trees”, “ASTs"”, or often just “trees”.

BRAT 8RS R T RVIEA R TR AR EAMC 51 - S MRE B It RIRB AR ERR - XEMBR AR
BIRBERMAMBIEZEN - ZERTENSRESNEIEWESELD - ®REKT - BSREEEREL]
NEEM CAST - BT HEER M,

15/932

craftinginterpreters_zh.md 2024-09-25

Stmt.Var | average

Expr.Binary |/

Expr.Binary |+ 2| Expr.Literal
— a
Expr.Variable | min max Expr.Variable

Parsing has a long, rich history in computer science that is closely tied to the artificial intelligence
community. Many of the techniques used today to parse programming languages were originally
conceived to parse human languages by Al researchers who were trying to get computers to talk to us.

FREEBNEKR - SKRATETREESHNIFS
b

BT EUHENRZREERAMEENNE - B5ATERE
AEMRARHEBE XERARLL T ENES AN

BARBIWA TEEFEARATFRIFALES - ATE
% -

It turns out human languages are too messy for the rigid grammars those parsers could handle, but
they were a perfect fit for the simpler artificial grammars of programming languages. Alas, we flawed
humans still manage to use those simple grammars incorrectly, so the parser’s job also includes letting
us know when we do by reporting syntax errors.

SRR - ARESNTRELABE(CEANBENRRKECOREL Y - BEENREESXMERENAEE AN -
BTSRRI GTNEE - & JERNZEAREBOAZEERAXLEBBNEEIN - (RS AEMHE - Bt
RN L EEBg RESEERERLERNMELE 1 -

2.1.3 Static analysis

2.1.3 BELH

The first two stages are pretty similar across all implementations. Now, the individual characteristics of
each language start coming into play. At this point, we know the syntactic structure of the code—
things like which expressions are nested in which others—but we don’t know much more than that.

EFRBESSIS - IR P EREFFEARL - BT - SMESH MBI AEER - 21 - Fi)aE 71
RIEAEY (EUMERANREAEMTRAND) ZEAA - EERMNNENOHRNIRTU S -

In an expression like , we know we are adding = and b, but we don’t know what those names
refer to. Are they local variables? Global? Where are they defined?

e XENRBAD - BOMERNZEMEN - BHRIMNANEXLEZFENZMT A - BI2RHEE
B?2REE? BINEMEREX ?

The first bit of analysis that most languages do is called binding or resolution. For each identifier we
find out where that name is defined and wire the two together. This is where scope comes into play—
the region of source code where a certain name can be used to refer to a certain declaration.

16 /932

craftinginterpreters_zh.md 2024-09-25

RZ ;&%Zﬁﬁﬁiﬁ’] RO IEBESRIK - W TEB—MWRIRF - BB ERLEX ZBRAMTT - FAHFH
BIEEER - Etmf’EFHiIE’JT’Eﬂ%—E ENFEABXES - ENZFI ARG IRENSA -

If the language is statically typed, this is when we type check. Once we know where = and © are
declared, we can also figure out their types. Then if those types don't support being added to each
other, we report a type error.

MREBSZHSEERN XMEHAVETRERENN - —BRIIMNE 7 FMopFERUE - HMCILUFE
Bt - REMRXLERBALZFANM - MM RE—DEEER2,

%

Take a deep breath. We have attained the summit of the mountain and a sweeping view of the user’s
program. All this semantic insight that is visible to us from analysis needs to be stored somewhere.
There are a few places we can squirrel it away:

e Often, it gets stored right back as attributes on the syntax tree itself—extra fields in the nodes
that aren't initialized during parsing but get filled in later.

® Other times, we may store data in a look-up table off to the side. Typically, the keys to this table
are identifiers—names of variables and declarations. In that case, we call it a symbol table and
the values it associates with each key tell us what that identifier refers to.

* The most powerful bookkeeping tool is to transform the tree into an entirely new data structure
that more directly expresses the semantics of the code. That's the next section.

RR—O5 - HMNBLFE UM - ANBEPNERFE FE2EN 7 - AP URNREEXEREREET
fEERMTS - AT LUEEFEE/ LMt -

s BE T EEGHEEINMABSHNEUYET—BUEDTRPHIIFER XEFRERTRNAZY
gt - BEBERBZETER -

o AN - RAOBESNHEFEENSHNERRT - BE - ZRNRBFERRT - IEEMFEHNSE
e EXMER T - HAMEAFSER - FEHED ‘%A%L/%\H%E’JEiiﬁﬁﬂ‘ﬁ%ﬁﬁ%ﬁﬂaE’\JEHA °

e HBRAMNCRIEEZERMELLA-—NEMNWEESEY BEEMRARBOEN - X2 T -TTHRS -

Everything up to this point is considered the front end of the implementation. You might guess
everything after this is the back end, but no. Back in the days of yore when “front end” and "back end”
were coined, compilers were much simpler. Later researchers invented new phases to stuff between the
two halves. Rather than discard the old terms, William Wulf and company lumped them into the
charming but spatially paradoxical name middle end.

FERIAL - FREABRERANTNNEE, ROEESBEMLG CHSHAZE - ERENER
=H"Ailn A Eln WS R - REREEBESS - BXR - EﬁmAmEﬁA¥ﬁB2|@§IAT¥Eﬁ)|Ex &l BR X
/RK (William Wulf) MEIRIHRBRFIEARE - MEFAN 7 — M EABERBRF BRI P,

2.1.4 Intermediate representations
2.1.4 $iEtG

You can think of the compiler as a pipeline where each stage's job is to organize the data representing
the user’s code in a way that makes the next stage simpler to implement. The front end of the pipeline
is specific to the source language the program is written in. The back end is concerned with the final
architecture where the program will run.

171932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82

craftinginterpreters_zh.md 2024-09-25

ROILIERIFRERNE—FRRKE - 8BV IEZECRAFPUBNEIREARER - £ MM EROSKIE
Mg - EBNRGEHNEFAERNRESREN - RERINERFTITHRELREY -

In the middle, the code may be stored in some intermediate representation (or IR) that isn't tightly
tied to either the source or destination forms (hence “intermediate”). Instead, the IR acts as an interface
between these two languages.

FEPEMNER - RO REWFEE —LPERIE (intermediate representation, t7IUIR) & - XLEHERES
BXHFHENXHERERERALRBNKZR (ALLLIUE "E") - 8Kk - RS TXRPIES ZEMWEOA3,

This lets you support multiple source languages and target platforms with less effort. Say you want to
implement Pascal, C and Fortran compilers and you want to target x86, ARM, and, | dunno, SPARC.
Normally, that means you're signing up to write nine full compilers: Pascal-x86, C—ARM, and every
other combination.

O DU RER M HZMRES M ERF S - BRIRIRIETEX86. ARM, SPARC F & 3L Pascal, CHlFortran
IRFeS - BEBRT XERSBEMREBEEE NN TEMNRIERS | Pascal-x86, C—ARM LIKEMEZFhHSZ A4,

A shared intermediate representation reduces that dramatically. You write one front end for each
source language that produces the IR. Then one back end for each target architecture. Now you can
mix and match those to get every combination.

— PMHENPENEAIUARNEDZMIER - MABN=ERWRESE — 78k - RAEASTERFEEE —
Malm - WE - MO DU ERERER - SREs—F4HS -

There's another big reason we might want to transform the code into a form that makes the semantics
more apparent...

BNFEHABBEANEMENEMRBIER - BE—IMEENREZ - - -
2.1.5 Optimization

2.1.5 {1t

Once we understand what the user’'s program means, we are free to swap it out with a different
program that has the same semantics but implements them more efficiently—we can optimize it.

—BRMER FRPEFNEX - BRI UBEETAS - TN EAHR BN ELAURESHEFRIME
— RN U BIEITRIE,

A simple example is constant folding: if some expression always evaluates to the exact same value, we
can do the evaluation at compile time and replace the code for the expression with its result. If the user
typed in:

— P EENAFERERE IRENREIKERINBERZZHRNE - BMIUERFNHITKE
FHESRERZRBIANNE - LRAFHA

pennyArea = * (/ 2) * (/ 2);

We can do all of that arithmetic in the compiler and change the code to:
18 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82

craftinginterpreters_zh.md 2024-09-25

IR ERPTRIANERZE - ARRBENRN
pennyArea = 3

Optimization is a huge part of the programming language business. Many language hackers spend
their entire careers here, squeezing every drop of performance they can out of their compilers to get
their benchmarks a fraction of a percent faster. It can become a sort of obsession.

MERRBEBESWSNWEBRLME D - FZESRELEMNNEBENRWAEEERTE FXE - IBRFrEEth A7)
WRFRPHFFHE—RMEE - LEMMNHEENREERSED Z/L - BNHEX ST M—TPi, A8
e

We're mostly going to hop over that rathole in this book. Many successful languages have surprisingly
few compile-time optimizations. For example, Lua and CPython generate relatively unoptimized code,
and focus most of their performance effort on the runtime.

HMNERBPEBSUIXERFOR - T ARITNZ2FZHINNESRARDVORERMAE - A0 - Luail
CPythonZE UK EAMIEE IS - FOREARR D METIFEEFHETDITI EAS,

2.1.6 Code generation

2.1.6 RIBER

We have applied all of the optimizations we can think of to the user's program. The last step is
converting it to a form the machine can actually run. In other words generating code (or code gen),
where “code” here usually refers to the kind of primitive assembly-like instructions a CPU runs and not
the kind of “source code” a human might want to read.

HNELRAEYUERBINMENAER FRFEFES - & —D2REERANFZ LIRS TRER - Y
EG - ERAE (SBERM) - XEMN'RB"RBEEECPUBITRRLITILRNIRIIGTES - MASASDEE
BRI =R REE,

Finally, we are in the back end, descending the other side of the mountain. From here on out, our
representation of the code becomes more and more primitive, like evolution run in reverse, as we get
closer to something our simple-minded machine can understand.

&fE - BB 7Ew - NS —FFmm T - AIREF - SR EREEa T B4R 2ol o DUEER
BRI - AN RENRAEFERBRE - ME2EHRE -

We have a decision to make. Do we generate instructions for a real CPU or a virtual one? If we generate
real machine code, we get an executable that the OS can load directly onto the chip. Native code is
lightning fast, but generating it is a lot of work. Today's architectures have piles of instructions,
complex pipelines, and enough historical baggage to fill a 747’s luggage bay.

BIMBEM—DRE - HIMNZANESECPURZREIUCPUERIES ? IRFEMNERESZNN RN - NEBE—
PAITE - RIERFOLIREERMAEES A £ - RERBRONSE - BEREFZAELF - ISR
REMBEEKRERT ERXNELNEBER—RTATTERNNELEM -

19/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Speaking the chip’s language also means your compiler is tied to a specific architecture. If your
compiler targets x86 machine code, it's not going to run on an ARM device. All the way back in the 60s,
during the Cambrian explosion of computer architectures, that lack of portability was a real obstacle.

ERASHRNESTERERNEERZSHENRWBAER - MRMRAEmIERLx86HZNBRNER - BBAE
FITAEARMIR % £361T - BRI LR LC0FR U ENEREN "BEROANRE" #E - XTRZ oI BEMIE
mE—TEIERERA6,

To get around that, hackers like Martin Richards and Niklaus Wirth, of BCPL and Pascal fame,
respectively, made their compilers produce virtual machine code. Instead of instructions for some real
chip, they produced code for a hypothetical, idealized machine. Wirth called this “p-code” for
“portable”, but today, we generally call it bytecode because each instruction is often a single byte long.

N BARZADEA - ERFELE IR ZBSREME AL - B1EBCPLAYIRITE Martin RichardsX K Pascal
g1t ENiklaus Wirth - i JAZAEIENTRREES - MEN—MRIRAY - BRERNRHRENE - Wirthix
Xftp-code N TIBENE" - BSXK - HNEBMEAFTHE AABREIBZHEZ—1TMFEDR -

These synthetic instructions are designed to map a little more closely to the language’s semantics, and
not be so tied to the peculiarities of any one computer architecture and its accumulated historical cruft.
You can think of it like a dense, binary encoding of the language’s low-level operations.

XEGHESHRITEAN T EXEMBRFAZESHIEN L - MADSEIT—MTENFREHMHNFHUREIRZR
NN EERBEE—IE - R LIEEBERRIES ERRIFNBEHGIZRS -

2.1.7 Virtual machine

2.1.7 BN

If your compiler produces bytecode, your work isn't over once that's done. Since there is no chip that
speaks that bytecode, it's your job to translate. Again, you have two options. You can write a little mini-
compiler for each target architecture that converts the bytecode to native code for that machine. You
still have to do work for each chip you support, but this last stage is pretty simple and you get to reuse
the rest of the compiler pipeline across all of the machines you support. You're basically using your
bytecode as an intermediate representation.

MR ERTE T FTHE - ROIEERBER - ARASAHRUUBIXEFZTE - AEREREEET
BE - EHF - REFRDEE - RYLAS T EERERREE — NN ERESR - FFE BRI AN
RBA7 - MIDRFBRH N RFHOEBNEREP—ETF - BEREXTIMEIFFEESE - (RYUERZIFHAEN
= FEEFARERMAKENERED - MEX ERIEMRNFTIEEA—FPEES -

Or you can write a virtual machine (VM), a program that emulates a hypothetical chip supporting
your virtual architecture at runtime. Running bytecode in a VM is slower than translating it to native
code ahead of time because every instruction must be simulated at runtime each time it executes. In
return, you get simplicity and portability. Implement your VM in, say, C, and you can run your language
on any platform that has a C compiler. This is how the second interpreter we build in this book works.

& - ROIUBREREEM (VM) A8 - ZEFUEGTHNENSHEUREINEINE R - EEIN PTTFT
BRI EFERAMAEREE - AABFRESERNTHELTEETREN - (FARR - REINZES
BYUNTBEN - BEEMRECESSKIRRENN - MBI UERGUBECHEFERNTFE LBTRNES - Xz
HNNERBPWERE _NEFERN TFRE -

20/932

https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82

craftinginterpreters_zh.md 2024-09-25

2.1.8 Runtime
2.1.8 iZ1TH

We have finally hammered the user’'s program into a form that we can execute. The last step is running
it. If we compiled it to machine code, we simply tell the operating system to load the executable and
off it goes. If we compiled it to bytecode, we need to start up the VM and load the program into that.

RNATRAPEFEFRIUATONS - BE—SREAT - IRRNEERENEE - RNIRBER
RIERAMBTRTN - ABEHTLUETT - IRRNGBHEIAEDE - RNBEEHVMAITEENRE
Hcp -

In both cases, for all but the basest of low-level languages, we usually need some services that our
language provides while the program is running. For example, if the language automatically manages
memory, we need a garbage collector going in order to reclaim unused bits. If our language supports
“instance of” tests so you can see what kind of object you have, then we need some representation to
keep track of the type of each object during execution.

ERXWIPERLT - RYRERNERESI RMEEFEZRNNESERFBITRHIEH LRSS - Al - |0
RESENEENT - HNFEZ—MIDBRWERELUCRERRILEREL - ARFAIFNESIFH "instance of
"MNRFNRAT 2NN R - BARINRBE-ERRTERIREATERIE PN RAORE -

All of this stuff is going at runtime, so it's called, appropriately, the runtime. In a fully compiled
language, the code implementing the runtime gets inserted directly into the resulting executable. In,
say, Go, each compiled application has its own copy of Go's runtime directly embedded in it. If the
language is run inside an interpreter or VM, then the runtime lives there. This is how most
implementations of languages like Java, Python, and JavaScript work.

FRIAXLEARMEZETTRIFETHN - ALBHWE AN - BITR - E— M2 HEFENES P - TIBTHB
RBSEEBAZERNTINTXED - tEIE - EGod - BNMREFEBNNAZEFEHEB SN —NGoIiEI T
BIREERAED - MRESESEBBRERIENUNNRET - BLABTREEBTEIM S - XthFiElava,
PythonHlJavaScriptE ASEHIES S TIER T -

2.2 Shortcuts and Alternate Routes
2.2 R MBLEREZ

That's the long path covering every possible phase you might implement. Many languages do walk the
entire route, but there are a few shortcuts and alternate paths.

XEB—FREBRER - BWE VIREXMOB PO BENMER - TS ESHRET FEREL - BUA—EEEMN
BIEREE -

2.2.1 Single-pass compilers

2.2.1 BiRRIER

Some simple compilers interleave parsing, analysis, and code generation so that they produce output
code directly in the parser, without ever allocating any syntax trees or other IRs. These single-pass
compilers restrict the design of the language. You have no intermediate data structures to store global

217932

https://golang.org/
https://golang.org/

craftinginterpreters_zh.md 2024-09-25

information about the program, and you don't revisit any previously parsed part of the code. That
means as soon as you see some expression, you need to know enough to correctly compile it.

—LEEBHNRFRTEN - OMANNBERRRE—E - FECBIUEZEERFTRPEREENE - M
FOREEEINMEEMIR - XEHRRIFRIRTG TESHORI - IORBAPEBEEWRFEEFNZEER -
TASEMHOET ZRFEFTIONEED - XEKRE - —BERBEIENREN - iREEEBRFIRRIERL
X EORTTIRIEA,

Pascal and C were designed around this limitation. At the time, memory was so precious that a
compiler might not even be able to hold an entire source file in memory, much less the whole program.
This is why Pascal’'s grammar requires type declarations to appear first in a block. It's why in C you can't
call a function above the code that defines it unless you have an explicit forward declaration that tells
the compiler what it needs to know to generate code for a call to the later function.

Pascal fICESMERSEX MREIMIRITA - EH - REFEBRR - —MRESTEERNRXEE T A TN
EAGFP EARRBENMERY - RTENT APascal WIBABKBZAEFRBLREME—TRF - XLZEN
LHECES P - RABEEEX RHWAHE EEERRE - BRIFRE—TRRNAIEER - SFRAFERTHFEN
B4 - LBEERBAGEREANE -

2.2.2 Tree-walk interpreters

2.2.2 MR A EETR 23

Some programming languages begin executing code right after parsing it to an AST (with maybe a bit
of static analysis applied). To run the program, the interpreter traverses the syntax tree one branch and
leaf at a time, evaluating each node as it goes.

ALERBESTENNBEITAASTEMABRTNS (YENE 7T —RBES0) - ATETER - BREHRE
REZEBAHEBEMN— DD F - AESTEEPHES IR -

This implementation style is common for student projects and little languages, but is not widely used

for general-purpose languages since it tends to be slow. Some people use “interpreter” to mean only

these kinds of implementations, but others define that word more generally, so I'll use the inarguably
explicit “tree-walk interpreter” to refer to these. Our first interpreter rolls this way.

XMTIMNBELZETEANNRESHREN - BEBREBESHHAT ZEH AAEEERE - BEARE
" AR (e XL - (BEMAXBER —INEXBEZ - RITHFERARABE XA B FRER K
ERXLESI - BMWE—TEFERMEXF TERA0,

2.2.3 Transpilers
2.2.3 ¥iFER

Writing a complete back end for a language can be a lot of work. If you have some existing generic IR
to target, you could bolt your front end onto that. Otherwise, it seems like you're stuck. But what if you
treated some other source language as if it were an intermediate representation?

A—MESHRE— N TEZNRRIEFEAENLIF - MRIRA-ENMENERIRIERNB IR - WO LUKATIRYE
BEZIRE - &N - fRO[EEZBARE - BR - IRMGRELEEMZZSANPENE - B4 ?

221932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82

craftinginterpreters_zh.md 2024-09-25

You write a front end for your language. Then, in the back end, instead of doing all the work to lower
the semantics to some primitive target language, you produce a string of valid source code for some
other language that's about as high level as yours. Then, you use the existing compilation tools for that
language as your escape route off the mountain and down to something you can execute.

MEBENMRNWESRE— AN - AfE - EEl - REYUER—DSRNESEIIEZAZHNEMESHERR
RBFFE - MARRAERBERIENREBEFESHNEX - AR5 - MAUERZESHENRETLEF
AAEBRLUNEE - SEIRLTNTHRS -

They used to call this a source-to-source compiler or a transcompiler. After the rise of languages
that compile to JavaScript in order to run in the browser, they've affected the hipster sobriquet
transpiler.

AMIZBERZARBFRFEFR R RRN1 - BEEIBLERN 7 HEN R PIBITMIRZE M JavaScriptl B EES
BN - BB T —PMNENRFT—RiESR,

While the first transcompiler translated one assembly language to another, today, most transpilers
work on higher-level languages. After the viral spread of UNIX to machines various and sundry, there
began a long tradition of compilers that produced C as their output language. C compilers were
available everywhere UNIX was and produced efficient code, so targeting C was a good way to get
your language running on a lot of architectures.

BAB—TREREN—MPLRESTERS—MLRES - BIlS RIURERTEHTSRES - &
UNIXIZBTESMEFNGE E2E - BESHERAUCIEFAREIES - CRESFRTEUNIXEFER IS E T
VIEA - FFBEERAB MBI - Bt - LMCHBIRZILESEWSZS R RSN LBTHNEE -

Web browsers are the “machines” of today, and their “machine code” is JavaScript, so these days it
seems almost every language out there has a compiler that targets JS since that's the main way to get
your code running in a browser.

Web 2z @S KK "Hlaz" - B "Hlaa s "RJavaScript - FRLENEMUF /L FRABRESEE—TMLUSH
BirrgmiEeR - RARZIULRAEEN SR FTTHEES A2,

The front end—scanner and parser—of a transpiler looks like other compilers. Then, if the source
language is only a simple syntactic skin over the target language, it may skip analysis entirely and go
straight to outputting the analogous syntax in the destination language.

HEea0anln (AfMSARTER) BERIREMRFSEC - A - IRBRESREZEEBRESEB AT EHN
BMERA - WETESTERI 2T - AEERLERESPROERLIEL -

If the two languages are more semantically different, then you'll see more of the typical phases of a full
compiler including analysis and possibly even optimization. Then, when it comes to code generation,
instead of outputting some binary language like machine code, you produce a string of grammatically
correct source (well, destination) code in the target language.

MERMTHEBESHEXERRK - BARKRSEEBREFSNESHBMNE - GIFEINERME - A5 - &
BEMMER - THRELE—LEENBNB—#N 8HES - MBEM—F B A EBNBERESHIRE (FIE -
BirKHB) -

Either way, you then run that resulting code through the output language’s existing compilation
pipeline and you're good to go.

2317932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
https://github.com/jashkenas/coffeescript/wiki/list-of-languages-that-compile-to-js
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A

craftinginterpreters_zh.md 2024-09-25
EEMMAE - (RBRTBEMES BBNRFERKLEBITERNREMOILLT -
2.2.4 Just-in-time compilation

2.2.4 Bt 4miz

This last one is less of a shortcut and more a dangerous alpine scramble best reserved for experts. The
fastest way to execute code is by compiling it to machine code, but you might not know what
architecture your end user’'s machine supports. What to do?

ER—TEHEHRERE FAHREEERNESLUFHER EFBEATEX - ITRBERNGZZ/CEHRZEM
=15 - BIRYUBEAMERNRLRAF NS T ARY - EAMIE ?

You can do the same thing that the HotSpot JVM, Microsoft's CLR and most JavaScript interpreters do.
On the end user’'s machine, when the program is loaded—either from source in the case of JS, or
platform-independent bytecode for the JVM and CLR—you compile it to native for the architecture
their computer supports. Naturally enough, this is called just-in-time compilation. Most hackers just
say "JIT", pronounced like it rhymes with “fit".

fRA] USRI HotSpot JVM. MicrosoftilICLRAI A Z ¥ avaScript@ =2 HEE1E - ELXKAF s L - 212
FMER (TIe2ISERBREEZEZFELRIVMACIRFTIH) - o LUFERFEAN N AARMACHS - BUEN
INZFRE RGN - B2 ZRRANEIRERE, AZHBRERZR T - EXES" fit'#59 -

The most sophisticated JITs insert profiling hooks into the generated code to see which regions are
most performance critical and what kind of data is flowing through them. Then, over time, they will
automatically recompile those hot spots with more advanced optimizations.

EEZRAITHUBEN T FEARERNRBES - DUEEMEXEXN MAEEARE - UIRMBLEREHIEIESE
MEED - 245 - BBENERER BIINEBZBESRNMEINBEENEMNRBEIBLERRE I M3,

Il

T

2.3 Compilers and Interpreters

2.3 IRiFR MRS

Now that I've stuffed your head with a dictionary’s worth of programming language jargon, we can
finally address a question that's plagued coders since time immemorial: “What's the difference
between a compiler and an interpreter?”

WEHCEORAOMRERER 7 — KRR ESAE - ML TIUBR—TBERER—ERNERZEF R
D)L 2R AR 2R Z B A T A XH?

It turns out this is like asking the difference between a fruit and a vegetable. That seems like a binary
either-or choice, but actually “fruit” is a botanical term and “vegetable” is culinary. One does not strictly
imply the negation of the other. There are fruits that aren’t vegetables (apples) and vegetables that are
not fruits (carrots), but also edible plants that are both fruits and vegetables, like tomatoes.

S50 - XA BB KRMFREWX A —F - XE EEBFZ2—DIFILANRAERE - B2 L kKR "2—NME
MERIE - "X "BREFANE - THERE - —PAAEREN S —TMHETE - BAZHRKAKR (ER) -
MBEAZRKROER (B2) AR ARNZHRFENIRREY - b mA14,

241932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82

craftinginterpreters_zh.md 2024-09-25

FRUIT VEGETABLE

So, back to languages:

* Compiling is an implementation technique that involves translating a source language to some
other—usually lower-level—form. When you generate bytecode or machine code, you are
compiling. When you transpile to another high-level language you are compiling too.

* When we say a language implementation “is a compiler”, we mean it translates source code to
some other form but doesn’t execute it. The user has to take the resulting output and run it
themselves.

* Conversely, when we say an implementation “is an interpreter”, we mean it takes in source code
and executes it immediately. It runs programs “from source”.

& - ERES L

o MEZ—MPLIEA - EPF RIAFRESHFENEMES —EEZRERNVER - SMEMFTIE
gl NBEN - MMEBERE - SRBEIS—MSRESH - RIERE -

o JRMNRESKI'ZHmFRT - ZRENRERNBERLRANEME - BAZNT - AP UIERIE
WmBFBECEBT -

o Mk BEMNE—PRI'Z2—TEER'N - ERTCERCEAULENTE - B NRERAB B1TE
B .

Like apples and oranges, some implementations are clearly compilers and not interpreters. GCC and
Clang take your C code and compile it to machine code. An end user runs that executable directly and
may never even know which tool was used to compile it. So those are compilers for C.

BERNMBF—1F RETINERZRZER - MAZHERES - GCCHMClang ERIRHICHRIEH R ERFNNSEN
8- REAFEZRETEZYRTXYE EEUKZEANEERYTMPITERREE - AUIXEZCH HE
7o

257932

craftinginterpreters_zh.md 2024-09-25

In older versions of Matz' canonical implementation of Ruby, the user ran Ruby from source. The
implementation parsed it and executed it directly by traversing the syntax tree. No other translation
occurred, either internally or in any user-visible form. So this was definitely an interpreter for Ruby.

F Matz SREIRYZ AR Ruby B - FHF MRS SR TRuby « ZSEINVBE RN E AN B TEATHF BT -
HEER AR EE MR - TIEEESKMABEZUEATHEF oI LAF I - BRI 22— PRuby i A7
o

But what of CPython? When you run your Python program using it, the code is parsed and converted
to an internal bytecode format, which is then executed inside the VM. From the user’s perspective, this
is clearly an interpreter—they run their program from source. But if you look under CPython'’s scaly
skin, you'll see that there is definitely some compiling going on.

B2 CPython g ? SRERABIBITIRAIPythonZFHY - ISR WA HLIRANEFTIHET - AREEII

WEMRTT - NRPFRBERE - REREZ—TMERBRS—tNENRNBAETECHER - BURRE—
NCPythonBIAER - IREAMBER —LERFE LIFEHT -

The answer is that it is both. CPython is an interpreter, and it has a compiler. In practice, most scripting
languages work this way, as you can see:

BEREMERMABL ° CPythonZ2— MRS - Bt 57— M wEsR - it ASHPRESHUAXMS
TAEAS - dNIRRRIL -

Haskell
CPython

YARV (Ruby)
Lua clox Go
Guile (Scheme)

Scala
Vv8(JS)

GcC

MRI (Ruby)

TypeScript

Jlox

CoffeeScript

Rust

COMPILER INTERPRETER

That overlapping region in the center is where our second interpreter lives too, since it internally
compiles to bytecode. So while this book is nominally about interpreters, we'll cover some compilation
too.

PEBNEBNKSNRRNE N RESFENNE - RNTRENDRERTHE - Fbl - BREBEY
ERATHESR - BRSSP R—EEFONS -

2.4 Our Journey

26 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

2.4 Bl IRUREE

That's a lot to take in all at once. Don't worry. This isn't the chapter where you're expected to
understand all of these pieces and parts. | just want you to know that they are out there and roughly
how they fit together.

2|

— N FERZSHEAEHEE - AlEL - I—BHAZEXRMIERFAEXLEETENRNS - RREFILRITANEE
MNEFEN - LEAK 7 #el]2NTHSE—IER -

This map should serve you well as you explore the territory beyond the guided path we take in this
book. | want to leave you yearning to strike out on your own and wander all over that mountain.

SIMFRBRABRBAIESHBER 2N - XRKMENZNRRER - RARZMRECH S - EIBELES]
BATETE -

But, for now, it's time for our own journey to begin. Tighten your bootlaces, cinch up your pack, and
come along. From here on out, all you need to focus on is the path in front of you.

BE WE ZEHMNECHREHBENIET - RFMRNVET - BEFROE - EIE - NXEHRG - REERE
A ZIRERTAVES

A3 B ARIRNAS - RiEREAENERSIE - B8R "E8RE". "SR ERN" "E8EETR "M "=
", A4 IRRBEFHFCCCNMAIZIHFXAZRIIWIBSMIEZRLEM - fliiMotorola 68k_EAIModula-3,
MERMBAY - BSAIRENWEPEIR - EZZEGIMPLERIRTL, BAnEIHIN68k - &S LEIRF A AL A
1B - A5 MRRTBEMEEFAXNGE, - IUMNATRBFHE - Al ESHE", "AHFTEE

BRe, "BHATRIEIME, "ERERS, "BRERK, BESIEBR, LERRRERER, ~6: 6l
- AAD ("ASCII Adjust AX Before Division" BRARIASCITEAZEAX) F8L I LUERINITRRE - XIrEERBRBR -
PR T ZIE SR i SIRBN HHEBIBFEAREEIT B2 —MeUBEFR T - R&RE—RIE16AINEE LF
FIBCDEft 4R E ? A7 RBEWEXRRNZE - RIEFETHRREMY TIEHGSHER - MR UEARZREEZ
BHEEZHNRHME - L XEGE—LFE - F2ME (HAUNSERIMAMESER) ETBREESA
HABMINEN T BEREREMR - FERRFEMNPLRAOUUHE - BENZENFEBRE—TIER -
A8 RNEB RV TIE S — il - "RAEIN TEREPEIEMEGFETRIERS - XRESMRAIE
Linux#l2&8_EItWindowsiiF R E - @ RHEEB A AIMUAEFREEFIECHN RSBE"WAF AR -
THEANENTRAPEMRDELIRTTEN, - EAPRD - BITEFETHCHE B LA Z ES E I L H 2 E
" (MNRRBZREWIE) - 29 BESEEIEE—MEMENER - ATHEXE—RURFR - ROl LU
—MRESEENENMNRBREE2ERBERENEERBR)ERK - A5 - BEBNTRLRZEELRN - B
FPATIRIE - — BN BERRE - A0 —NEERBISNE R B ARRUby - BEITE2NTEDEAER
2% © 7£1.90% - RubyRHSELII M &R FIRIMRI ("Matz' Ruby Interpreter”) tJ#2% 7 Koichi SasadafJYARV ("Yet
Another Ruby VM") , YARVE2—MNFTEMUM - A11: F—PNERIFRXLT86F8080TE FE 0808672 %
£ - XELES - BIBI2ES080ESAILF - M8086 216G A - LB SFERAE— NS E::R -
XLT86HTT T HIER AT - MIRIRREF PSS ERERER - AR NEARIM MRS 280860 F 7855 - B2
BRI EN R FRENERE - ERZAR (Gary Kildall) #E5H - t1EKFINRBHMEHENASEMAZ— -
BIETPL/MAICP /M - XRENNE—MSRESHIRIERL - M2 ISERZENEFPRTREHNE—T
I - 25 7 Web Assembly - wiFeINER 75 _MOJLIEWeb HIZTHELES - M3: 3% - XIERE
HotSpot IVMEBIRHIKIR « A4 B4 (EEENRRHFEAL) MNESB/EELHLEKR - BREXIMEE
BT - REERA AR BENRGELRERD AREYMZER - RFMNZFKIBXNMEENRNK - BRI ET -

AL > M5 GoLEEZ—1EFHE - IRIRBTT - EMEERNgoRRBHREMNGZNBREE
1E - FRIREA CBMEREM - REUAIMITERN T RITIE - L - DRlRgoR—MRiEas (R

271932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://gcc.gnu.org/onlinedocs/gccint/RTL.html
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82
http://www.felixcloutier.com/x86/AAD.html
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
https://en.wikipedia.org/wiki/Syntax-directed_translation
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A
https://github.com/webassembly/
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82
https://golang.org/

craftinginterpreters_zh.md 2024-09-25

o EAM— PN TEREERBMAET) ; alliiE— MRS (RILUBRBIAIMNRBPZT—1
BF) HEE-IMHEESR (SREEIAHERRERERN - BIIRAERNNREE) -

CHALLENGES
>

1. Pick an open source implementation of a language you like. Download the source code and poke
around in it. Try to find the code that implements the scanner and parser. Are they hand-written, or
generated using tools like Lex and Yacc? (. 1 or .y files usually imply the latter.)

1 HFE—MRERBESHTRSEI - FEIFENE - FEEPRR - WEBRBSMAMS[NET=R0108 - B
MNZ2FEN - EEMLexfAYaccETBEMMW ? (FHE. 13 XHTBEERKREREE)

2. Just-in-time compilation tends to be the fastest way to implement a dynamically-typed language,
but not all of them use it. What reasons are there to not JIT?

2 INHEEERZRINSREBESKRROITE - EAAZENESEERE - BT AEBEARRITIE ?

3. Most Lisp implementations that compile to C also contain an interpreter that lets them execute Lisp
code on the fly as well. Why?

3 RZHOHRENCHLIspSRI T B — MRS - ZERBREETIEBEIN M TLspLB - AtA?

3.LoxIE= The Lox Language
What nicer thing can you do for somebody than make them breakfast?
——Anthony Bourdain

BT LBELLAPIAMMEE - EREAIIRXT AT IE ?

We'll spend the rest of this book illuminating every dark and sundry corner of the Lox language, but it
seems cruel to have you immediately start grinding out code for the interpreter without at least a
glimpse of what we're going to end up with.

HATPHRARBHOERL D RBELoBENE—MREMRENETE - BURILREN BiIs—TFAER s -
PMIBEITTIA N BB RRENRD - XEUFRER -

At the same time, | don't want to drag you through reams of language lawyering and specification-ese
before you get to touch your text editor. So this will be a gentle, friendly introduction to Lox. It will
leave out a lot of details and edge cases. We've got plenty of time for those later.

SR - T ARBELRE ZE - MIETEARENESHAEARED - AUXZ—NEM - KFAILoxT
4B CREERIATMAZERN - BERNBE BRI E SRR LD R -

3.1 Hello, Lox

3.1 Hello, Lox

Here's your very first taste of Lox:

2817932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82

craftinginterpreters_zh.md 2024-09-25

MEZIRX LoxBIE—RIAL

"Hello, world!";

As that // line comment and the trailing semicolon imply, Lox's syntax is a member of the C family.
(There are no parentheses around the string because is a built-in statement, and not a library
function.)

EMAG/ A TERNEEN D SRERNIE - LoxiBEZSCESKENMRAZ— - (AN =— W&
B0 MAZRERY - FINFHEEEREES °)

Now, | won't claim that C has a great syntax. If we wanted something elegant, we'd probably mimic
Pascal or Smalltalk. If we wanted to go full Scandinavian-furniture-minimalism, we'd do a Scheme.
Those all have their virtues.

X8 HWHAZBRCESEALEEZARN2 - MIRBNEE—LEUIERIART -] olsEXE HPascalsy
Smalltalk - MNRFANVEE T2 AIMEATIRAINLAET X ERVRE E XN - FHATZFEZIM—1Scheme - XEEBEEML
o .

VAR

What C-like syntax has instead is something you'll find is often more valuable in a language: familiarity.
| know you are already comfortable with that style because the two languages we'll be using to

implement Lox—Java and C—also inherit it. Using a similar syntax for Lox gives you one less thing to
learn.

B2 KCHBEBZMEBNRME-EEESPEENENGA | AL RANENRCENXFNBRAE S -
ER AR AR SEH Lox B R MR S——JavaflC—— M4k F 7 X NAR © ibLoxERZEREE - READ 7 —4

BEFINEIE -

3.2 A High-Level Language
32 ES

While this book ended up bigger than | was hoping, it’s still not big enough to fit a huge language like
Java in it. In order to fit two complete implementations of Lox in these pages, Lox itself has to be pretty
compact.

BARXABRALERARENEKX - BEMRABK - TiEXHavaZF—T IBANESHAE - BT EBRHN
RIBESHH N TENLoxSE - Lox KB UIHL R E -

When | think of languages that are small but useful, what comes to mind are high-level “scripting”
languages like JavaScript, Scheme, and Lua. Of those three, Lox looks most like JavaScript, mainly
because most C-syntax languages do. As we'll learn later, Lox's approach to scoping hews closely to
Scheme. The C flavor of Lox we'll build in Part Il is heavily indebted to Lua’s clean, efficient
implementation.

SHFBWAPENMBRESH - HREPFINZE B IavaScript” 3, SchemeMLuaXHRISH "MK "ES -
EX=FPEST - LoxBiEK&KJavaScript - TBZRARZHABZESHEXFH - BWEIANDE 7872

297932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82
http://craftinginterpreters.com/a-bytecode-virtual-machine.html
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82

craftinginterpreters_zh.md 2024-09-25

LoxBUSER R ET77ASSchemeBE IR - BN ESE =20 PWERICHBERILoxXRARZE LEL 7 Luafy+
A~ BMEISEI -

Lox shares two other aspects with those three languages:
LoxSX=MESAR MR ZA :

3.2.1 Dynamic typing
3.2.1 hAS3E

Lox is dynamically typed. Variables can store values of any type, and a single variable can even store
values of different types at different times. If you try to perform an operation on values of the wrong
type—say, dividing a number by a string—then the error is detected and reported at runtime.

Lox@BHISKREY - TELFHEEMRENE BN EEEZYUEARNEFEARELENE - MREEN
BIRERBENERTRE (A0 - FRFHRUFFS) - WsEETHENRERARS -

There are plenty of reasons to like static types, but they don’t outweigh the pragmatic reasons to pick
dynamic types for Lox. A static type system is a ton of work to learn and implement. Skipping it gives
you a simpler language and a shorter book. We'll get our interpreter up and executing bits of code
sooner if we defer our type checking to runtime.

ENBSKENRAGRS - BENBIEA L ALoxERNSRANSIIRRE N - BSREAARFEFZ I
ARENTLE - B ERILMRBESEESR - olDUEARBER - IRFAVLEREHRREBTH - HAPEY
VI R ith S BRI AT -

3.2.2 Automatic memory management
3.2.2 BIRNEEE

High-level languages exist to eliminate error-prone, low-level drudgery and what could be more
tedious than manually managing the allocation and freeing of storage? No one rises and greets the
morning sun with, “l can't wait to figure out the correct place to call for every byte of memory |
allocate today!”

SRESHNEFEZAN NERESHENERIE EETALEFHERFRHIEMBEREZRINIEIRBAS
RIS RUEE RN - "REBARGFERI ERNUEREN 7305 - KBEWIESKHEEANFPRE
wEtrEH L

There are two main techniques for managing memory: reference counting and tracing garbage
collection (usually just called “garbage collection” or “GC"). Ref counters are much simpler to
implement—I think that's why Perl, PHP, and Python all started out using them. But, over time, the
limitations of ref counting become too troublesome. All of those languages eventually ended up
adding a full tracing GC or at least enough of one to clean up object cycles.

BRMEZNAFEERA | SIBTHMRIRIRIE (EENRANRIE 3" GC') A5, SIATHEERRISE
MEBHRFZ—REXME N T LPerl, PHPHIPython—Ha#ER XA ANRE - B2 - BEENERIRE -
SIFHRIRFIZS KM 7 - FAERXEESHEZLEMN 7 TENRKGCH ZD—TMELIBRN ZREHA5IH

WEEST -

30/932

http://craftinginterpreters.com/a-bytecode-virtual-machine.html
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Tracing garbage collection has a fearsome reputation. It is a little harrowing working at the level of raw
memory. Debugging a GC can sometimes leave you seeing hex dumps in your dreams. But, remember,
this book is about dispelling magic and slaying those monsters, so we are going to write our own
garbage collector. | think you'll find the algorithm is quite simple and a lot of fun to implement.

BIRABRWEZ —PITERMREBNEBR - EREAFTHNER ETEEARTEARN - BEGCHRIERIE
REZF P HEEEEIhex dumps * BZ - Bl - IABZRTRBBEAFIRITEBLEEMR - FAIURMNEBELEC
RN ESS - RS KIAXNEEBZEE - MESSMERRER -

3.3 Data Types
3.3 HiERA
In Lox’s little universe, the atoms that make up all matter are the built-in data types. There are only a few:
FELoxRV/NFEHP - WAMBYRNRFERNENEIERE - R/

Booleans - You can't code without logic and you can't logic without Boolean values. “True” and “false”,
the yin and yang of software. Unlike some ancient languages that repurpose an existing type to
represent truth and falsehood, Lox has a dedicated Boolean type. We may be roughing it on this

expedition, but we aren't savages.
There are two Boolean values, obviously, and a literal for each one:

Booleans—— 2 A2 BRI - REMRENHMRIAZE 6, "E'N'R" - mi2RERIASH - SFEES
ENESEMNRACALRERRTERAE - LoxEATHANMRER - #XRKRKSD - H]JESHLEERE -
BRERMNAZHEA -

ER - ARMORE 8NMEHE-INFEHE :

Numbers - Lox only has one kind of number: double-precision floating point. Since floating point
numbers can also represent a wide range of integers, that covers a lot of territory, while keeping things
simple.

Full-featured languages have lots of syntax for numbers—hexadecimal, scientific notation, octal, all
sorts of fun stuff. We'll settle for basic integer and decimal literals:

Numbers—LoxRE—FHF : WBEFRY - AT ZRERUJURTEPSHENEY FAUEINUBERS
G - RIS RITEE -

MEEFENES BASHHZEA AR REHE0E - EANSRERORE - RINREMEAE
HATTHHIT -

31/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Strings — We've already seen one string literal in the first example. Like most languages, they are
enclosed in double quotes:

Strings—EF— PRSP - RIEZBR T FHEFEHE - SAZEES—1F - BIIRAXNSGIS5IHEX !

"I am a string";
nos

||123||;

As we'll see when we get to implementing them, there is quite a lot of complexity hiding in that
innocuous sequence of characters.

HMNESHENNZER - AR NEERLTENZFRINTPERE FHIZHERMY -

Nil — There's one last built-in value who's never invited to the party but always seems to show up. It
represents “no value”. It's called “null” in many other languages. In Lox we spell it . (When we get to
implementing it, that will help distinguish when we're talking about Lox's versus Java or C's)

There are good arguments for not having a null value in a language since null pointer errors are the
scourge of our industry. If we were doing a statically-typed language, it would be worth trying to ban
it. In a dynamically-typed one, though, eliminating it is often more annoying than having it.

Nil—XEBERE—TAEHE - EARFRBIBESNES - BUFREZLI - BAKRANE", ETFZEM
BEPIRA Nl ELoxP » HAPHEHFEN 11, (ABMIER - XA T D LoxiIn i 1 5JavazkiCHY
)

E—LEREFNVERRBEESPAEAZERSEN BAZEHEREHMNTWAORE - IRFNIERNZ
FORBES - BLARLETEZERSH - KB - ESEEF BREERLREBBEMMA -

Pl

3.4 Expressions

34 RixT

If built-in data types and their literals are atoms, then expressions must be the molecules. Most of
these will be familiar.

MRABEBIRLBEAREFHEZRF - FARBAMDTZED T - HPREB O ARERAE -
3.4.1 Arithmetic

3.4.1 ERIGE
Lox features the basic arithmetic operators you know and love from C and other languages:

LoxBE& FIMMNCNEMES T F BEINELERTERN

add + me;
subtract - me;

327932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

multiply * me;
divide / me;

The subexpressions on either side of the operator are operands. Because there are two of them, these
are called binary operators. (It has nothing to do with the ones-and-zeroes use of “binary”.) Because
the operator is fixed in the middle of the operands, these are also called infix operators as opposed to
prefix operators where the operator comes before and postfix where it follows the operand.

BIEESRUNFRENEBZRER - AAER MR - B 28 8® &S THFINIM0 ZoaR
BX) - AT RIFFEIEERFERTIE - RICIRAPRRFER - AN - EERRRIFF(RIFRFERIFEEIH)
MERBREFIRESERFREE) NS,

One arithmetic operator is actually both an infix and a prefix one. The - operator can also be used to

negate a number:

A—TMFCEFREPREEFTNEAREET - BEFILINEFIA
-negateMe;

All of these operators work on numbers, and it's an error to pass any other types to them. The
exception is the + operator—you can also pass it two strings to concatenate them.

PIAREREFHEHNUFHN - FEAEMEERFREELTNEHZE IR - E—RANZE BEF—AR
o MEEER M F RN TelsEER -

3.4.2 Comparison and equality

3.4.2 LEBSHE

Moving along, we have a few more operators that always return a Boolean result. We can compare
numbers (and only numbers), using Ye Olde Comparison Operators:

IR HOBLNEEMREREES - RO JLUERIBRLERBIESRIEBR M FFFERBELLRES) -

less < than;

lessThan <= orEqual;
greater > than;
greaterThan >= orEqual;

We can test two values of any kind for equality or inequality:

AT LNHR MERLENEZEHE

337932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Even different types:

BNfEZAEEE MOl

1]
Il
U-
.
-

Values of different types are never equivalent:

AEZEBERE AT AZEE

I'm generally against implicit conversions.
HBEBERNBAEBRY -
3.4.3 Logical operators

3.4.3 BBIZHE

The not operator, a prefix |, returns if its operand is true, and vice versa:

BEFRIER - BRIREBIER | - RBIEERtrue - NIR[Elfalse - K ZINAA -

The other two logical operators really are control flow constructs in the guise of expressions. An
expression determines if two values are both true. It returns the left operand if it's false, or the right
operand otherwise:

HMA N ZIERIEAT K L2REANE FRIEGIRE W - and REABTRINANMERIERZES 20&Etrue - IR
EMRIEL Z alse - MREIZMZRIEL - SNREILMEZRIEL

and 5
and 5

And an or expression determines if either of two values (or both) are true. It returns the left operand if
it is true and the right operand otherwise:

REXAHTHRNRMEFHFEE D (HEBHZ) Ntrue - MREMRELE true - WREIZMRIFL - &
MR [E AN ERIEEL

347932

craftinginterpreters_zh.md 2024-09-25

or 5
or 5
The reason and or are like control flow structures is because they short-circuit. Not only does

return the left operand if it is false, it doesn’t even evaluate the right one in that case. Conversely,
(“contrapositively”?) if the left operand of an or is true, the right is skipped.

M or ZAAGEHIREY - SRATNSEREN9 - MRERFEANR and AMUSBRLEERFHR - EXMIE
- BEEAZUEREMFY - KEX - ("HBYHN)NRor-WEEFBNE - AEFEHIHRT -

3.4.4 Precedence and grouping
3.44 WERSHA

All of these operators have the same precedence and associativity that you'd expect coming from C.
(When we get to parsing, we'll get way more precise about that.) In cases where the precedence isn't
what you want, you can use () to group stuff:

PIAEREREFHERSSAASHENMERINES EESHNITRENE - SRTEFEMRVRE) - ERLERA
MEBKRESR N - ARAILUER)RD A :

var average = (+) / 2;

Since they aren't very technically interesting, I've cut the remainder of the typical operator menagerie
out of our little language. No bitwise, shift, modulo, or conditional operators. I'm not grading you, but
you will get bonus points in my heart if you augment your own implementation of Lox with them.

HICEMERPRETMNRMNWNESPEE Y - BEABTERAR EAZRER - RBMUEE - Bu - BUE
RHEBENT - RAREANRT D - BURMEBETBCHAARCEHSZIFXLETERLoxSEH - IMEEH /L FEE
ENSMIN T -

Those are the expression forms (except for a couple related to specific features that we'll get to later),

so let's move up a level.

XEHZREBALAGR 7 —ESRIIEREN BB ERERRN) - FrROLRIHREL -

3.5 Statements
3.5 &G

Now we're at statements. Where an expression’s main job is to produce a value, a statement's job is to
produce an effect. Since, by definition, statements don't evaluate to a value, to be useful they have to
otherwise change the world in some way—usually modifying some state, reading input, or producing
output.

MEHNKEBED - REANWEIZFERETE 1N E BONTZFRAZFE—PHRE - ATREEX - EY
AkE - BB EMS AN EHR (BEZEAELERS SZEBMASMERL) 7B -

357932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82

craftinginterpreters_zh.md 2024-09-25

You've seen a couple of kinds of statements already. The first one was:

RELBR FJMPED - -T2

"Hello, world!";

A statement evaluates a single expression and displays the result to the user. You've also seen
some statements like:

BOUEBENRETRERERGRHT A0, BAEBR 7 —E£EFG - flM

"some expression";

An expression followed by a semicolon (;) promotes the expression to statement-hood. This is called
(imaginatively enough), an expression statement.

KEXERDS () JUNREBARANEBIRS - RRRARBEERN)REXED,

If you want to pack a series of statements where a single one is expected, you can wrap them up in a
block:

MR —ZFEB DR —MED - BAYLUFENHTEE—TRF

"One statement.";
"Two statements.";

Blocks also affect scoping, which leads us to the next section...

AEFMERL - FAPFE N —TPRTIAA -

3.6 Variables
36T

You declare variables using statements. If you omit the initializer, the variable's value defaults to

fREJLUERvar B aEREE - MIRINEE 7 YBERIE - TEMNEMIANIIMT

var imAVariable = "here is my value";
var iAmNil;

Once declared, you can, naturally, access and assign a variable using its name:

36 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82

craftinginterpreters_zh.md 2024-09-25

—BFRA - MEARM T LGET TSR W EFHTIHOMEE

var breakfast = "bagels";
breakfast;

breakfast = "beignets";
breakfast;

| won't get into the rules for variable scope here, because we're going to spend a surprising amount of
time in later chapters mapping every square inch of the rules. In most cases, it works like you expect
coming from C or Java.

HASEXBETCTEFRZNAN - EARMNEGENET PREFERAENNERFMANSXLERN - £
ARZHERT - BNITIEAASEHHENCJava—1F -

3.7 Control Flow
3.7 #HR

It's hard to write useful programs if you can't skip some code, or execute some more than once. That
means control flow. In addition to the logical operators we already covered, Lox lifts three statements
straight from C.

MMRIRABEBV T LN - B ABESRATELENRS - iREBELBERENER 12 - XEWEZHR - R 73
MNEANBINBEIZERFZI - LoxBEENCHELE T =KIET -

An statement executes one of two statements based on some condition:

BORERERFNTARET PN —K

if (condition) {
"yes";
} else {

no";

A loop executes the body repeatedly as long as the condition expression evaluates to true:

REXMRBANTELE R Atrue, BAMSEENTREALEAMS

var a = 1;
while (a <) {
aj;
a=a+1;

Finally, we have loops:

371932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82

craftinginterpreters_zh.md 2024-09-25

&fE - BBAorEN

for (var a = 1; a < ; a=a+ 1) {
a;

}

This loop does the same thing as the previous loop. Most modern languages also have some
sort of or loop for explicitly iterating over various sequence types. In a real language,
that's nicer than the crude C-style loop we got here. Lox keeps it basic.

XNEMSZEIRY while BARHEHHNSEE - KSHEMNES AR or-inSforeachf&H - BTERZENRS
MEHIZEEIA4 - EEIEMNEBES P - XN EXEERROBEBRIC-NEforfBAEY - LoxRRTF 7 BRIEKRI)
At °

3.8 Functions
3.8 AL

A function call expression looks the same as it does in C:

R BAREASCES P

makeBreakfast(bacon, eggs, toast);

You can also call a function without passing anything to it:

RETUEAR BT ASHER MER— MR

makeBreakfast();

Unlike, say, Ruby, the parentheses are mandatory in this case. If you leave them off, it doesn't call the
function, it just refers to it.

SRubyREZ @ EABFESEEGEMR - MRMBEENEE - mAZBERRY - RERMEZRE -
A language isn't very fun if you can’t define your own functions. In Lox, you do that with

MRIRABEEX BCHRE - — JESHAEEER - ELoxE - IRIJLUIEE funseak

fun printSum {
a + b;

}

38/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Now's a good time to clarify some terminology. Some people throw around “parameter” and
“argument” like they are interchangeable and, to many, they are. We're going to spend a lot of time
splitting the finest of downy hairs around semantics, so let's sharpen our words. From here on out:

* An argument is an actual value you pass to a function when you call it. So a function call has an
argument list. Sometimes you hear actual parameter used for these.

* A parameter is a variable that holds the value of the argument inside the body of the function.
Thus, a function declaration has a parameter list. Others call these formal parameters or simply
formals.

WMAERBBE—ERIBIFINA5 - BLAIL "parameter "H] "argument SERN—1% - FEREMNIYLEM - X
ARG - BNAZOL GG - HMEIERSNEERENERGEFITOH - PFLOLENEXEEIERS

xA .
£ .

* argumentZ2RIE B AR ERLEHEIRE - PIL—1MREFHE— Nargument?|Z - BRNIREIT
B ANAERSEIEAXESH -

e parameterE— " ¥ E - HTHERBNEREAFTHSHNE - Bt - —MRESHE—Mparameter?||
= - WAANEXETARASHEE TRTAES,

The body of a function is always a block. Inside it, you can return a value using a statement:
REEEDE— MR - EHEHP - B UER B aRE—ME :
fun returnSum {
return a + b;
}
If execution reaches the end of the block without hitting a , it implicitly returns
MEBRHATEIAB IR KRETR A B9 - MERIVEREN,

3.8.1 Closures

3.8.1 A&

Functions are first class in Lox, which just means they are real values that you can get a reference to,
store in variables, pass around, etc. This works:

Hlox® - RHER—F K IEKREFCHMBZ2ELE - RoLINXEERTSIH #REZEED - €8F
% - TENRKBEEUM

fun addPair {
return a + b;

}

fun identity {
return a;

}

39/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

identity 5

Since function declarations are statements, you can declare local functions inside another function:

MTRUABRIED - MUILES — N RYPERBHEN

fun outerFunction() {
fun localFunction() {
"I'm local!";

localFunction();

}

If you combine local functions, first-class functions, and block scope, you run into this interesting

situation:

MRRFFEBREY ~ SLFRHFFRIEAGAHSE—E - MBI XPEBNER

fun returnFunction {
var outside = "outside";

fun inner() {

outside;
}
return inner;
}
var fn = returnFunction();
n();
Here, accesses a local variable declared outside of its body in the surrounding function. Is this

kosher? Now that lots of languages have borrowed this feature from Lisp, you probably know the

answer is yes.

H s

EXE - Ain) Y EERBRIMNYIMNER R P ERRN BB R E - XEFOTIEERZIESE MLispEL
TEMEN - REZTHNEERZEEERN

For that to work, has to “hold on” to references to any surrounding variables that it uses so
that they stay around even after the outer function has returned. We call functions that do this

closures. These days, the term is often used for any first-class function, though it's sort of a misnomer

if the function doesn’t happen to close over any variables.

ZHEX—m= WARE N EERANEUEEZERNS A - XFEEINZRECREZ G - XEXR
EMREE - RINEEHEIX—RRREFRAAEN16 - TE - XIPIARBEERATEMSLLREY - BEZNRE

40/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%AF%B7%E8%AE%B0%E4%BD%8F%EF%BC%8C%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E9%A1%B6%E5%B1%82%E4%BB%A3%E7%A0%81%E8%A7%86%E4%B8%BA%E9%9A%90%E5%BC%8F%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%8F%AA%E8%A6%81%E6%B7%BB%E5%8A%A0%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%EF%BC%8C%E6%88%91%E4%BB%AC%E5%B0%B1%E4%BC%9A%E8%BF%9B%E5%85%A5%E4%B8%80%E4%B8%AA%E5%B5%8C%E5%A5%97%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%96%E7%95%8C%E3%80%82

craftinginterpreters_zh.md 2024-09-25

WRAERENZEE LME BmA~AEAET -

As you can imagine, implementing these adds some complexity because we can no longer assume
variable scope works strictly like a stack where local variables evaporate the moment the function
returns. We're going to have a fun time learning how to make these work and do so efficiently.

o8 - SKIMXLERIEN—

LEExt BARMNAEBREZSMFAI™EM L —1F TF - ERECRE
NEEEEMHKR Y - RIPFET—

ERABNNERZIMEOEXLETF - AERMHEIRX—K

3.9 Classes

Since Lox has dynamic typing, lexical (roughly, “block”) scope, and closures, it's about halfway to being
a functional language. But as you'll see, it's also about halfway to being an object-oriented language.
Both paradigms have a lot going for them, so | thought it was worth covering some of each.

EHLxEAHALE « DEGERKI RESERNNNE - FAUSERNDESRE—L0ES - BFN
BRI - BERN—MEANSNESNE LOES - SEPEXSERS S - FURANELES
ANE—T -

Since classes have come under fire for not living up to their hype, let me first explain why | put them
into Lox and this book. There are really two questions:

KENEBLREEERMRMZ RIS - FILALREERE - NATARE IR LoxZX AR F - XELFrE
BR N0

3.9.1 Why might any language want to be object oriented?
3.9.1 At A EMAESEHEEE@T S ?

Now that object-oriented languages like Java have sold out and only play arena shows, it's not cool to
like them anymore. Why would anyone make a new language with objects? Isn't that like releasing
music on 8-track?

WESJavaZHFHNEONENESCEEFED 7 - ReEEHS LRE - ENCIIEEAE 7 - MTABAE
X ERM—T IHENESE ? IAMGREH [\ 21K TER—HFE ?

It is true that the “all inheritance all the time” binge of the 90s produced some monstrous class
hierarchies, but object-oriented programming is still pretty rad. Billions of lines of successful code have
been written in OOP languages, shipping millions of apps to happy users. Likely a majority of working
programmers today are using an object-oriented language. They can't all be that wrong.

FRH "—HEPBAF "HILIES L 7 —EREREREREN - BEEONRHNREELZRATH - B+
TRINARIBEZHOOPIES HREN - NAFRHTHBAITMNAER - RUBESRAAZSHEREFREERE
AEENRIES - Ml ACJERESBLARE -

In particular, for a dynamically-typed language, objects are pretty handy. We need some way of
defining compound data types to bundle blobs of stuff together.

417932

craftinginterpreters_zh.md 2024-09-25

FRIZ - WTHSRBEESRKE - WREFELSEN - HNBERPSARENESGHIRERE - AR —#H
RHESHE—IE -

If we can also hang methods off of those, then we avoid the need to prefix all of our functions with the
name of the data type they operate on to avoid colliding with similar functions for different types. In,
say, Racket, you end up having to name your functions like (to copy a hash table) and

(to copy a vector) so that they don't step on each other. Methods are scoped to the
object, so that problem goes away.

MRFAMBEL T EEEXEN SR £ BARMNUATZICRERFOERERENZFFARERRAIR -

PUE 5 5 A B2 BURG SR BUR PR - EEUNE - #ERacket™ « IRERZEARF ARV K £ an & Nhash-copy(E
#ill— P R) Mvector-copy(ERI—TEE) - IECTIMASZERES - TANERRENR - FIUX N0
MAFES -

3.9.2 Why is Lox object oriented?

3.9.2 Aft ALoxEE XI5 AHY ?

| could claim objects are groovy but still out of scope for the book. Most programming language
books, especially ones that try to implement a whole language, leave objects out. To me, that means
the topic isn't well covered. With such a widespread paradigm, that omission makes me sad.

O LOR R ESIRRSIA - BINRBLE Y ABRSEE - AZHHEBIESHHE - BAIZPLEESKI— 5%
BRIESHHE HRE7WR - WEKR XEREXNETWRARREHES - W THUZERER -
AR R LEFORCEIAR S -

Given how many of us spend all day using OOP languages, it seems like the world could use a little
documentation on how to make one. As you'll see, it turns out to be pretty interesting. Not as hard as
you might fear, but not as simple as you might presume, either.

ETHMNRBABXREAEEHOOPIES - UFREXMFRNZB—LERTNOFIIFOOPESRIN - IEMIRNE
AR - BLIEPXBRER - BBMREBONBLNE - B EERERWIBAESR -

3.9.3 Classes or prototypes?
3.9.3 BZEERE?

When it comes to objects, there are actually two approaches to them, classes and prototypes. Classes
came first, and are more common thanks to C++, Java, C#, and friends. Prototypes were a virtually
forgotten offshoot until JavaScript accidentally took over the world.

HHRWEE - KR EEMTITA - ENRE, KERFTHI - BT C++, Java, CHHIEHBACIESHLEI - 3K
MEiE - EFJavaScriptEIMth S MR 2E - REJIFE2—MUBETHOX -

In a class-based language, there are two core concepts: instances and classes. Instances store the state
for each object and have a reference to the instance’s class. Classes contain the methods and
inheritance chain. To call a method on an instance, there is always a level of indirection. You look up the
instance’s class and then you find the method there:

427932

https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Prototype-based_programming
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Prototype-based_programming

craftinginterpreters_zh.md

2024-09-25
EETENESD - BN MOOEE « SEAIFL - SHFHEDINRRES - AE—PXLAIRIZERISIA - 3K

BEHENGFEE BEXG ERBAE SREE—TEE - BELEHLANE REEEDHEH
i

Breakfast CLASS
o serve()

1

INHERITS FROM

———

_benedict INSTANC?-—- HAS CLASS —»| Brunch CLASS,
0 meat = "ham" © drink()
0 bread = "English muffin”

Prototype-based languages merge these two concepts. There are only objects—no classes—and each

individual object may contain state and methods. Objects can directly inherit from each other (or
“delegate to" in prototypal lingo):

ETRENESHS A ZXRMEAN7 - XERBNZ

ZETI D EESE (HERREESHNAERZE "E1F")

A MESTMNREAUEZRENTE - W&

breakfast OBJECT
¢ serve()
DELEGATES TO
_por‘kProcluct OBJECT
o meaﬁt = llhamll
DELEGATES TO
classyBrunch OBJECT
© bread = "English muffin"
© drink()

This means prototypal languages are more fundamental in some way than classes. They are really neat

to implement because they’re so simple. Also, they can express lots of unusual patterns that classes
steer you away from.

XERERUEESHERLEHEICEBEM - BIISHEERENRES

2E - RATIRER - B - B IE R
FRZASERES - MRERNZEMAEER -

=

437932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BD%BF%E7%94%A8%E6%9C%AC%E5%9C%B0%E5%A0%86%E6%A0%88%E5%AD%98%E5%82%A8%E7%BC%96%E8%AF%91%E5%99%A8%E7%BB%93%E6%9E%84%E4%BD%93%E7%A1%AE%E5%AE%9E%E6%84%8F%E5%91%B3%E7%9D%80%E6%88%91%E4%BB%AC%E7%9A%84%E7%BC%96%E8%AF%91%E5%99%A8%E5%AF%B9%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%E7%9A%84%E5%B5%8C%E5%A5%97%E6%B7%B1%E5%BA%A6%E6%9C%89%E4%B8%80%E4%B8%AA%E5%AE%9E%E9%99%85%E9%99%90%E5%88%B6%E3%80%82%E5%A6%82%E6%9E%9C%E5%B5%8C%E5%A5%97%E5%A4%AA%E5%A4%9A%EF%BC%8C%E5%8F%AF%E8%83%BD%E4%BC%9A%E5%AF%BC%E8%87%B4C%E8%AF%AD%E8%A8%80%E5%A0%86%E6%A0%88%E6%BA%A2%E5%87%BA%E3%80%82%E5%A6%82%E6%9E%9C%E6%88%91%E4%BB%AC%E6%83%B3%E8%AE%A9%E7%BC%96%E8%AF%91%E5%99%A8%E8%83%BD%E5%A4%9F%E6%9B%B4%E5%81%A5%E5%A3%AE%E5%9C%B0%E6%8A%B5%E5%BE%A1%E9%94%99%E8%AF%AF%E7%94%9A%E8%87%B3%E6%81%B6%E6%84%8F%E7%9A%84%E4%BB%A3%E7%A0%81%EF%BC%88%E8%BF%99%E6%98%AFJavaScript%E8%99%9A%E6%8B%9F%E6%9C%BA%E7%AD%89%E5%B7%A5%E5%85%B7%E7%9C%9F%E6%AD%A3%E5%85%B3%E5%BF%83%E7%9A%84%E9%97%AE%E9%A2%98%EF%BC%89%EF%BC%8C%E9%82%A3%E4%B9%88%E6%9C%80%E5%A5%BD%E6%98%AF%E4%BA%BA%E4%B8%BA%E5%9C%B0%E8%AE%A9%E7%BC%96%E8%AF%91%E5%99%A8%E9%99%90%E5%88%B6%E6%89%80%E5%85%81%E8%AE%B8%E7%9A%84%E5%87%BD%E6%95%B0%E5%B5%8C%E5%A5%97%E5%B1%82%E7%BA%A7%E3%80%82

craftinginterpreters_zh.md 2024-09-25

But I've looked at a lot of code written in prototypal languages—including some of my own devising.
Do you know what people generally do with all of the power and flexibility of prototypes? ...They use it
to reinvent classes.

BEREIRTARMEESENAB—ERERECKRIT—EREE - RANBAI—RIEAERRENZRA
THEERIRIEMNS ? M AEREHR AR -

| don't know why that is, but people naturally seem to prefer a class-based (“Classic”? “Classy”?) style.
Prototypes are simpler in the language, but they seem to accomplish that only by pushing the
complexity onto the user. So, for Lox, we'll save our users the trouble and bake classes right in.

EAMEXZRNMTA EAEAMAMLIFEEENETEN (LB ?2KHE?) NE - RREBESTEGE -
BEfIUFERE2EIINEZRMUHALBF KA S8 » Bl - X FLoxkix - BATNEEZHFPHMM - BEiFiE
BEHE -

i

3.9.4 Classes in Lox
3.9.4 Lox Ay

Enough rationale, let's see what we actually have. Classes encompass a constellation of features in
most languages. For Lox, I've selected what | think are the brightest stars. You declare a class and its
methods like so:

HEHPERE 7 - KEERNEFLREMN A - EAZHIESS KBS 7 —2IBFM - WTLlox - HEET
HNNEANZH—R - BB FBRE—NERETTA

class Breakfast {
cook() {
"Eggs a-fryin'!";

serve(who) {
"Enjoy your breakfast,

+ who + ".";

The body of a class contains its methods. They look like function declarations but without the
keyword. When the class declaration is executed, Lox creates a class object and stores that in a variable
named after the class. Just like functions, classes are first class in Lox:

KNWERBZSETZE - BNEERBREFR - B2 0nREF - JEFHENE - Lok el —13EX
g FREFEENEZEMBNEED - MERE—1F - FELoxPTE—FAK :

var someVariable = Breakfast;

someFunction(Breakfast);

44 /932

http://finch.stuffwithstuff.com/
http://finch.stuffwithstuff.com/
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%97%E8%8A%82%E7%A0%81%E8%99%9A%E6%8B%9F%E6%9C%BA%E5%92%8C%E7%9C%9F%E5%AE%9E%E7%9A%84CPU%E6%9E%B6%E6%9E%84%E6%9C%89%E4%B8%8D%E5%90%8C%E7%9A%84%E8%B0%83%E7%94%A8%E7%BA%A6%E5%AE%9A%EF%BC%8C%E4%B9%9F%E5%B0%B1%E6%98%AF%E5%AE%83%E4%BB%AC%E4%BC%A0%E9%80%92%E5%8F%82%E6%95%B0%E3%80%81%E5%AD%98%E5%82%A8%E8%BF%94%E5%9B%9E%E5%9C%B0%E5%9D%80%E7%AD%89%E7%9A%84%E5%85%B7%E4%BD%93%E6%9C%BA%E5%88%B6%E3%80%82%E6%88%91%E5%9C%A8%E8%BF%99%E9%87%8C%E4%BD%BF%E7%94%A8%E7%9A%84%E6%9C%BA%E5%88%B6%E6%98%AF%E5%9F%BA%E4%BA%8ELua%E5%B9%B2%E5%87%80%E3%80%81%E5%BF%AB%E9%80%9F%E7%9A%84%E8%99%9A%E6%8B%9F%E6%9C%BA%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Next, we need a way to create instances. We could add some sort of keyword, but to keep things
simple, in Lox the class itself is a factory function for instances. Call a class like a function and it
produces a new instance of itself:

FRR - BOFE-TPRIZSLAIRTTE - HATILURIEM e RBF - BATERENL - Floxd - KEGRE
ST R - GERRE—FFE—1% B2EM—TBECRHES

var breakfast = Breakfast();
breakfast;

3.9.5 Instantiation and initialization
3.9.5 SLHI{ERI#IYAE

Classes that only have behavior aren’t super useful. The idea behind object-oriented programming is
encapsulating behavior and state together. To do that, you need fields. Lox, like other dynamically-
typed languages, lets you freely add properties onto objects:

RETANEAZIFEEH - AONREEERNBERERTATRSHTERE—E - NIt - BFEEFER - Lox
MEMMSEKBEES — - RFCERTRNERANEN

breakfast.meat = "sausage";
breakfast.bread = "sourdough";

Assigning to a field creates it if it doesn't already exist.
MR—DPFERAEE - BAREBHETHENMSTOE -

If you want to access a field or method on the current object from within a method, you use good old

MREENTTERNTIHBHEIN & ENFERNTTE - oI LUER

class Breakfast {
serve(who) {
"Enjoy your " + this.meat + " and " +
this.bread + ", " + who + ".";

Part of encapsulating data within an object is ensuring the object is in a valid state when it's created. To
do that, you can define an initializer. If your class has a method named , it is called

457932

craftinginterpreters_zh.md 2024-09-25

automatically when the object is constructed. Any parameters passed to the class are forwarded to its

initializer:

EXNZEPHRBIENENZ —ERRNERENBRATEICRE - NIE - RALIEX —1#%a1EaE - tARERY

e =Py WIE - MEMESENENZBNEREA - FEAENTUSHHEAXA TN
gaibes

class Breakfast {
init(meat, bread) {
this.meat = meat;
this.bread = bread;

550

var baconAndToast = Breakfast("bacon", "toast");
baconAndToast.serve("Dear Reader");
// "Enjoy your bacon and toast, Dear Reader."

3.9.6 Inheritance
3.9.6 4ki%

Every object-oriented language lets you not only define methods, but reuse them across multiple
classes or objects. For that, Lox supports single inheritance. When you declare a class, you can specify a
class that it inherits from using a less-than (<) operator:

EE—MEENERNESF - RANIUEXTTE - MEIUEZSPNREXNEPERTEA] - AL - LoxIFE4%
H e BIRBI—NEN - RTIDUER/NT (OBRIERFIEE B AENZEAI

class Brunch < Breakfast {
drink() {
print "How about a Bloody Mary?";

}
}

Here, Brunch is the derived class or subclass, and Breakfast is the base class or superclass. Every
method defined in the superclass is also available to its subclasses:

XE - Brunch@iREZSELF25 - MBreakfastZEIIE#EEE - REPEXNENTENEFRMOIA :

var benedict = Brunch("ham", "English muffin");
benedict.serve("Noble Reader");

46 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BD%BF%E7%94%A8%60switch%60%E8%AF%AD%E5%8F%A5%E6%9D%A5%E6%A3%80%E6%9F%A5%E4%B8%80%E4%B8%AA%E7%B1%BB%E5%9E%8B%E7%8E%B0%E5%9C%A8%E7%9C%8B%E6%9C%89%E4%BA%9B%E5%A4%9A%E4%BD%99%EF%BC%8C%E4%BD%86%E5%BD%93%E6%88%91%E4%BB%AC%E6%B7%BB%E5%8A%A0case%E6%9D%A5%E5%A4%84%E7%90%86%E5%85%B6%E5%AE%83%E8%B0%83%E7%94%A8%E7%B1%BB%E5%9E%8B%E6%97%B6%EF%BC%8C%E5%B0%B1%E6%9C%89%E6%84%8F%E4%B9%89%E4%BA%86%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Even the method gets inherited. In practice, the subclass usually wants to define its own
method too. But the original one also needs to be called so that the superclass can maintain its
state. We need some way to call a method on our own instance without hitting our own methods.

BIEZinit) /A S WAMEK - ELEF - FREEFTREXECH 730k - BRBEERRGNYRIETS
& - DUEBRBEB AR EURA[120] - RINFEEMAAEBBHAECKA LHNFE - MEAFRASKEESNT
o

As in Java, you use for that:

Slavath—1F - EoJ LA

class Brunch < Breakfast {
init(meat, bread, drink) {
super.init(meat, bread);
this.drink = drink;

That's about it for object orientation. | tried to keep the feature set minimal. The structure of the book
did force one compromise. Lox is not a pure object-oriented language. In a true OOP language every
object is an instance of a class, even primitive values like numbers and Booleans.

X eEENRHNAS - RREFINERERFERERE - THHEWESLEERHM 7 —1ZW - LoxhE—
MAENEDNRNIES - FEIENOOPEST - B MNRHME—NENLA - BIEZEHFNHMRERXHFN
EARER .

Because we don't implement classes until well after we start working with the built-in types, that would
have been hard. So values of primitive types aren't real objects in the sense of being instances of
classes. They don't have methods or properties. If | were trying to make Lox a real language for real
users, | would fix that.

EAFNTFIaERRNERBRAZEA LI - FAIIX—R BRI - B - MELANEX LR - BEAREL
BRNEFAZEENNR - BIIREFENEY - IRUIEHBILLoxAMNEIENAFEAMNES - REBAX

MBI -
3.10 The Standard Library
3.10 frfE

We're almost done. That's the whole language, so all that's left is the “core” or “standard” library—the
set of functionality that is implemented directly in the interpreter and that all user-defined behavior is
built on top of.

HMNRERT - ZEEMES - FIR PRS2 20 3 I E—X 2 —HE EERRR P INEEESE -
PRERPEXMITAMEZRELZ £ -

This is the saddest part of Lox. Its standard library goes beyond minimalism and veers close to outright
nihilism. For the sample code in the book, we only need to demonstrate that code is running and

471932

craftinginterpreters_zh.md 2024-09-25

doing what it's supposed to do. For that, we already have the built-in statement.

XZLoxPEROAEWE D - CRTVEEBEBY FREEX - FENENETLTENX - N TARBPRIRGAICE - 3
MNARABRIEPLISEZTT - AFHEMEBNZMHNS - NIt - BRISEHF TWER FECT

Later, when we start optimizing, we'll write some benchmarks and see how long it takes to execute
code. That means we need to track time, so we'll define one built-in function that returns the
number of seconds since the program started.

HE - JENFRNEN - FMPEEE-LEE2ENN - FENTHABEESZKNE - IEREHNFZIRRN
8 - EIEHA T EX — T NERE - ZRHERERER BRI -

And... that's it. | know, right? It's embarrassing.
B MEXHE - HHE ARED - XNIE?

If you wanted to turn Lox into an actual useful language, the very first thing you should do is flesh this
out. String manipulation, trigonometric functions, file 1/0, networking, heck, even reading input from
the user would help. But we don't need any of that for this book, and adding it wouldn't teach you
anything interesting, so | left it out.

WNRIEAE R Lox TR — T ISEFR I FRVIES - BBALBN ZHNE—HSMENEHRE - FRBIRF - —BRE -
XHI/0ME -~ TR - EESHAFBMARSEMRED - B TABRE - HIAFERLE - MEMAR
EUAZHARETEBIERA - FIUKEEER T -

Don't worry, we'll have plenty of exciting stuff in the language itself to keep us busy.
ABL - X VESAEMARSBENABUERNT AR -

N2 EBEEBRL - BEINALoxMIBERT % - CESRTENBZODIAMRBRTEEN - NEH-BF
(Dennis Ritchie) B MEAN'FIARMER" HPTEFIPRM 7 OREERLENEMY AN EEHITH
B - XEBRALE BEHRANZEPIURARYT - LoxEBESEE . FIMEMNBR 7TX—R - A3 IE -
JavaScriptEBEB 2K - FERTHERENARER - BRENEMANEARIES" - {82ZBrendan EichGE+XMN
FFE—MNISEEFEER R A T Netscape Navigator - MIEMTT LRI BEBMEIR - MAETEE - JavaScriptiZx i &
BiExX - BEREEAZ2—MOZ/NES - BAEchABIR AT —&EMacGyvertII BIEISESE—IE - FTLE
E-LEHENEN 2EPRENFHERD - LbNTSRFA - A48T C HAPRRBMRERSE - KB
EELox EZIET MMtE - FIMERNZE TS - MBS HATIILoxMMMPESEHEEESLEEY -
NS TERE D - SIAMTHAERERZESENMIG - MABN NN - KEBHEIBHHARRLESHIT—
LERRIRSRAAIEIEIS - WIRMRFAMENE - HHINERNEREEFEXRARGRBAR - BAXFHENEZRE
B - BESRURWES—EIE(PDF), 76: i/RLEZLoxTHE—LIA&ZGeorge Boolefn ZHIEIEALE - X ZEN
ft 4 "Boolean "@ABHRA - 3L T 18644F - b FIHEN LMWL HTRBEFEERWNER 7TiH— M
T RBREFMEIBCHEZFZHENEN T TlavaR BRI EARE « A7 BRIEIBD "character "—1@ 21
W - BASCITE ? 2Unicode ? —MBR - BR2— 1 "FiEf" ? ZRENTHEH ? BMNERFE2EEW AN -
A ZOIUTER ? A8 BEBRBIERFAR MU LNRFY FEHBERFSBENZBEZREN - E—T ZFEAN
BCREMIMES PR KRG =0 8B IE/: - AL AFTRXLE A mixfixiR1E
F - B-LEESATLEXNBCHRER HEFBIINEMASEX—ENW "BEH". . 29 HEA Tandf
or - MAR&&A|| - EAALoxAERKMIERAITTRIER - AFEEFHFEANER FsIANEFHELXRITRE
%2 - EMARERETRCE 2R B1IER E2EGRES - MASELRRIER - A10: 45 print BA
FEEF MARMNNEEEA—MZOEREY - XE—MAR - BUEIER X2—MRBAN'AR":
XRREERNIIMBAEN R « 2EMERMERRBFAEWNSG ZAT - BOERR AR ER

48 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
https://researcher.watson.ibm.com/researcher/files/us-bacon/Bacon04Unified.pdf
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82

craftinginterpreters_zh.md 2024-09-25

e MEXZ2—TER - RANIFRHIEBNEEYRIEAENME - SERENIXSERM - M2 RIIEL5E
andMord] LUFIT A IR - AT LRBAREENRS - FALUEIC EEXMER 7 - BR EHSHNESPX
HRERIRMEM - 5—7HE - SchemeRBRNENBEIAEN - BIRATRBMEHHFTEENTHSB - Smalltalk’zB
NEMDZEN - HERRBSDIRCREFEEMNTHRE - A3 TRBELoxF FEAdo-whilef& - EAEA]
FHABNW - MEbwhile B R BZREANMA - WRIREMWIE - MIETMAZMRHOSIINGTEE - IRECSHE -
M4 XEERMEILS - BRARBPHLINERETTUOH - for-inflBR B Z XA BN PHIEMD S D IRE
IBARREZEEMWFEY - BREMNTERIEFR 2B BEELIMX TSR - BN IR LK - Filfor-inf&2f - BEIA
NEEMASHL R LABRBBAIRA - M5 REIRNE - —EESEBNES - LbNGES - SRS
BAEXHTX D - ERSFRHWEEMENZFZHEE—IE - TLUARN o RUATEERE - BARMHK
BiE - EXHRIBARMWER - XEROILUAITRIE - BT Lox@AEEW - FIUXHXSRERENX - —1
I FERRIEE 7R - BETRIENR © A6: Peter J. LandinBlIZE 7XMaE - 38 - JIF—¥HREBESA
BEZMAER - BINIPHAREDE L B —RA T BINAIIE S "The Next 700 Programming Languages" = A1
TR - BRECE—NMURSEY - FRYRBNEMEENEABETEHEE—IE - HIRB R THE",
ERARFNE"HRBTERENTE - M7 LhrL - ETENESNETRENES ZEHN R R SEM
7 o JavaScriptf" MBS KB B R E R REE X EXN R - BN - ETZEMRubyIEE RELLAF 5 EMME 24
LA - A18: Perlf & RBZ /St HLarry WallFEIR A KIRIBIE", FLEEZUENATDE - TEHER - MR
EEMIBENED NE - NES—MIBESHIFEK - REESHSAHERENEZRMY - BABIIBKIEAF
BB PN T RIZE R EREXME R - M9 T AR<RIER ? RAEMEIA—NMINRET - bl
extends, Lox A RMEMEBEE - FMUEOABREBE - R - HEL TRubyBIHOE - AT < - IRIR T
HEAREEIE - MERNEHAZR—PMTEEENZERE - — 1 FENE—IIATE2ERBIEN— D6 - B
OJREBBENLAARZFENIA - XBKRE - ENRHNFEHT - FENSWESEBENESE /) - REE
BRI BB A< REBREMRZ « [A20]: Lox R ETAYEMEZERE R c++, JavaMc# - M2 LLT SmalltalkFl
Ruby - BIJ4E T HISRE - [221] XBEHN8NE RENEMUT - EFPEKX - BE HWMH NE RS —19Eb
BEEEMR® HNEHWNEERZ - EFPERE - reel-to-reel tape AR RES - KESMET
(Compact audio cassette) AR E™ - 8 F (8-track cartridges)) MR ANEBEAREZ® -

CHALLENGES
>

1. Write some sample Lox programs and run them (you can use the implementations of Lox in my
repository). Try to come up with edge case behavior | didn't specify here. Does it do what you expect?
Why or why not?

1~ wmE—LERAILoxiEFIH BT EN(E oI UE AR AILoxSE) - IWEBHREXB LB FMRPNBRIER - ©

2. This informal introduction leaves a lot unspecified. List several open questions you have about the
language's syntax and semantics. What do you think the answers should be?

2~ ZFFFIEXMNBE T T REBARRAOOARA - SIL/LPNRTESEEME XD - IRANBE RN ZZE
47

3. Lox is a pretty tiny language. What features do you think it is missing that would make it annoying
to use for real programs? (Aside from the standard library, of course.)

3. Lox@—MR/NIES - MANRDBENEZEEABERTEMRER ? (IR BRIREE -)

497932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%AF%B7%E8%AE%B0%E4%BD%8F%EF%BC%8C%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E9%A1%B6%E5%B1%82%E4%BB%A3%E7%A0%81%E8%A7%86%E4%B8%BA%E9%9A%90%E5%BC%8F%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%8F%AA%E8%A6%81%E6%B7%BB%E5%8A%A0%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%EF%BC%8C%E6%88%91%E4%BB%AC%E5%B0%B1%E4%BC%9A%E8%BF%9B%E5%85%A5%E4%B8%80%E4%B8%AA%E5%B5%8C%E5%A5%97%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%96%E7%95%8C%E3%80%82
https://homepages.inf.ed.ac.uk/wadler/papers/papers-we-love/landin-next-700.pdf
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BD%BF%E7%94%A8%E6%9C%AC%E5%9C%B0%E5%A0%86%E6%A0%88%E5%AD%98%E5%82%A8%E7%BC%96%E8%AF%91%E5%99%A8%E7%BB%93%E6%9E%84%E4%BD%93%E7%A1%AE%E5%AE%9E%E6%84%8F%E5%91%B3%E7%9D%80%E6%88%91%E4%BB%AC%E7%9A%84%E7%BC%96%E8%AF%91%E5%99%A8%E5%AF%B9%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%E7%9A%84%E5%B5%8C%E5%A5%97%E6%B7%B1%E5%BA%A6%E6%9C%89%E4%B8%80%E4%B8%AA%E5%AE%9E%E9%99%85%E9%99%90%E5%88%B6%E3%80%82%E5%A6%82%E6%9E%9C%E5%B5%8C%E5%A5%97%E5%A4%AA%E5%A4%9A%EF%BC%8C%E5%8F%AF%E8%83%BD%E4%BC%9A%E5%AF%BC%E8%87%B4C%E8%AF%AD%E8%A8%80%E5%A0%86%E6%A0%88%E6%BA%A2%E5%87%BA%E3%80%82%E5%A6%82%E6%9E%9C%E6%88%91%E4%BB%AC%E6%83%B3%E8%AE%A9%E7%BC%96%E8%AF%91%E5%99%A8%E8%83%BD%E5%A4%9F%E6%9B%B4%E5%81%A5%E5%A3%AE%E5%9C%B0%E6%8A%B5%E5%BE%A1%E9%94%99%E8%AF%AF%E7%94%9A%E8%87%B3%E6%81%B6%E6%84%8F%E7%9A%84%E4%BB%A3%E7%A0%81%EF%BC%88%E8%BF%99%E6%98%AFJavaScript%E8%99%9A%E6%8B%9F%E6%9C%BA%E7%AD%89%E5%B7%A5%E5%85%B7%E7%9C%9F%E6%AD%A3%E5%85%B3%E5%BF%83%E7%9A%84%E9%97%AE%E9%A2%98%EF%BC%89%EF%BC%8C%E9%82%A3%E4%B9%88%E6%9C%80%E5%A5%BD%E6%98%AF%E4%BA%BA%E4%B8%BA%E5%9C%B0%E8%AE%A9%E7%BC%96%E8%AF%91%E5%99%A8%E9%99%90%E5%88%B6%E6%89%80%E5%85%81%E8%AE%B8%E7%9A%84%E5%87%BD%E6%95%B0%E5%B5%8C%E5%A5%97%E5%B1%82%E7%BA%A7%E3%80%82
http://gameprogrammingpatterns.com/prototype.html#what-about-javascript
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%97%E8%8A%82%E7%A0%81%E8%99%9A%E6%8B%9F%E6%9C%BA%E5%92%8C%E7%9C%9F%E5%AE%9E%E7%9A%84CPU%E6%9E%B6%E6%9E%84%E6%9C%89%E4%B8%8D%E5%90%8C%E7%9A%84%E8%B0%83%E7%94%A8%E7%BA%A6%E5%AE%9A%EF%BC%8C%E4%B9%9F%E5%B0%B1%E6%98%AF%E5%AE%83%E4%BB%AC%E4%BC%A0%E9%80%92%E5%8F%82%E6%95%B0%E3%80%81%E5%AD%98%E5%82%A8%E8%BF%94%E5%9B%9E%E5%9C%B0%E5%9D%80%E7%AD%89%E7%9A%84%E5%85%B7%E4%BD%93%E6%9C%BA%E5%88%B6%E3%80%82%E6%88%91%E5%9C%A8%E8%BF%99%E9%87%8C%E4%BD%BF%E7%94%A8%E7%9A%84%E6%9C%BA%E5%88%B6%E6%98%AF%E5%9F%BA%E4%BA%8ELua%E5%B9%B2%E5%87%80%E3%80%81%E5%BF%AB%E9%80%9F%E7%9A%84%E8%99%9A%E6%8B%9F%E6%9C%BA%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BD%BF%E7%94%A8%60switch%60%E8%AF%AD%E5%8F%A5%E6%9D%A5%E6%A3%80%E6%9F%A5%E4%B8%80%E4%B8%AA%E7%B1%BB%E5%9E%8B%E7%8E%B0%E5%9C%A8%E7%9C%8B%E6%9C%89%E4%BA%9B%E5%A4%9A%E4%BD%99%EF%BC%8C%E4%BD%86%E5%BD%93%E6%88%91%E4%BB%AC%E6%B7%BB%E5%8A%A0case%E6%9D%A5%E5%A4%84%E7%90%86%E5%85%B6%E5%AE%83%E8%B0%83%E7%94%A8%E7%B1%BB%E5%9E%8B%E6%97%B6%EF%BC%8C%E5%B0%B1%E6%9C%89%E6%84%8F%E4%B9%89%E4%BA%86%E3%80%82
https://github.com/munificent/craftinginterpreters
https://github.com/munificent/craftinginterpreters

craftinginterpreters_zh.md 2024-09-25

DESIGN NOTE: EXPRESSIONS AND STATEMENTS
RITEIS | REAFED

Lox has both expressions and statements. Some languages omit the latter. Instead, they treat
declarations and control flow constructs as expressions too. These “everything is an expression”
languages tend to have functional pedigrees and include most Lisps, SML, Haskell, Ruby, and
CoffeeScript.

To do that, for each “statement-like” construct in the language, you need to decide what value it
evaluates to. Some of those are easy:

® An it expression evaluates to the result of whichever branch is chosen. Likewise, a or
other multi-way branch evaluates to whichever case is picked.

* A variable declaration evaluates to the value of the variable.

* A block evaluates to the result of the last expression in the sequence.

Some get a little stranger. What should a loop evaluate to? A loop in CoffeeScript evaluates to
an array containing each element that the body evaluated to. That can be handy, or a waste of memory
if you don't need the array.

You also have to decide how these statement-like expressions compose with other expressions—you
have to fit them into the grammar’s precedence table. For example, Ruby allows:

puts 1 + if true then 2 else 3 end + 4

Is this what you'd expect? Is it what your users expect? How does this affect how you design the syntax
for your “statements”? Note that Ruby has an explicit to tell when the i+ expression is complete.
Without it, the would likely be parsed as part of the clause.

Turning every statement into an expression forces you to answer a few hairy questions like that. In
return, you eliminate some redundancy. C has both blocks for sequencing statements, and the comma
operator for sequencing expressions. It has both the + statement and the *: conditional operator. If
everything was an expression in C, you could unify each of those.

Languages that do away with statements usually also feature implicit returns—a function
automatically returns whatever value its body evaluates to without need for some explicit

syntax. For small functions and methods, this is really handy. In fact, many languages that do have
statements have added syntax like => to be able to define functions whose body is the result of
evaluating a single expression.

But making all functions work that way can be a little strange. If you aren’t careful, your function will
leak a return value even if you only intend it to produce a side effect. In practice, though, users of these
languages don't find it to be a problem.

For Lox, | gave it statements for prosaic reasons. | picked a C-like syntax for familiarity's sake, and trying
to take the existing C statement syntax and interpret it like expressions gets weird pretty fast.

50/932

craftinginterpreters_zh.md 2024-09-25

LoxBIARZRHBIEE - BEESER 7EE - AN - BISEBRNZESREEtTAAFRAR - XK "—1))
HERLN WIESTEEEARYAWMS - 81 AKZHLisps. SML. Haskell, Ruby#1CoffeeScript.,

EZHIX—R - W TFTEBEBESPHE— "LLUTEG" WWE REEEAECHITENEZTA - HhBELRES
==I
o IREAWHELERZFMEDITHNER - BIFF - FEMZES ST EERIVETEIEENE
e
o TEFHNHELERZETENE -

s RNHELERZEFIFRE—ITREANER -

A—LEEERERN - BN XU B AME ? ECoffeeScripts® - —1 BAUHEERAN—TEHAH HPE
27 EAMPUHERNE MR - XUERSE - BURFAFTEXIMEAE - iz REARF -

BEMDIRERXLERPUEBVNREAMASEMREAES - DIRENBRABENMTLERP - f10 - Rubyse
FINEXMEX !

puts + if then else end +

XZIRFTEFERONG ? XZRAAF PR EAE RIS ? XXHRIENR I &G "WIEEB T AR ? 15X - RubyE—
PMEXMend RBFRRPIARBAER - AIRRBE - A ROUBESWENT N FEN—ED -

EEMNEYHMERBREAZIEEMEZ—LEROUXFNEZRDA - (FARER - AUBR 7 —LER - CES T
MEATHFEINR - LEAATHFERZIANESEES - BB 1 EY - 18 RERES - IRECE
SPMARAIBERAT - Mo MUEBIS—IEX -

BB BN ESBEREERABRENER—RYBEHREERYE A ESINETE MAFEE
TUAY BE - WT/NBRER AR - XEWNRAE - FXLE - WSABINESEARM 70T
EE - BB EXRHRZHERE-—REAERARE -

BRIUFBNREUZT XTI FIEBARETE - MERIAZBERY~ERER - ORI - REH IR
SOtFEIRENE - BLfr L XREESHAPAALERXZ2—NORA -

T Lox - REEPAMETZHTIENRE - A 7ABEND - HEF 7 —FPROUTCHEL - MiAEENA
WCOETDBABREA—HFERE SRREGHE -

4.53% Scanning

Take big bites. Anything worth doing is worth overdoing.
—— Robert A. Heinlein, Time Enough for Love
AT - BHEFSHMNSHER DML -

The first step in any compiler or interpreter is scanning. The scanner takes in raw source code as a
series of characters and groups it into a series of chunks we call tokens. These are the meaningful
"words" and “punctuation” that make up the language’s grammar.

HOREFRVAEBRRNE —LHZ RN - QRS2 ZFHOE N BRRERNE - FREDHE—F5
AR - AR Z AR (EA$T) - KEZAEXH "8id "M "frR" - BIIWR TIESHIEX -
51/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Scanning is a good starting point for us too because the code isn't very hard—pretty much a
statement with delusions of grandeur. It will help us warm up before we tackle some of the more
interesting material later. By the end of this chapter, we'll have a full-featured, fast scanner that can
take any string of Lox source code and produce the tokens that we'll feed into the parser in the next
chapter.

MFRAIRKE - AREE—PMRENES - BEARBAZRE—HEITARZS O 1BY) - XoJLI#
BEMNEZIEEEBBHD ZARTRS - B#ABERN - WIPFRBE—PIEFZE - BEROEMEES -
B MERWET—SELoxRE - FFERS - BINE M —FEXERc AR @SS -

4.1 The Interpreter Framework
4.1 BRRRSRAER

Since this is our first real chapter, before we get to actually scanning some code we need to sketch out
the basic shape of our interpreter, jlox. Everything starts with a class in Java.

BETXERMNNE-TELENET - BARITEKFERERNEZE - HMBZEAX D DRIV ER SR oxIE AR
s - fElavah - —tIEZMN—1 KT 1aR0 -

(F&F RFEERNBINAEIOE Y UBR RN NAVERIF (818X - BINE - MERREE) - BT
BRNEIZR - FXEAEREIBARBRZE - MUH M IANRHEARE - [FE]

lox/Lox.java - BIEERT N2

package com.craftinginterpreters.lox;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.list;

public class Lox {
public static void main throws IOException {
if (args.length > 1) {
System.out.println("Usage: jlox [script]");
System.exit(64);
} else if (args.length == 1) {
runFile(args[@]);
} else {
runPrompt();
}
}
}

Stick that in a text file, and go get your IDE or Makefile or whatever set up. I'll be right here when
you're ready. Good? OK!

527932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82

craftinginterpreters_zh.md 2024-09-25

EEME—NNARUE - SAREEERAIDES EMakefile S ZEM T EIZREF - HMEXBEEMERT - 7
5?2 a0 !

Lox is a scripting language, which means it executes directly from source. Our interpreter supports two
ways of running code. If you start jlox from the command line and give it a path to a file, it reads the
file and executes it.

Lox2—THIAIES - XEKRECEZEMNRRNBINT - HNHBBESRFHHPETRENSI - IRNBLITE
jloxF RERBEXHEE - ©REEZXXHFANT -

lox/Lox.java - /1% A Z T

private static void runFile throws IOException {
byte[] bytes = Files.readAllBytes(Paths.get(path));
run(new String(bytes, Charset.defaultCharset()));

¥

If you want a more intimate conversation with your interpreter, you can also run it interactively. Fire up

jlox without any arguments, and it drops you into a prompt where you can enter and execute code one
line at a time

MRPESRAERRNE, JUREANENE - BIINWIHEAIEQTSHHMILLY - BB —NMERT -
RETDIE R AR —RBAFNT 1T -

lox/Lox.java - JxJJIE)) IAEZEN3

private static void runPrompt() throws IOException {
InputStreamReader input = new InputStreamReader(System.in);
BufferedReader reader = new BufferedReader(input);

for (55) {
System.out.print("> ");
String line = reader.readlLine();
if (line == null) break;
run(line);

The function, as the name so helpfully implies, reads a line of input from the user on the

command line and returns the result. To kill an interactive command-line app, you usually type Control-

D. Doing so signals an “end-of-file” condition to the program. When that happens returns
, so we check for that to exit the loop.

RE - BREX - EBAFEMLTEN—TEA - FRREER - BERIERXEAMLTNAER
BEFZE@AControl-D - RFEMZEEFAL "XHER" HNES - ARXFMERALEN - readline()F=EE]
null - FRARAIE—F 2E&FEnull IR LB -

Both the prompt and the file runner are thin wrappers around this core function:

537932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82

craftinginterpreters_zh.md 2024-09-25

RE B RFNNHET LEEAEN X MO R ERE L %K :
lox/Lox.java - F5/lZ))z
private static void run {

Scanner scanner = new Scanner(source);
List<Token> tokens = scanner.scanTokens();

for (Token token : tokens) {
System.out.println(token);

}
}

It's not super useful yet since we haven't written the interpreter, but baby steps, you know? Right now,
it prints out the tokens our forthcoming scanner will emit so that we can see if we're making progress.

EABNEREEL#ERS - FIUXENEEAZRER - EXRZ/NDER - REEAB ? P& - ol LU
A AR MR PR EIVARIS - RFERNMIUBRRNNBTEEEX -

4.1.1 Error handling

4.1.1 FHIRAE

While we're setting things up, another key piece of infrastructure is error handling. Textbooks
sometimes gloss over this because it's more a practical matter than a formal computer science-y
problem. But if you care about making a language that's actually usable, then handling errors gracefully

is vital.

ARMNREAANNE - S—PRENVEMREZHERLE - ARBENSEERX—xR - AAXBZWNE—T
SLEREE - MAZ— P ERANHENRZOE - B2 - IRBRONWZNTHIE—TELETHNES - BAK
MMANIBERZEEZREEN -

The tools our language provides for dealing with errors make up a large portion of its user interface.
When the user’s code is working, they aren’t thinking about our language at all—their headspace is all
about their program. It's usually only when things go wrong that they notice our implementation.

BMNESRHENMERERNTEYN FHRFFRENRA—E7 - SRAPNRBELEN - iREAAZZE
EBHENMNNES—ANORFERZMINER - BRRAIBRFLABAN - th)F BRI FAIRIKH -

When that happens, it's up to us to give the user all the information they need to understand what
went wrong and guide them gently back to where they are trying to go. Doing that well means
thinking about error handling all through the implementation of our interpreter, starting now.

SAXMBERAER - BROMBEQACREMIIFAERZNABESR - LM 7#RMEL 7R - #5152
RAEIMNTRZERNM TS - BEMEFRX—x - EERENNETE - ERBRSNE NI I B PHEERERUIE
/\40

lox/Loxjava - 5ZF-un() A Z /T

54 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82

craftinginterpreters_zh.md 2024-09-25

static void error(int {
report(line, "", message);

}

private static void report(int

System.err.println(

"[line " + line + "] Error" + where + ": " + message);
hadError = true;
}
This function and its helper tells the user some syntax error occurred on a given

line. That is really the bare minimum to be able to claim you even have error reporting. Imagine if you
accidentally left a dangling comma in some function call and the interpreter printed out:

=X REAETERE SERBPEE—TLERE T —BiEEBER - XESLZ2EHEEHN - o
PURIRBREIRIREINEE - B2—T MRREENMNREBBES A NOLEB T 7 — AE””E’\J = BRERMSITE
€k

Error: Unexpected "," somewhere in your code. Good luck finding it!

That's not very helpful. We need to at least point them to the right line. Even better would be the
beginning and end column so they know where in the line. Even better than that is to show the user the

offending line, like:

EXMERRBZAED - RMNZEVELMISL RIS - F—EMNEARRLANER—1= - XM
MAMBEX—THUE Y - BFNHECEZRAEF E/REHT - B

Error: Unexpected "," in argument list.

| function(first, second,);
Roo [@FE

I'd love to implement something like that in this book but the honest truth is that it's a lot of grungy
string manipulation code. Very useful for users, but not super fun to read in a book and not very
technically interesting. So we'll stick with just a line number. In your own interpreters, please do as | say

and not as | do.

HRBEXABESLIXHNARRA - BELR - XRSIARSEINFHHBRIENE - XERBYRAF R
EEHR BEBFRERAARYT MERAKETAZRER - IURNEZRA—NMTS - £RMNBCHE
B IBRIRAM - AL IMAOH -

The primary reason we're sticking this error reporting function in the main Lox class is because of that
field. It's defined here:

A ELoxERFREFFAXMERRENENEZRRMZE NI MhadError?Er - BRENXEXE
55/932

craftinginterpreters_zh.md 2024-09-25

lox/Lox.java ZLox3EF 7] .

public class Lox {
static boolean hadError = false;

We'll use this to ensure we don't try to execute code that has a known error. Also, it lets us exit with a
non-zero exit code like a good command line citizen should.

FATFLULRBRBNAZEZHRTESHERWCE - 55 - BERELERMNE— M FRmST IERE - B
—PIEEWERIERDE -

lox/Lox.java - #runFile() Z50] -

run(new String(bytes, Charset.defaultCharset()));

if (hadError) System.exit(65);
¥

We need to reset this flag in the interactive loop. If the user makes a mistake, it shouldn't kill their
entire session.

BNBE2EREABEAPEEMNAS - WRAFPBABR - IANLIEENIRIE -

lox/Loxjava - #runPrompt() F 557 -

run(line);
hadError = false;

}

The other reason | pulled the error reporting out here instead of stuffing it into the scanner and other
phases where the error might occur is to remind you that it's good engineering practice to separate
the code that generates the errors from the code that reports them.

HICHRMEA LR - MAZCEERTAESNEMITERERRNNE - BES—PRE - 2R T7RER
EFERRNAENRSERNACEIAZ— M RENIELE -

Various phases of the front end will detect errors, but it's not really their job to know how to present
that to a user. In a full-featured language implementation, you will likely have multiple ways errors get
displayed: on stderr, in an IDE’s error window, logged to a file, etc. You don't want that code smeared
all over your scanner and parser.

AR SN ERESNEIER - BEENAFTENBNEEAFBRER - £E— NBEFENESSEID -
OEEESMAAEREBIRER © fEstderr - EIDENBIREO D - BRIAIXHG - FF - BEEARELERNE

RBPEIAT FEXENE -

56 /932

craftinginterpreters_zh.md 2024-09-25

Ideally, we would have an actual abstraction, some kind of “ErrorReporter” interface that gets passed to
the scanner and parser so that we can swap out different reporting strategies. For our simple
interpreter here, | didn't do that, but | did at least move the code for error reporting into a different

class.

BEERAT - ROURA— N RHOMS - A BAIMRFARITSEORMEroReporterE A5 « K]
BRI - TR BN EARES - RS | ERED SR REREEH
OENCEES

With some rudimentary error handling in place, our application shell is ready. Once we have a Scanner
class with a method, we can start running it. Before we get to that, let's get more

precise about what tokens are.

BT —LEEANBRAE RIWNAERIEZELERT Y - —BRINBT %A FER
Scanner 25 - HAIMOIUFABRIEITE Y « ®EANABRZAET - LN EBERM 7R AZC (tokens) o

4.2 Lexemes and Tokens
4.2 WZEMIFIS (18A8ETT)

THEZ—1Tloxftis :

var language = "lox";
Here, is the keyword for declaring a variable. That three-character sequence “v-a-r" means
something. But if we yank three letters out of the middle of , like “g-u-a”, those don’t mean

anything on their own.

EXE - var EFREZENRET © "v-a-r'X="FHFNFIIZBEEXH - BHIREINIMN thiElH =
NEE - Ellg-u-a" - BNARSFRBERTURENX -

That's what lexical analysis is about. Our job is to scan through the list of characters and group them

together into the smallest sequences that still represent something. Each of these blobs of characters is
called a lexeme. In that example line of code, the lexemes are:

XA N MR XAE - MW TEZ2ERMFAIER - AN MVEARNEFELES XHNE/NFS -
FRBEIRANIER - A RHINBTE - @RE

“"lox" ;]

n

var language

The lexemes are only the raw substrings of the source code. However, in the process of grouping
character sequences into lexemes, we also stumble upon some other useful information. When we take
the lexeme and bundle it together with that other data, the result is a token. It includes useful stuff like:

ﬂ% IBRAENRIEFFHEE - B2 ENFFRIDERNIRNGESF - BRI 7 —EHMB R/
2R o ARMNVRERFFESHMBIERHE LN - ERI—H5IC (token - 1EEHIT) - BEHE L
BARASR - bW :

571932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82

craftinginterpreters_zh.md 2024-09-25

4.2.1 Token type
4.2.1 fRig3EER

Keywords are part of the shape of the language's grammar, so the parser often has code like, “If the
next token is then do... " That means the parser wants to know not just that it has a lexeme for
some identifier, but that it has a reserved word, and which keyword it is.

RBEZES B EN—HD - ILUBTRELBESAXFNNE "R T —NMrc2 CBBAE.L KR
REBRTRBNEBNANNEZEBEMRIRAFTNEERE - MEBERE—NFED UREZEHTRERE -

The parser could categorize tokens from the raw lexeme by comparing the strings, but that's slow and
kind of ugly. Instead, at the point that we recognize a lexeme, we also remember which kind of lexeme
it represents. We have a different type for each keyword, operator, bit of punctuation, and literal type.

BT ER T LUBTIERF T E M RIGERPRIRCIET 2R - EXEFMRIE - MEEREEN6 - Ak - BHANR
Al—MEAZIE - RONEZICEEARNEMMEE - HIIABIREF - BT - RUMFEELHE A

BESES:IR

lox/TokenType.java BIEF X1+

package com.craftinginterpreters.lox;

enum TokenType {
// Single-character tokens.
LEFT_PAREN, RIGHT_PAREN, LEFT_BRACE, RIGHT_BRACE,
COMMA, DOT, MINUS, PLUS, SEMICOLON, SLASH, STAR,

// One or two character tokens.
BANG, BANG_EQUAL,

EQUAL, EQUAL_EQUAL,

GREATER, GREATER_EQUAL,

LESS, LESS EQUAL,

// Literals.
IDENTIFIER, STRING, NUMBER,

// Keywords.
AND, CLASS, ELSE, FALSE, FUN, FOR, IF, NIL, OR,
PRINT, RETURN, SUPER, THIS, TRUE, VAR, WHILE,

EOF

4 .2 .2 Literal value

422 FH=

There are lexemes for literal values—numbers and strings and the like. Since the scanner has to walk
each character in the literal to correctly identify it, it can also convert that textual representation of a

58 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82

craftinginterpreters_zh.md 2024-09-25

value to the living runtime object that will be used by the interpreter later.

FHEANNEE—EFNFFEE - BT HESOIENXFPHENZFTEEMBIRS - FRIXEETIL
MENXARRRNERNETINS BESEERERENR -

4 .2 .3 Location information

423 IBER

Back when | was preaching the gospel about error handling, we saw that we need to tell users where
errors occurred. Tracking that starts here. In our simple interpreter, we note only which line the token
appears on, but more sophisticated implementations include the column and length too.

PEXEHERVIENREN - BIMEE - RNFESFAFPBRREEME - (AP) AXEHBEAID
& - EERNOEEEFESRT - HOR R 7ANcEIER—1T L - BEEERMSIS AN ZEFEIUBENKE
AT,

We take all of this data and wrap it in a class.
ROV A X LR e — 2P -

lox/Token. java - BIZEF X 1

package com.craftinginterpreters.lox;

class Token {
final TokenType type;
final String lexeme;
final Object literal;
final int line;

Token(TokenType type, String lexeme, Object literal, int line) {
this.type = type;
this.lexeme = lexeme;
this.literal = literal;
this.line = line;

}
public String toString() {

return type + " " + lexeme + " " + literal;
}

}

Now we have an object with enough structure to be useful for all of the later phases of the interpreter.

RERNB 7 —MERBADNNR - BUZERBRSRNAERHNE -

4.3 Regular Languages and Expressions

43 IENESMERET

59/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Now that we know what we're trying to produce, let’s, well, produce it. The core of the scanner is a
loop. Starting at the first character of the source code, it figures out what lexeme it belongs to, and
consumes it and any following characters that are part of that lexeme. When it reaches the end of that
lexeme, it emits a token.

BARMCHMERNERE T2 - B4 - HAIHAARIE - SER0ZLE— MBS - MEBHE—NZEFF
% HEBUHELYZEFETHMNIE - FHBRENE T ZRENTAREERT - XX ZEERNKREN -
HRESmE—MRIC (a5 T token) o

Then it loops back and does it again, starting from the very next character in the source code. It keeps
doing that, eating characters and occasionally, uh, excreting tokens, until it reaches the end of the
input.

REBES—R - BNEREE - NERBPHN N -T2 EAEBM—R - E—EXHFM - 2875 @R
e - Hrhtric - EREEIEMARNL S -

The part of the loop where we look at a handful of characters to figure out which kind of lexeme it

“matches” may sound familiar. If you know regular expressions, you might consider defining a regex for
each kind of lexeme and using those to match characters. For example, Lox has the same rules as C for
identifiers (variable names and the like). This regex matches one:

EENF RINSEBF-LFF - DHAED "L "WEWiEa R - X2 AS JEEITERRAE - BURMRA
BIENRZER - MOILIEEAT—MIERE N —regex - HFERX Lregex>RILELZRF « HIA0 - Lox I HRIR T
(ZEEE) WANSCGESHEE - FENregext] DILEL—MRIRR :

[a-zA-Z_][a-zA-Z_0-9]*

If you did think of regular expressions, your intuition is a deep one. The rules that determine how a
particular language groups characters into lexemes are called its lexical grammar. In Lox, as in most
programming languages, the rules of that grammar are simple enough for the language to be
classified a regular language. That's the same “regular” as in regular expressions.

MRIRFASKABR 7 ENRZET - BBAMRNERAERRRZR - RE—T NESWEGFR/F 0 EAE AN R
NEMIEEIFZEN8 © fELox® - MAZHERIES —F - ZBHZENWANIEEEE - IJLUFEFREMNES - XE
AYIEMANIENZRIA T PR "IEN "B —HFRIZ X -

60 /932

https://en.wikipedia.org/wiki/Regular_language
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
https://en.wikipedia.org/wiki/Regular_language

craftinginterpreters_zh.md 2024-09-25

You very precisely can recognize all of the different lexemes for Lox using regexes if you want to, and
there’s a pile of interesting theory underlying why that is and what it means. Tools like Lex or Flex are
designed expressly to let you do this—throw a handful of regexes at them, and they give you a
complete scanner back.

MRRBE - ROLEFB BRI E R ENRATNKIRFLoxBIFIBAEIEA - MEXEHEBRIEIERZES
ATALEBEHELUREHNEX © Blex 9ZFlexXXHFHN T EME LT JASKIX —INEEM R I N—REPEA—LE
IENERZET - BYLUARIR R e R3S -

Since our goal is to understand how a scanner does what it does, we won't be delegating that task.
We're about handcrafted goods.

BTRMNNERE 7 #EEEZNETEN - FAIURMNAZEZIMMESRAENRES - HINIBREDNFE
o -

4.4 The Scanner Class
4.4 Scannerzt
ERER - HAEFRE—1HERNE -

lox/Scanner.java - BIZEFT X 4N 10

package com.craftinginterpreters.lox;

import java.util.Arraylist;
import java.util.HashMap;
import java.util.list;
import java.util.Map;

import static com.craftinginterpreters.lox.TokenType.*;

class Scanner {
private final String source;
private final List<Token> tokens = new ArraylList<>();

Scanner(String source) {
this.source = source;

}
}

We store the raw source code as a simple string, and we have a list ready to fill with tokens we're going
to generate. The aforementioned loop that does that looks like this:

FNTFRENWFEABEEA— T EENFFE - HERMNEEEE 7 —MIRREAFEENERRIC - BIE
REMESBERIZLUT -

lox/Scanner.java - 7 #Scanner()/Z ol -

61/932

http://dinosaur.compilertools.net/lex/
https://github.com/westes/flex
http://dinosaur.compilertools.net/lex/
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
https://github.com/westes/flex
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82

craftinginterpreters_zh.md 2024-09-25

List<Token> scanTokens {
while (!isAtEnd()) {
// We are at the beginning of the next lexeme.
start = current;
scanToken();

}

tokens.add(new Token(EOF, "", null, line));
return tokens;

}

The scanner works its way through the source code, adding tokens until it runs out of characters. Then
it appends one final “end of file” token. That isn't strictly needed, but it makes our parser a little
cleaner.

Af=RBI B oA NEDRRE - ANire - ERENTHAEFR - A5 - BESEENIN—1/ "end of file
"TRC - PR RN ERE - RAAZMAR - EEolIERTNNETRENTS -

This loop depends on a couple of fields to keep track of where the scanner is in the source code.
ENMEMMRI T I FERERRH#RERAEPHOUE -

lox/Scanner.java - #ScannerZEL 55707 -

private final List<Token> tokens = new ArraylList<>();
// AN E=1TR

private int start = ©;

private int current = 0;

private int line = 1;

Scanner(String source) {

The and fields are offsets that index into the string. The field points to the first
character in the lexeme being scanned, and points at the character currently being
considered. The field tracks what source line is on so we can produce tokens that know

their location.

A FRERDFHTENREE - FRIBAHAEERPHE —DFER - FEiE
E=HRIEERENFTT - FRIRFRNZ FRERVEXHTE - ZFERMERNIRcaH I IR EE T

=.
Then we have one little helper function that tells us if we've consumed all the characters.
e HMNEE—THEDRE - BRSFRINEZECSHEHETHBEFR -

lox/Scanner.java #EscanTokens() 722 2 Ja . -

62 /932

craftinginterpreters_zh.md 2024-09-25

private boolean isAtEnd {
return current >= source.length();

}

4.5 Recognizing Lexemes
4.5 1R35E xR

In each turn of the loop, we scan a single token. This is the real heart of the scanner. We'll start simple.
Imagine if every lexeme were only a single character long. All you would need to do is consume the
next character and pick a token type for it. Several lexemes are only a single character in Lox, so let's
start with those.

EE—REAP - FAIILFEE— token - XZRMR[EIERNZD - ILHNTNERERF]E - 82— -
IRBMIZRE—ITFERK - CAABFZEHRIMZ BT N — M2 RFHNEERE—1 token 258 - HLoxHHE—
ERRABEZ—NFR - UM ZXEDRZFEAM 1,

lox/Scanner.java 7 /1FkcanTokens() 7 %4 2 /5

private void scanToken() {

char ¢ = advance();

switch (c¢) {

case '(': addToken(LEFT_PAREN); break;

case ")': addToken(RIGHT_PAREN); break;
case '{': addToken(LEFT_BRACE); break;
case '}': addToken(RIGHT_BRACE); break;
case ',': addToken(COMMA); break;
case '.': addToken(DOT); break;
case '-': addToken(MINUS); break;
case '+': addToken(PLUS); break;
case ';': addToken(SEMICOLON); break;
case '"*': addToken(STAR); break;

Again, we need a couple of helper methods.
B - RAINBE—LERWBNTTE -

lox/Scanner.java - 50Z) isAtEnd() 5 %4 /7

private char advance() {
current++;
return source.charAt(current - 1);

}

private void addToken {
addToken(type, null);

63 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82

craftinginterpreters_zh.md 2024-09-25

private void addToken
String text = source.substring(start, current);

tokens.add(new Token(type, text, literal, line));
}

method consumes the next character in the source file and returns it. Where

The
is for output. It grabs the text of the current lexeme and creates a

is for input,
new token for it. We'll use the other overload to handle tokens with literal values soon.

TRREBEX PR N — P EHFFHFREE - RTREEA - NATEE - %
FRFRINE RN R XA H N EQZE— DI token « HAE L2ERS—PEHH EARUETEFHERN

token,

4.5.1 Lexical errors

4.5.1 ia%581R

Before we get too far in, let's take a moment to think about errors at the lexical level. What happens if

a user throws a source file containing some characters Lox doesn't use, like , at our interpreter?

Right now, those characters get silently discarded. They aren’t used by the Lox language, but that

doesn’t mean the interpreter can pretend they aren’t there. Instead, we report an error.
ERAVRARWN ZAI - HAEIE—RENEZEE—NIEEANER - IRAFPNABRRRIORX G PEZ—L
LoxP AEARNFRF—or SKREFA? WE ZEFHFRBEBNF 7 - BIIKEHKLxESEH - BZ
AEREBFESIURECNAEFE - k- BIOINZIRE—ER -

lox/Scanner.java % scanToken() & X355 .

case '"*': addToken(STAR); break;

default:
Lox.error(line, "Unexpected character.");

break;

Note that the erroneous character is still consumed by the earlier call to . That's important

so that we don't get stuck in an infinite loop.
AR HERNFFIDASHKEIEIBAARN FEHR - X—RRER - XFHNMAZBATLIRER
7 -
Note also that we keep scanning. There may be other errors later in the program. It gives our users a
better experience if we detect as many of those as possible in one go. Otherwise, they see one tiny
error and fix it, only to have the next error appear, and so on. Syntax error Whac-A-Mole is no fun.

64 /932

craftinginterpreters_zh.md 2024-09-25

FSEAR - B —EEDHE - BEFHERAUELASEIEMER - MRBANES — RN ERAIESHER -
AEMNOAFEREBHFOER - &N - I]SEE—NMMERHFEBET - BEHMER F—NMER - FAHEEX
PERE - BAERTHE —s AT -

(Don’t worry. Since gets set, we'll never try to execute any of the code, even though we keep
going and scan the rest of it.)

FFEL - BA BT 7 RE - BAPKEAZERNTEACE - AERFERSBTH AR
RERED °)

4.5.2 Operators

4.5.2 IRES

We have single-character lexemes working, but that doesn't cover all of Lox’s operators. What about ! ?
It's a single character, right? Sometimes, yes, but if the very next character is an equals sign, then we
should instead create a | = lexeme. Note that the | and = are not two independent operators. You can't
write in Lox and have it behave like an inequality operator. That's why we need to scan | = as a
single lexeme. Likewise, <, >, and = can all be followed by = to create the other equality and
comparison operators.

HMNBEFFAREEEN S - EEXABEAZLoxPRFAARIER - bl - XZHRFR - WIE ? BIHER
B BEOR N —TFHEEFES - BARMNNESA - 1% - iR - XEXN I H- AER MR RIES - &
LoxH - fRABES | ~KRIRAZFERIER - IMEATARNFEN - FARMIRHTEE - B - < A
o SREmIRMERN-RA S E MBS RIBRIERS -

For all of these, we need to look at the second character.
ST BEXLEER BNHBREEEE _MNFEF -

lox/Scanner.java - # scanToken() 77,2 25570

case '*': addToken(STAR); break;

case '!'
addToken(match('=") ? BANG_EQUAL : BANG);
break;

case '=':
addToken(match('=") ? EQUAL_EQUAL : EQUAL);
break;

case '<':
addToken(match('=") ? LESS_EQUAL : LESS);
break;

case '>':
addToken(match('=") ? GREATER_EQUAL : GREATER);
break;

default:

Those cases use this new method:

XLENSTPER T NENHTEA

65/932

craftinginterpreters_zh.md 2024-09-25

lox/Scanner.java %] scanToken() 7 24 /5

private boolean match(char {
if (isAtEnd()) return false;
if (source.charAt(current) != expected) return false;
current++;
return true;
}
It's like a conditional . We only consume the current character if it's what we're looking for.
X — P EREN ° HRIFFERNEESHNFF - BT 2B -
Using , We recognize these lexemes in two stages. When we reach, for example, !, we jump to

its switch case. That means we know the lexeme starts with |. Then we look at the next character to

determine if we're ona | = or merely a

(£33 CERMNDA I ERIRBIXLEIFER - A0 - SHNFE KN - RO)SHERERcasen X - XEKE
HMNMBEBXMIRZL T80 - A - HMEF F—1FF - LBANFRE—D Lm&&m—l o

4.6 Longer Lexemes

4.6 BERMEER

We're still missing one operator: / for division. That character needs a little special handling because
comments begin with a slash too.

HAVERD—DEET | RORBRERN/ - BNFRHEBE-LERARLE - RAPERT 2R EH L -

lox/Scanner.java - #scanToken() 772 ZR -

break;
case '/':
if (match('/")) {
// A comment goes until the end of the line.
while (peek() != '\n' && !isAtEnd()) advance();
} else {
addToken(SLASH) ;

}

break;
default:

This is similar to the other two-character operators, except that when we find a second /, we don’t end
the token yet. Instead, we keep consuming characters until we reach the end of the line.

XESETHWNFFREFTERON - XRETRNHIE /N BRBEERARIFC - BR - HIISLE0H
[FETEETE -

66 /932

craftinginterpreters_zh.md 2024-09-25

This is our general strategy for handling longer lexemes. After we detect the beginning of one, we
shunt over to some lexeme-specific code that keeps eating characters until it sees the end.

XEHMNVEEKIERN—MRERE - ARV —MFROFLRE - NSRBI —ERFETZE RN
BB XERBAEMERTR - BE2EE -

We've got another helper:
BOIXB T =M HEIERE

lox/Scanner.java - #Ematch() 72 /Zm] »

private char peek {
if (isAtEnd()) return '\0';
return source.charAt(current);

}

It's sort of like . but doesn’t consume the character. This is called lookahead. Since it only
looks at the current unconsumed character, we have one character of lookahead. The smaller this
number is, generally, the faster the scanner runs. The rules of the lexical grammar dictate how much
lookahead we need. Fortunately, most languages in wide use peek only one or two characters ahead.

XERE 75 REASETBRFR - XniEFBHlookahead(FilE)A 12 - HABRRFTHURIKRHEE
HN=ZR - FIARATA — N EF7F - —MkiR - BIIEMNF RS/ - HESsTRERER - BB EANR
ETRNBZRNRZVFR - ZBHNE - AZE ZEANESREBREIN—IRITZFR/ -

Comments are lexemes, but they aren't meaningful, and the parser doesn't want to deal with them. So

when we reach the end of the comment, we don't call . When we loop back around to start
the next lexeme, gets reset and the comment's lexeme disappears in a puff of smoke.

ARZIEER - BEZE(RAE X - MERTRTABREAEEA] - L - HIMERERKRER - A=EH
7305 - BENEARIE T —MIRN - EAREE [ERNEARBERE—TFREF [-

While we're at it, now's a good time to skip over those other meaningless characters: newlines and
whitespace.

ARG - MAEEHF IS EEBELTENNZRF 7« RITHZELRE -

lox/Scanner.java - #scanToken() 772 2R -

break;
case '
case '\r':
case "\t':

break;

case '\n':
line++;
break;

67 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A

craftinginterpreters_zh.md 2024-09-25

default:
Lox.error(line, "Unexpected character.");

When encountering whitespace, we simply go back to the beginning of the scan loop. That starts a
new lexeme after the whitespace character. For newlines, we do the same thing, but we also increment
the line counter. (This is why we used to find the newline ending a comment instead of

. We want that newline to get us here so we can update)

SBAEAFAEN - RNAFBRBEFEEANIL - IERZIEZBFTZEFAE—TIHEER - X THRIT
& HOMEHENSE - BRERMNCIBIETIHHES - ERENTAHNER mA2 REWE
BRERRITH - MNP XERZESIERTE - XEHNMILERITEY)

Our scanner is getting smarter. It can handle fairly free-form code like:

NS ERBIERA Y - B BRSBEHE LT - 0

// this is a comment

(()){} // grouping stuff
1*¥+-/=<> <= == // operators

4.6.1 String literals

4.6.1 FHHFH

]

Now that we're comfortable with longer lexemes, we're ready to tackle literals. We'll do strings first,
since they always begin with a specific character,

NEBRNHKAZCEERET - RIVTLFRLBFEET - RIEREFHSE - AATHEREN—ME
IR L -

lox/Scanner.java - # scanToken() 772 2R -

break;
case '"': string(); break;
default:

That calls:
XEBESEA

lox/Scanner.java - £ scanToken() /352G -

private void string() {
while (peek() != '"' && !isAtEnd()) {
if (peek() == '\n") line++;
advance();

68 /932

craftinginterpreters_zh.md 2024-09-25

}

if (isAteEnd()) {
Lox.error(line, "Unterminated string.");

return;

}

advance();

String value = source.substring(start + 1, current - 1);
addToken(STRING, value);
}

Like with comments, we consume characters until we hit the " that ends the string. We also gracefully

handle running out of input before the string is closed and report an error for that.
S5FREL - RINZ—BEHERFT - B2 ERXFHE - NRBAATER - RNWISETREANRE - FR
H—TIMNAVEIR °

For no particular reason, Lox supports multi-line strings. There are pros and cons to that, but

prohibiting them was a little more complex than allowing them, so | left them in. That does mean we

also need to update when we hit a newline inside a string.
RARAINERE - LoxxiFZITFFE - XANAE BRIERITLERFRITESR—L - FRUHEEIRE
Tk - FEMRBELARNEZHFERNBEFITH - HNOBEEH ineE -

Finally, the last interesting bit is that when we create the token, we also produce the actual string value

that will be used later by the interpreter. Here, that conversion only requires a to strip off

the surrounding quotes. If Lox supported escape sequences like ', we'd unescape those here.
&fE - RE—TPEBNAMEIHMNERCH - RIITSFEXRNFREE - ZEHEETRERRE
- X2 BENERREEEA HBEAERSIS - WRLoxXZFEXFS - bl n - HISEX

BHEUHEENX -
4.6.2 Number literals
462 FZFHE

All numbers in Lox are floating point at runtime, but both integer and decimal literals are supported. A
number literal is a series of digits optionally followed by a . and one or more trailing digits.

HloxF - FIBNHFEZTHEDZRY EERNZHFEYLN/N\HFEHE - — M EHFFHRERE—RIIY

fiI - EECBIR—1 M—ZTEHN3,

69 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82

craftinginterpreters_zh.md 2024-09-25

HNARFNE RO TEIFESEARE - FIA NENENZAEHE

We could easily support the former, but | left it out to keep things simple. The latter gets weird if we
ever want to allow methods on numbers like

HMIURESMSHGAIE - BATREES - LB - ORFNBAFNHFHTZAER - 5N

 BERTBRHE -

To recognize the beginning of a number lexeme, we look for any digit. It's kind of tedious to add cases
for every decimal digit, so we'll stuff it in the default case instead.

ATRAHFERNFL - HOSSHET—UETF - AN THBIEFZ A Mcase N XBRZIK - FIUFAE
BRERMIND SZPHITAE -

lox/Scanner.java - # scanToken() 5 %= P E M —1T .

default:
/] BMEBDTA
if (isDigit(c)) {
number();
} else {
Lox.error(line, "Unexpected character.");

}
/] BREDER
break;
This relies on this little utility:
XK NER/NTEREREA4S

lox/Scanner.java - 7 peek() 7 4 Z /a0 .

private boolean isDigit(char {
return c >= '9' && c <= '9’';

}

Once we know we are in a number, we branch to a separate method to consume the rest of the literal,
like we do with strings.

—BRMNAMEIANELENF - RO THA-TNRRWTTREBRNRNFTHEE - IRFEFBRLEREL, -

lox/Scanner.java - 7£ scanToken() 7 2 /0 -

70/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82

craftinginterpreters_zh.md 2024-09-25

private void number() {
while (isDigit(peek())) advance();

// Look for a fractional part.

if (peek() == '."' && isDigit(peekNext())) {
// Consume the "."
advance();

while (isDigit(peek())) advance();
}

addToken (NUMBER,
Double.parseDouble(source.substring(start, current)));

We consume as many digits as we find for the integer part of the literal. Then we look for a fractional

part, which is a decimal point (.) followed by at least one digit. If we do have a fractional part, again,

we consume as many digits as we can find.
BN EFESENRBEE D PROUESHIKNHF - KERNMNSHANHEBD - 2 — N ExR()EEZDIR—
PMF - MRWBLA/NEE D - B - FO RO S M REVE S -

Looking past the decimal point requires a second character of lookahead since we don’t want to

consume the . until we're sure there is a digit after it. So we add:
EEUE/NHRZEBERERES _NFR - RARNREBNEFERFT BB - RARINAMN T
A5

lox/Scanner.java - 7 peek() 77,2/ 5570

private char peekNext() {
if (current + 1 >= source.length()) return '\0';
return source.charAt(current + 1);

}

Finally, we convert the lexeme to its numeric value. Our interpreter uses Java's type to
represent numbers, so we produce a value of that type. We're using Java's own parsing method to
convert the lexeme to a real Java double. We could implement that ourselves, but, honestly, unless
you're trying to cram for an upcoming programming interview, it's not worth your time.

& - BITREIRERAEX NAVRE - F0IEBEZREA)avaly RERERRHF - FRUFENIE—D
ZERAWME - el 1ERJava B BRI AR B R RN EIER Java double - HATOILIECSKH - B2 - W5
& - BRIFRENE Rk R MER - SUAESIRIENE -

The remaining literals are Booleans and , but we handle those as keywords, which gets us to.. ..

T RYIEZRZEBooleanlnil - BRAVECIMFARRFZHRAIE - XHEITHER T ...

4 .7 Reserved Words and Identifiers

7117932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

7 REFHAIRR T

Our scanner is almost done. The only remaining pieces of the lexical grammar to implement are
identifiers and their close cousins, the reserved words. You might think we could match keywords like
in the same way we handle multiple-character operators like

MO PWBRELRTA Y - AR BEPEFESLIRE D (VRN R R E %
OILIXASAE S22 FRIEFNBERARERRETF - Wor,

REBF - MTFSAE - T

case 'o':
if (peek() == "r") {
addToken(OR);
}

break;

Consider what would happen if a user named a variable . The scanner would see the first two
letters, or, and immediately emit an or keyword token. This gets us to an important principle called
maximal munch. When two lexical grammar rules can both match a chunk of code that the scanner is
looking at, whichever one matches the most characters wins.

ZE—1 URAPRZEEMEAN EREFA? AEKSLRIIENANZES - REuAER—1
g« XS RE T —PNEZRREN - IHfFmaximal munch(&KULEC) A 16 - B MEEMNIEBRELLAC A fzs [E7E
SASBR—RKACIERS - BTG R F 7R 2 - Sl & FE BT A,

That rule states that if we can match as an identifier and or as a keyword, then the former wins.
This is also why we tacitly assumed, previously, that <= should be scanned as a single <= token and not
followed by -.
ZANAE - WRBATTILUF VCECA—MMRIREF - ol LU orRRA— 1M REBF - B RBE TS

R - XUBERNTARNERNESBINA - <-NIZIRBIRNE—R <450 - MAZRBER 7 —P-

Maximal munch means we can't easily detect a reserved word until we've reached the end of what
might instead be an identifier. After all, a reserved word is an identifier, it's just one that has been
claimed by the language for its own use. That's where the term reserved word comes from.

SEALRRUERSE - RNRBEABT P UEZRFRFTHRE - THEBINEE—TMREF - % - REFM
B—MRRT - RE—TPEAWESERNECHANINRT - XUZREF—E/9EXK -

So we begin by assuming any lexeme starting with a letter or underscore is an identifier.
PRUAFAME SRR E T F R & LAEREBZE — MRIRE -

lox/Scanner.java - # scanToken() 145

default:
if (isDigit(c)) {
number();

} else if (isAlpha(c)) {

721932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%AF%B7%E8%AE%B0%E4%BD%8F%EF%BC%8C%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E9%A1%B6%E5%B1%82%E4%BB%A3%E7%A0%81%E8%A7%86%E4%B8%BA%E9%9A%90%E5%BC%8F%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%8F%AA%E8%A6%81%E6%B7%BB%E5%8A%A0%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%EF%BC%8C%E6%88%91%E4%BB%AC%E5%B0%B1%E4%BC%9A%E8%BF%9B%E5%85%A5%E4%B8%80%E4%B8%AA%E5%B5%8C%E5%A5%97%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%96%E7%95%8C%E3%80%82

craftinginterpreters_zh.md 2024-09-25

identifier();
// %ﬁiMBD/D
} else {
Lox.error(line, "Unexpected character.");

}

The rest of the code lives over here:
HeR£Bamr

lox/Scanner.java - #£ scanToken() 77 % Z JZ . -

private void identifier() {
while (isAlphaNumeric(peek())) advance();

addToken(IDENTIFIER);
}

We define that in terms of these helpers:
B DU B R ECRE X

lox/Scanner.java - £ peekNext() 75 % Z /. -

private boolean isAlpha(char {
return (c >= 'a' && c <= 'z"') ||
(c >= 'A" & c <= 'Z") ||
c=="_"
}
private boolean isAlphaNumeric(char {
return isAlpha(c) || isDigit(c);
¥

That gets identifiers working. To handle keywords, we see if the identifier's lexeme is one of the
reserved words. If so, we use a token type specific to that keyword. We define the set of reserved words

in a map.

EEMAGMAB LY - ATRERBT RMIBEBTMRATNEREEGEREFZ— - IRE - RIIwfE
REZRRFRHBERRCHEE - HiEmapFEXREFHNES -

lox/Scanner.java - #£ Scanner 3£ 375571

private static final Map<String, TokenType> keywords;

static {
keywords = new HashMap<>();

731932

craftinginterpreters_zh.md 2024-09-25

keywords.put("and", AND) ;
keywords.put(“class", CLASS);
keywords.put("else", ELSE);
keywords.put(“"false", FALSE);
keywords.put("for", FOR);
keywords.put("fun", FUN);

keywords.put("if", IF);
keywords.put("nil", NIL);
keywords.put("or", OR);

keywords.put("print", PRINT);
keywords.put("return”, RETURN);
keywords.put("super", SUPER);
keywords.put("this", THIS);
keywords.put("true", TRUE);
keywords.put("var", VAR);
keywords.put("while", WHILE);

Then, after we scan an identifier, we check to see if it matches anything in the map.
BERR - £RMNEPEIMRT 2R - BERNEEESmapPHFELETV -

lox/Scanner.java - 7 identifier() 7 2% P EHE—1T -

while (isAlphaNumeric(peek())) advance();

/] BREBDHA

String text = source.substring(start, current);
TokenType type = keywords.get(text);

if (type == null) type = IDENTIFIER;
addToken(type);

/] BB LS

If so, we use that keyword's token type. Otherwise, it's a regular user-defined identifier.
ARLECHIE - mERRBFIARCEE - & - M2 —MEEBRF EXWIRRR -

And with that, we now have a complete scanner for the entire Lox lexical grammar. Fire up the REPL
and type in some valid and invalid code. Does it produce the tokens you expect? Try to come up with
some interesting edge cases and see if it handles them as it should.

2 - BB T — MBS - M E N LoxiaA1B% - BOIREPL - BIA —EBUFALHHIKLT -
BEEME VIRAMEMNENERT ? ERLE - EEBNARER - BT EEELEMTAEES] -

A —EPER - XL ERTRA " (scanning) "F1 "aA 2 #r(lexing)" ("% % #r(lexical analysis)" 891

M) - BEUENLEZEWinnebagos—H X - BRELLMIFRE/NNNIE - BLATA "HiE SKIELANEE
EPERRGBERBZFRHFHERNFTPEINERNEE - 24T - "lexing "R EME - WFERFHBREE - I

£ WEXHESRARNGERFENSE AERFRPRODINABNMNE - Bt - XM RBEAR OB
i - A2 - WFIEEAARE - HERUNIX sysexts hSAXXHPENXHNAE - XEFKELEIMN

741932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82

craftinginterpreters_zh.md 2024-09-25

REBOMENRA - 23 REX B RFHHEIRNIREPL(A = Brebel - 1B�Ap) - BRATREKEB TLisp - LM
LispIEEE R - IAF|EL/LNANEREHTEI MRERAIBA@INAIT - SE—
THA - KE - HEER - RAEBHIHBRIT - MR TEXAZ ITXMERS RMNEVENREER
EZR - BEBREXRENEESE BASMBRANEEEBHARA - BEREEZEAR - A5 HE—RIIjloxi
MHEERWL - RERIECIHREET BANTABWR/NERR KR XERTERITT - 26 B8 FF
SBLERBATASLENENER - XAEZEMROTIERD 2 A7 —LiRiELIDSUEEFEE AT NE - MEX
HHRFEEABHREZE - DREENKE - AfESSIcNUfislEaxX L T - AtEXEHFEEE
A4 - BECLEERXEHHITEFNENRTE - oL RBSHRRATHIME - XITERBIE - B0
It - A - REARREZE@BFLMRERTASINNE - RAIBEXFEM - KIHIRCMARASHIMERRE
B - WTF LR - RIEERATENEEE LNNEE/ DML - A8 BERBOLOENBICHMXAZEN - L
HEYTEBABHEEL 2B RRSTNIBEEBARE - B1RS0E - BN PBLER BB - Compilers:
Principles, Techniques, and Tools(B IR A" P BREHBISEF - A9: Lexi2HMike LeskFEric Schmidttl
B - 20 RN EEARNITESKAErc Schmidt - BA AR R FEEBS2BEVENBENNE Y
B BREMNGPEDEEF—MNBRIZAES - MO0 EMERZANAFSSAZR—AFHNLBXE - BXHF

HEADESERNET R PRAE 7o REES BE—ARF - BIFEFEHREE M1 BNER
BRA2RAE/E? B - HAIZEARR - M2 AR ERIT - TAM B MRIRE - G
EEAEET NEMNEGER - M3 BARMNIASREZAZRAMBFFEHE - IS

= AR—M = FEE - ik - B—NEZI N NAIHFFESE 0 c AKKD - EREH

B REEE—TABNEEER - B - IRFNNEEHF ERMFEER X
Bt - BARSHRERETIEBR - HNTLEBEN FARFF=EEN—E 2 RERX D)
A - BEEZRE C ERIDRZE R ES UFA—2L - TR

Ba BEBRERHSTERETE - M4 JavatmEEPRIR M 7 Character.isDigit() - XIAF 2N AERVE
B IR ZHAPERRNET - EHBFNEMBNABRENEBRKRA - A5 FARCQLUL VAN
BRI SERERBIENZTH MAFTBEXATNRY - BEXFUMSATIIRERRENTRT - Z%#
AR O] LULREEFBIMAE - RIINARBEZSRERNERTNFR - M6 B— MXERIWKRAICHK

=] - BAME ? XEUR T AESNEDEER - MIRFEFEINZE - BRE T B LR ERAT - 1B
ERXFELOMBNERBIRNEEEY XUEHNFENEER - ik - RALEKRNERR - AEHERS
= - EMEEFEOE REXRFHSERTRTISBEENEAER -

CHALLENGES
>R

1. The lexical grammars of Python and Haskell are not regular. What does that mean, and why aren’t
they?

1. PythonHHaskel BV E AR Z BHA0. Z=HTLER - AT LAZNE ?

* PythonHaskellEIR A 7 X 48 BURKRIIER - FRLLEN D AN 2R R AV ZE R BN EDARIC « X1
FELRESTHALERAE - XEEABNEELAMER -

2. Aside from separating tokens—distinguishing from —spaces aren't used for
much in most languages. However, in a couple of dark corners, a space does affect how code is parsed
in CoffeeScript, Ruby, and the C preprocessor. Where and what effect does it have in each of those
languages?

2 R DlRiIRc—X7n gl ERERZHESPHRBMT LA - #ECoffeeScript,
RubyfICTAAIE SR PR —LLRRMAOM S - ERWBISTMABHER SR - EXEESP - EREFLAME =
75/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82
http://docs.oracle.com/javase/7/docs/api/java/lang/Character.html#isDigit(char)
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%AF%B7%E8%AE%B0%E4%BD%8F%EF%BC%8C%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E9%A1%B6%E5%B1%82%E4%BB%A3%E7%A0%81%E8%A7%86%E4%B8%BA%E9%9A%90%E5%BC%8F%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%8F%AA%E8%A6%81%E6%B7%BB%E5%8A%A0%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%EF%BC%8C%E6%88%91%E4%BB%AC%E5%B0%B1%E4%BC%9A%E8%BF%9B%E5%85%A5%E4%B8%80%E4%B8%AA%E5%B5%8C%E5%A5%97%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%96%E7%95%8C%E3%80%82

craftinginterpreters_zh.md 2024-09-25

B 4%m?

3. Our scanner here, like most, discards comments and whitespace since those aren’t needed by the
parser. Why might you want to write a scanner that does not discard those? What would it be useful
for?

3 RANXEBEMAMBNASZHEIER —F - SEFIRNER - BABRTSRAFTERLE - F2aBR MREE—
PMAEFRLERNTMR ? BATLRE?

4. Add support to Lox’s scanner for C-style block comments. Make sure to handle newlines

in them. Consider allowing them to nest. Is adding support for nesting more work than you expected?
Why?

4~ Nloxid =3B NN CHE) RIS - BREVEEPRRTE - BEDFEINRE -
BN REN XTSRRI TIFES ? AftA?

DESIGN NOTE: IMPLICIT SEMICOLONS
RITEID | RENDS

Programmers today are spoiled for choice in languages and have gotten picky about syntax. They want
their language to look clean and modern. One bit of syntactic lichen that almost every new language
scrapes off (and some ancient ones like BASIC never had) is ; as an explicit statement terminator.

Instead, they treat a newline as a statement terminator where it makes sense to do so. The “where it
makes sense” part is the challenging bit. While most statements are on their own line, sometimes you
need to spread a single statement across a couple of lines. Those intermingled newlines should not be
treated as terminators.

Most of the obvious cases where the newline should be ignored are easy to detect, but there are a
handful of nasty ones:

® A return value on the next line:

if (condition) return
"value"

Is “value” the value being returned, or do we have a statement with no value followed by
an expression statement containing a string literal?

* A parenthesized expression on the next line:

func
(parenthesized)

Is this a call to , Or two expression statements, one for and one for
a parenthesized expression?

76 /932

craftinginterpreters_zh.md 2024-09-25

e A - on the next line:

first
-second

Is this —an infix subtraction—or two expression statements, one for and
one to negate ?

In all of these, either treating the newline as a separator or not would both produce valid code, but
possibly not the code the user wants. Across languages, there is an unsettling variety of rules used to
decide which newlines are separators. Here are a couple:

* Lua completely ignores newlines, but carefully controls its grammar such that no separator
between statements is needed at all in most cases. This is perfectly legit:

a=1b=2
Lua avoids the problem by requiring a statement to be the very last statement in
a block. If there is a value after before the keyword =n¢d, it must be for the . For

the other two cases, they allow an explicit ; and expect users to use that. In practice, that almost
never happens because there’s no point in a parenthesized or unary negation expression
statement.

* Go handles newlines in the scanner. If a newline appears following one of a handful of token
types that are known to potentially end a statement, the newline is treated like a semicolon,
otherwise it is ignored. The Go team provides a canonical code formatter, gofmt, and the
ecosystem is fervent about its use, which ensures that idiomatic styled code works well with this
simple rule.

* Python treats all newlines as significant unless an explicit backslash is used at the end of a line to
continue it to the next line. However, newlines anywhere inside a pair of brackets ((), | |, or { })
are ignored. Idiomatic style strongly prefers the latter.

This rule works well for Python because it is a highly statement-oriented language. In particular,
Python’s grammar ensures a statement never appears inside an expression. C does the same, but
many other languages which have a “lambda” or function literal syntax do not.

An example in JavaScript:

console.log(function() {
statement();

});

Here, the expression contains a function literal which in turn contains the
statement

771932

https://www.lua.org/pil/1.1.html
https://golang.org/ref/spec#Semicolons
https://golang.org/cmd/gofmt/
https://docs.python.org/3.5/reference/lexical_analysis.html#implicit-line-joining

craftinginterpreters_zh.md 2024-09-25

Python would need a different set of rules for implicitly joining lines if you could get back into a
statement where newlines should become meaningful while still nested inside brackets.

]

® JavaScript's "automatic semicolon insertion” rule is the real odd one. Where other languages
assume most newlines are meaningful and only a few should be ignored in multi-line
statements, JS assumes the opposite. It treats all of your newlines as meaningless whitespace
unless it encounters a parse error. If it does, it goes back and tries turning the previous newline
into a semicolon to get something grammatically valid.

This design note would turn into a design diatribe if | went into complete detail about how that
even works, much less all the various ways that JavaScript's “solution” is a bad idea. It's a mess.
JavaScript is the only language | know where many style guides demand explicit semicolons after
every statement even though the language theoretically lets you elide them.

If you're designing a new language, you almost surely should avoid an explicit statement terminator.
Programmers are creatures of fashion like other humans, and semicolons are as passé as ALL CAPS
KEYWORDS. Just make sure you pick a set of rules that make sense for your language'’s particular
grammar and idioms. And don’t do what JavaScript did.

NENEFRCERBRBZNESREEAR Y - BATEREKS - TEFEECHNBEERTE - A

RAE - T E—RIESHMARE— NI HIEES (—BEEMNES - LHIIBASICMERAE) - B2 1F
NERXEIDERR °

T

BX - B AEXRNMITHEERBEYERT - XEFMRNBEXN' ZEREERNE D - REAZLHF
BOHZ2ER—1T - BEERRFEN—NE9T RAZ1T - XERRNRITTAN ZBAIELERT -

i

AZHHENN ZRBBERTHERTRES AN - BBV BNRNIER

o REMEHEM1T:

if (condition) return

"value"
"value"@ZREIMEN ? A2 HBINE—TZEW O EHREEE—ITNFEFEFEENRER
EE) -

s MTThERRRFBSHREN :

func
(parenthesized)
XZE— X HEA #ERPRANEY - —PMAT - —TMHTEBESEE
=7
o« BEF—T

7817932

https://www.ecma-international.org/ecma-262/5.1/#sec-7.9

craftinginterpreters_zh.md 2024-09-25

first
-second

X2~ PREREA CRERDNRBNED - —DE B EY

HRfA ?

EFBEXLEERT - BEEERMIFIEANRT - BEBUNHE - EUEAZHAPRBENNE - £F
BRIEST - AR ARNHMNFREPLRTHEORS - TEZ/LDMEIF

* LuacEREE ITH - BE2FAuiES Y ErEE - AIERZSHER T - BYZEREAAFESR
- XBRRBETEEEN :

a = b =
LuaZEk BYE— TRPHRE—FRIEG - NMER O - MWRERBFend ZH]
ZEBE—ME EMELAERT * T HEHMAME LK - LuatiF XN FEHEZER

FERE - #REP IMBEREAAZEE BNENMNESH—TEERBABGIREELARN -

* GoRAEFMERPRMRIT - WREE AL ZAEIMIT - AR ZIERCE MO BEERIETN DY
ROEBE 7 — - MFHRITIAD S - ENBMREE - GoBMEH 7 — MEH BN ERR Fgofmt,
BIMRUEESZOFERRTEAT - XBR 7RSI CEESRE BB NME LN -

o PythonFFTEMITHFEMANB - RIFETREAPBBIORFIDNELESE N —17 - B2 - £5(
5 { HNRYE AR ER R B RS - RANRBNEERE TEE -

XEANXS Python RBEM - BEANER—MSEERBDEINES © F7IZ © Python FIEAIRLR V1B DX
MAZHIMEREAN - GBS 2L - BIFZHEMEA "lambda "SR B FEIEARNESN ALK -

€ —“NavaScript 9B+ :

.log(function() {
statement();

D

X8 - FZABE—THRYFEE MEXTRAFEENES 54,

MREBRHAA-NMREERSANEDD - AFEHBEKREFNMITEAEXH - IBAPythonFHEE—EAL
BRI TVEZITRIRN Alambda,

* JavaScriptf"Bm 2 SEA' MU ZEIENFTE - EthESANKSERTFHEARN - REDH
MOFESTEYRNZRBE - MISHRRIEEHER - BRIBNRITHEIALTEXZESD -« RIF
BEBTHEIR - MRBE T - ERizBEsFk SREZRNRITERDS - DUHIBEIEREE -

MRFSTEHFEMNTAC2WET LR - BAXMRINEARSI TR —RIR R - EARRJavaScript
W' EBRSER NEHAEEMEINER - EE2—HIE - JavaScriptZ2 HATFERNE— (XIEIEEMES

7917932

https://www.lua.org/pil/1.1.html
https://golang.org/ref/spec#Semicolons
https://golang.org/cmd/gofmt/
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E7%8E%B0%E5%9C%A8%E4%BD%A0%E6%98%8E%E7%99%BD%E4%B8%BA%E4%BB%80%E4%B9%88Python%E4%B8%AD%E7%9A%84%60lambda%60%E5%8F%AA%E5%85%81%E8%AE%B8%E5%8D%95%E8%A1%8C%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%BD%93%E4%BA%86%E5%90%A7%E3%80%82
https://www.ecma-international.org/ecma-262/5.1/#sec-7.9

craftinginterpreters_zh.md 2024-09-25

ABHE) WES BHFSNEERERESREGESIXNERNS BRESHIDIL LAY
HHHS -

MRBERRU—FPHWES - WIFUUSENZBERERAEXNEDLLT - BFAMEMALZ—F2NE
¥ - 3 SHALL CAPS KEYWORDS(ZABRBEF)—HEBLTN 1 - RAZBRWRCRE T —EERTRES
R EEEN SEMNEN T - REE R avaScripthOBH -

5.Representing Code "R
To dwellers in a wood, almost every species of tree has its voice as well as its feature.
—— Thomas Hardy, Under the Greenwood Tree

WTHRMPHWEERE - L FE—PNMEEENFENER -

In the last chapter, we took the raw source code as a string and transformed it into a slightly higher-
level representation: a series of tokens. The parser we'll write in the next chapter takes those tokens
and transforms them yet again, into an even richer, more complex representation.

ELE—8F BMNUFFEEARRRERCE - FFRERRA— IS RBINERTR | —RINEEFS - FA)
EN—EPERERHENSR IFXEEENCBRERANEFE - BERNRFER

Before we can produce that representation, we need to define it. That's the subject of this chapter.
Along the way, we'll cover some theory around formal grammars, feel the difference between
functional and object-oriented programming, go over a couple of design patterns, and do some

metaprogramming.

EHMNEBREXMERAEAZE - HMOFBRANEBITEX - FMEAENETNM - EX—TEPF - HAF
BSEAEEART - EEIEHE RREHEAAFENEROXNRREENVXS - INA/VFRIES - AT —
LITRE -

Before we do all that, let's focus on the main goal—a representation for code. It should be simple for
the parser to produce and easy for the interpreter to consume. If you haven't written a parser or
interpreter yet, those requirements aren’t exactly illuminating. Maybe your intuition can help. What is
your brain doing when you play the part of a human interpreter? How do you mentally evaluate an

arithmetic expression like this:

EMXESEZA - HNEREI-TFTEBZER—RENRTER - ENZSZTRT=RER - 5 TRERE
H - MREERBREIERNAERE - BARFRFTRKEMA ARG RAROR - FIREVE D o] AFS
IR - SRIVE— D ALBRESNAEBE - REOAREMTA ? ROTELBHERXFNERREDN

Because you understand the order of operations—the old “Please Excuse My Dear Aunt Sally” stuff—
you know that the multiplication is evaluated before the addition or subtraction. One way to visualize
that precedence is using a tree. Leaf nodes are numbers, and interior nodes are operators with

branches for each of their operands.

80/932

http://craftinginterpreters.com/scanning.html
http://craftinginterpreters.com/parsing-expressions.html
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82
https://en.wikipedia.org/wiki/Order_of_operations#Mnemonics

craftinginterpreters_zh.md 2024-09-25

HAIRE LR 7 BIEMIRFF——LLATRY Please Excuse My Dear Aunt SaIIy"Z’*’\Z RAIEIFEE MR RE
ZHH}M‘I B— M AU USRI AERATAE - BREEAMA3 - HF T REZHF AATREBE
CEBTRNESNMRFEE NN — X -

In order to evaluate an arithmetic node, you need to know the numeric values of its subtrees, so you
have to evaluate those first. That means working your way from the leaves up to the root—a post-order
traversal:

ZRUE—NTEATR - RBEZNECHFNOBE - FIURDASTHEFMNER - FEREEMNH T R—
BUHEIRT R— /AR

P % C. ©. L

S 7S T

+ 4 + 4 -1 7|

- (DX

by, W
3

2

w
[NI

A

o
!‘\\

vl

AMNSTEMN S - SCitEEH FEIEE 2 ;
BIMEILTE -+ ;

CEFX HE&-;

D.RARBHEE -

If | gave you an arithmetic expression, you could draw one of these trees pretty easily. Given a tree, you
can evaluate it without breaking a sweat. So it intuitively seems like a workable representation of our
code is a tree that matches the grammatical structure—the operator nesting—of the language.

MRBEAR—DEARREN - RIURESME L XFN ; BIR—RN - (RO OIUEARDMHTUHE -
It - NEWEE - BONABH—FITRERRCAZ—RESESHEREY (ZEFRE) MR -

We need to get more precise about what that grammar is then. Like lexical grammars in the last
chapter, there is a long ton of theory around syntactic grammars. We're going into that theory a little
more than we did when scanning because it turns out to be a useful tool throughout much of the
interpreter. We start by moving one level up the Chomsky hierarchy ...

BARMNFBEERBAEM (BXMEEZMT 4 - B E—EFNELEE—F BROAEENE—KEEE - &
MNEBELEZAMERERNRABSBENEMEXNEL - BACEZR M BESRNRS M SHE—TMEHENIE -
HONVENTEFREERPE LT —R......

5.1 Context-Free Grammars
51 F NXFEBRIEE

In the last chapter, the formalism we used for defining the lexical grammar—the rules for how
characters get grouped into tokens—was called a regular language. That was fine for our scanner,

81/932

https://en.wikipedia.org/wiki/Order_of_operations#Mnemonics
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Chomsky_hierarchy

craftinginterpreters_zh.md 2024-09-25

which emits a flat sequence of tokens. But regular languages aren't powerful enough to handle
expressions which can nest arbitrarily deeply.

FEE—F% BNAREXEDREE (FRFNTRDERNEEFCHMN) WK R - WA IEIEES - X
T RHMWFERRERMT A0 - RABRENZE— M RFREAINCFS - BIENESEABEK - X
RIBEPERRERENREL -

We need a bigger hammer, and that hammer is a context-free grammar (CFG). It's the next heaviest
tool in the toolbox of formal grammars. A formal grammar takes a set of atomic pieces it calls its
“alphabet”. Then it defines a (usually infinite) set of “strings” that are “in” the grammar. Each string is a
sequence of “letters” in the alphabet.

BIMAEFTE—NERANITE - L2 L FXFELRIEE(context-free grammar, CFG) - BEEEYNEEBEZN T EF
PR HRENTEH - —MEREEEZRE—AHRFRE - BIRZA "alphabet (FEFER)" - RRBENX 7 —

H(BEELRA) "strings (FFE) " XEFHFR "BZ"EBEP - ENFRHBHEFEERDP "letters (F
&) "R -

I'm using all those quotes because the terms get a little confusing as you move from lexical to syntactic
grammars. In our scanner’s grammar, the alphabet consists of individual characters and the strings are
the valid lexemes—roughly “words". In the syntactic grammar we're talking about now, we're at a
different level of granularity. Now each “letter” in the alphabet is an entire token and a “string” is a
sequence of tokens—an entire expression.

EXBEFEASISERNIAMMNEEREOEEEN - XERERUERAERER - TR0 S1EED -
alphabet (83K) HEMNERFAM - strings (FFE) EEMMWIER (EBMNIE - 2" 8E") - ®IENE
HaEEBED - BN TP RENREKTE - TWE - FEERFH—Nletters (F5F) "B— N EMIEENR
ic - M"strings (/&) "@— MDA RI——DNEEPFRAH -

Oof. Maybe a table will help:

i EARECREE R TIERE

Terminolo N E
i Lexical grammar idj% Syntactic grammar 5%

N

The "alphabet” is.. .. Characters Tokens
FHER 7R 1EAMRIC
A “string” is. .. Lexeme or token Expression
FRE BRI EERIC KA

It's implemented by the... Scanner Parser
S HiEgs fRtfras

A formal grammar’s job is to specify which strings are valid and which aren’t. If we were defining a
grammar for English sentences, “eggs are tasty for breakfast” would be in the grammar, but “tasty
breakfast for are eggs” would probably not.

BB EN TIFZIEEMLEFTTHEN - MLELY - MRIANERNZEBDFENX—"NEE - "eggs are tasty
for breakfast "2 EIZTEIBET - 1B "tasty breakfast for are eggs "AIBEA = -

827932

https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar

craftinginterpreters_zh.md 2024-09-25

5.1.1 Rules for grammars
5.1.1 BEMN

How do we write down a grammar that contains an infinite number of valid strings? We obviously can't
list them all out. Instead, we create a finite set of rules. You can think of them as a game that you can

“play” in one of two directions.

HNWEABEF —MEELERZANFFTENERRNEARTE——HEERK - Bk - iS22 7 —HBROM
- ARAIBHE B8R M —I1a RO LIEARm DN 7 m Ir X -

If you start with the rules, you can use them to generate strings that are in the grammar. Strings
created this way are called derivations because each is derived from the rules of the grammar. In each
step of the game, you pick a rule and follow what it tells you to do. Most of the lingo around formal
grammars comes from playing them in this direction. Rules are called productions because they

produce strings in the grammar.

MERBMAAMMATF - ARAILUB BN ZH4EEFPNFRE - LXTMA BN FFERMAES (RER) -
HABNFRFEHMENBEZNN P #SFEEKN - EHRNE—DP - REBERE-FNAN - AERBEEIFR
NEM - BEEEEZNARE D ESEMEXT A - MURARAER - RABIER 7B EPRFR
=g

Each production in a context-free grammar has a head—its name—and a body, which describes what

it generates. In its pure form, the body is simply a list of symbols. Symbols come in two delectable

flavors:

FIXEREEZFHENERNEE—LER (HBIR) MEREERRNBSNESF - EERPOTENLEE - £
BREB—2IFS - FSEHM
* A terminal is a letter from the grammar’s alphabet. You can think of it like a literal value. In the

syntactic grammar we're defining, the terminals are individual lexemes—tokens coming from the

scanner like or

These are called “terminals”, in the sense of an “end point” because they don't lead to any
further “moves” in the game. You simply produce that one symbol.

* A nonterminal is a named reference to another rule in the grammar. It means “play that rule
and insert whatever it produces here”. In this way, the grammar composes.

s BIMFRBAFERFN—1FE - ROLIBERER—1TFHE - ERINEXREEP - LUEFEM
U REE—RBAERNEARIC - B0 11 B o

HLERRFIRAN"BRIERF" "RNVER" - RACTAZSBENPEEUE—L/ "hE" - (RRAZHE LMt
ETH—NHFS -

o FERIEFEMNEZIPHZ —FMUNmBESIA - ENREE "NITIRAN - RENEENETREEA
XE" o X BERMMA T

There is one last refinement: you may have multiple rules with the same name. When you reach a
nonterminal with that name, you are allowed to pick any of the rules for it, whichever floats your boat.

83 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82

craftinginterpreters_zh.md 2024-09-25

#ABERR—IHT ROLIBEZ P EZOMN - SIRBR — P zRFRFFR TN - RYLIABERET—
M - BEIRER -

To make this concrete, we need a way to write down these production rules. People have been trying to
crystallize grammar all the way back to Panini's Ashtadhyayi, which codified Sanskrit grammar a mere
couple thousand years ago. Not much progress happened until John Backus and company needed a
notation for specifying ALGOL 58 and came up with Backus-Naur form (BNF). Since then, nearly
everyone uses some flavor of BNF, tweaked to their own tastes.

ATIEXANAMEREE - BMNFE—FANRE FXLEERAN - AMM—ERXEFIEEERE - DJLUEHE
PaninifAshtadhyayi - MEJLTERRE 7 EEE - BERIAEH-EBEHT (John Backus) AT FE—1FEHH
ALGOL 58755 - iR T ERATEX (BNF) - 7B TRAKHE - NBRIEE - L FE M AEEFEFABNFHY
BT ARIEECHBREEHT 7IBEAS,

| tried to come up with something clean. Each rule is a name, followed by an arrow (-), followed by a
sequence of symbols, and finally ending with a semicolon (;). Terminals are quoted strings, and
nonterminals are lowercase words.

HHERE—MEENER - BIHNEHE—PER - BR—1FL (-) - RR-R2IFS - KEUNS
() &R - BUEFEHSISHNFHSE - FRUEFZE/)NEMEIS -

Using that, here's a grammar for breakfast menus:

PULAEN - FTEE—1MREXREE

breakfast - protein "with" breakfast "on the side" ;
breakfast - protein ;

breakfast - bread ;

protein -» crispiness "crispy" "bacon" ;
protein > "sausage" ;

protein - cooked "eggs" ;

crispiness » "really" ;

crispiness » "really" crispiness ;

cooked > "scrambled" ;

cooked -» "poached" ;

cooked > "fried" ;

bread - "toast" ;

bread > "biscuits" ;

bread -» "English muffin" ;

We can use this grammar to generate random breakfasts. Let's play a round and see how it works. By
age-old convention, the game starts with the first rule in the grammar, here . There are
three productions for that, and we randomly pick the first one. Our resulting string looks like:

NI DUER X MNEERBIEMREE - Bl)KI—8 - EECEOTLIERN - RBENE - HRNEEPRY
F—IHINFT e - XEZ c BA=TMEMRT - HIBETEERESE -1 - BINNERNFTEEXHH ¢

84 /932

https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82

craftinginterpreters_zh.md 2024-09-25

protein "with" breakfast "on the side"

We need to expand that first nonterminal, , so we pick a production for that. Let's pick:
BNBZERASE —MIELLR - FMBHMNBEEEXNRNA—MERT - ik

protein -» cooked "eggs" ;

Next, we need a production for , and so we pick . That's a terminal, so we add that.
Now our string looks like:

ERR - BNFE RERT - R c XB—MELUER - HOMLEE - WERNHNFRS
BRER -

"poached" "eggs" "with" breakfast "on the side"

The next non-terminal is again. The first production we chose recursively refers
back to the rule. Recursion in the grammar is a good sign that the language being defined
is context-free instead of regular. In particular, recursion where the recursive nonterminal has
productions on both sides implies that the language is not regular.

—PNIFRLEFREZE C AR RN £t iEmE 7 M6 - BED
E’\JL‘EIzE—/l\?E'tl?E’\J’fm?ﬁ C RIFTEXRNESZ L FXERY - MAZIENR - FHIZ2 - BAFFRIEFRAER
BERANET BEEREESAZEN -

We could keep picking the first production for over and over again yielding all manner of
breakfasts like “bacon with sausage with scrambled eggs with bacon ... " We won't though. This time
we'll pick . There are three rules for that, each of which contains only a terminal. We'll pick

“English muffin”.

FATOI DA % HE—PMERT - UMEESTTEEHFEE © "bacon with sausage with scrambled
eggs with bacon.. "o [1FEER BANRE XENZASEI U baconFFLHNZERE - R IsERIR] B
BIASZEM - X—RENEREF » A= M MNIAN - 8NN REBE—NEIER - FAIEE "English
muffin",

With that, every nonterminal in the string has been expanded until it finally contains only terminals and
we're left with:

BHFE—FK FHEPNE-—IFRUEFEEET 7 - BRREREI LR - HATHRRT -

857932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82

craftinginterpreters_zh.md 2024-09-25
breakfast

\

protein “with” breakfast ‘on the side™

NN/

cooked ‘(eggs" bread
/] N/

poached eg.gs with English muffin on the side

Throw in some ham and Hollandaise, and you've got eggs Benedict.
BN E—EXBEMNE=% - (RS2 7 AHE -

Any time we hit a rule that had multiple productions, we just picked one arbitrarily. It is this flexibility
that allows a short number of grammar rules to encode a combinatorially larger set of strings. The fact
that a rule can refer to itself—directly or indirectly—kicks it up even more, letting us pack an infinite
number of strings into a finite grammar.

BHERNBABEZNERONNE - HNHFRZERER 7 —1 - EERXMRIEUFADEEAMNIK
MBEAEGUHERNFTEE - —MININUEZENEETSIHTEC - ERERS FERSRENE - eIy
VIR T IRZHF R B2 — P AEREES -

5.1.2 Enhancing our notation

5.1.2 {8ENS

Stuffing an infinite set of strings in a handful of rules is pretty fantastic, but let's take it further. Our
notation works, but it's a little tedious. So, like any good language designer, we'll sprinkle some
syntactic sugar on top. In addition to terminals and nonterminals, we'll allow a few other kinds of
expressions in the body of a rule:

ELEMNHNPILURER LIRS FFEERIFUHN - BEE2RNUUER—F - BIINFTS2ITHR - BB
RZIK - L BB RENESRIUFE—F - RINSELEH—EEARE - [R 7R EFMIFLIERFZI
AR EMMNBEAF P A - LEEMERRRET -

. Instead of repeating the rule name each time we want to add another production for it, we'll
allow a series of productions separated by a pipe ().

BT —2IBEEERT()NRBIUERT - BEESREMS —MERANEENN R -
bread » "toast" | "biscuits" | "English muffin" ;
. Further, we'll allow parentheses for grouping and then allow | within that to select one from a

series of options within the middle of a production.

IESN - AR AR SHTOE - REESHEP IR | RN —ZRINEMA PRE—1 -

86 /932

craftinginterpreters_zh.md 2024-09-25

protein » ("scrambled" | "poached" | "fried") "eggs" ;

. Using recursion to support repeated sequences of symbols has a certain appealing purity, but
it's kind of a chore to make a separate named sub-rule each time we want to loop. So, we also
use a postfix * to allow the previous symbol or group to be repeated zero or more times.

ERBEARZF T SHNEERIE—ENRSI] - BERFNERANE - BEUEZ— LMD HR
TN - BREBAT - L BT ERESR KRR — M SHAEEETRHIZR -

non

crispiness » "really" "really"* ;

. A postfix + is similar, but requires the preceding production to appear at least once.

&R+ SUEELL - BERFTENERAZDEHA—RK -

crispiness -» "really"+ ;

. A postfix 7 is for an optional production. The thing before it can appear zero or one time, but

not more.

B8R 7 RN ERT - BZARERNIUEIERE—R - BABELIAZR -

breakfast -» protein ("with" breakfast "on the side")? ;

With all of those syntactic niceties, our breakfast grammar condenses down to:

BYFIBXEEZE LRI - BN EBEEREN :

breakfast -» protein ("with" breakfast "on the side")?
| bread ;

protein - "really"+ "crispy" "bacon"

| "sausage"
| ("scrambled" | "poached" | "fried") "eggs" ;
bread » "toast" | "biscuits" | "English muffin" ;

Not too bad, | hope. If you're used to grep or using regular expressions in your text editor, most of the
punctuation should be familiar. The main difference is that symbols here represent entire tokens, not
single characters.

871932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82
https://en.wikipedia.org/wiki/Regular_expression#Standards

craftinginterpreters_zh.md 2024-09-25

RHRBLEATLHR - ﬂD%W\?f VEMgrep MR ARIER P REMAENRAT - KZBBRITFRT SN IZZHN
B - FBXHET - XENFSHREMRC - MAZEDFR -

We'll use this notation throughout the rest of the book to precisely describe Lox's grammar. As you
work on programming languages, you'll find that context-free grammars (using this or EBNF or some
other notation) help you crystallize your informal syntax design ideas. They are also a handy medium
for communicating with other language hackers about syntax.

ERBHWERED P - BIVPRHEARTPRERBA M ELLoxFNEE - SLERRBESH - G&MEIX
TRIIEE(E R ILIE A EBNFE B fth — L5755 5) B IS B AEOR FR IE RO E R IR i BB BIAE - B2 5EM
BEREBEMBENTEEN -

The rules and productions we define for Lox are also our guide to the tree data structure we're going
to implement to represent code in memory. Before we can do that, we need an actual grammar for Lox,
or at least enough of one for us to get started.

?*Zﬂ‘]?ﬂLox%)‘(ﬁ’\ﬁ)ﬂU“J%Diﬁftmi':%%ﬂ]Jg%iijﬂbﬁ’]m@ﬁéﬁff@ (BTRRAEFEPHINRG) 09366 - Tt
C BNFEALoRE— MBI - HEBZVBEE—INEB LFHEEL -

5.1.3 A Grammar for Lox expressions

5.1.3 Lox®RARiBZE

In the previous chapter, we did Lox's entire lexical grammar in one fell swoop. Every keyword and bit of
punctuation is there. The syntactic grammar is larger, and it would be a real bore to grind through the
entire thing before we actually get our interpreter up and running.

EE—8F FA—SEAMTH 7 LoxWERIELEE - BEE8—TMRRENITRES - BXEENNESE
A MREHNEEEDHBTERRZE - MEBELEEMEAET - BRATH 7 -

Instead, we'll crank through a subset of the language in the next couple of chapters. Once we have that
mini-language represented, parsed, and interpreted, then later chapters will progressively add new
features to it, including the new syntax. For now, we are going to worry about only a handful of

expressions:

MR - FAPFEENRONEPERZESH— N FE - — BRI DEIR

BEHITRR - BT
B B2EZENETPHELSNERNHETE - SEH0EE - WE - %ﬂ]‘:‘;‘%l))l

XL
. Literals. Numbers, strings, Booleans, and

FHE - #F F/FH - mREMAIL

HelD

. Unary expressions. A prefix | to perform a logical not, and - to negate a number.
—TRER - BIR MITREFRCE - WHFKK -

. Binary expressions. The infix arithmetic (+, -, *, /) and logic operators (==, | =, <, <=, >, >=) we
know and love.

TRZBN - HNBEMENPBEARR () MBEBIZER () o
. Parentheses. A pair of (and) wrapped around an expression.

88 /932

https://en.wikipedia.org/wiki/Regular_expression#Standards
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

craftinginterpreters_zh.md 2024-09-25

BS - REBIEN—X (F1)
That gives us enough syntax for expressions like:

XELNRENRB” T EBINEZL - FIW0

1- (2 * 3) <4 == false

Using our handy dandy new notation, here’s a grammar for those:

ERBEMNHTS - TESEANERR

expression -» literal
| unary
| binary
| grouping ;
literal > NUMBER | STRING | "true" | "false" | "nil" ;
grouping > "(" expression ")" ;
unary > ("-" | "I") expression ;
binary - expression operator expression ;
operator SRR I E L B B L Bt
R R N R

There's one bit of extra metasyntax here. In addition to quoted strings for terminals that match exact
lexemes, we terminals that are a single lexeme whose text representation may vary.

is any number literal, and is any string literal. Later, we'll do the same for

XEE—RBIITIEE - R SBRERALENLLEFTEMEISI - ITENRRE AL EFIAT

F REREMNARR RSN ABEZBRAR - ERUHFFHE - ERUFHTEFHE
- HE - BAPEX HATEAFRAIEAS,

This grammar is actually ambiguous, which we'll see when we get to parsing it. But it's good enough

for now.
BMBALG EE2BAENE - RIOERFEHRLBEIR—= - BIUERCEEBT -
5.2 Implementing Syntax Trees

5.2 SKHLE AN

Finally, we get to write some code. That little expression grammar is our skeleton. Since the grammar is
recursive—note how . ,and all refer back to —our data structure
will form a tree. Since this structure represents the syntax of our language, it's called a syntax tree.

CRMNBE-LERES - J\/J\E’J%ifﬁiéfiﬁii%?ﬁﬂ‘]E’]%?ﬂ% HTELZEE ,
,%D %Bz?elil JE—1RA - BN j(Aéi7F/]1t§—E?ﬁ1|]lm:|
B9IEE - FRRAIUSIE AR A9,

89/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Our scanner used a single Token class to represent all kinds of lexemes. To distinguish the different
kinds—think the number versus the string —we included a simple TokenType enum. Syntax
trees are not so homogeneous. Unary expressions have a single operand, binary expressions have two,
and literals have none.

AR ER— D2 —8) Token ZEHRRRFIAREER - AT RO ARNFE—RBHF 103 FMFF
£ —RAEE 7 — P E R TokenType 2 - FAMFFAZIBARRNA10 - —TTREBARBE—TE
R - I oREBAARNMEFER - mMrmELRE -

We could mush that all together into a single Expression class with an arbitrary list of children. Some
compilers do. But | like getting the most out of Java's type system. So we'll define a base class for
expressions. Then, for each kind of expression—each production under —Wwe create a
subclass that has fields for the nonterminals specific to that rule. This way, we get a compile error if we,
say, try to access the second operand of a unary expression.

B JLFREXENBREZSE - PN ESEEFRIIERN Expression 25 - BERERSXAM - BRFETR
AHAavafBE 241 - I AREANEN —TEE - K5 - WTEB-RERX =
—PMERA—RMNE—IFE - PN FERAZINMFERNIFLLEFFER - X% - IRDENHB—&RE
AWE_NERIEH - MBI —MREERR -

Something like this:

ESDESCE N N

package com.craftinginterpreters.lox;

abstract class Expr {
static class Binary extends Expr {
Binary(Expr left, Token operator, Expr right) {
this.left = left;
this.operator = operator;
this.right = right;
}

final Expr left;
final Token operator;
final Expr right;

Expr is the base class that all expression classes inherit from. As you can see from , the
subclasses are nested inside of it. There’s no technical need for this, but it lets us cram all of the classes
into a single Java file.

Expr2FiARIETRMHERIEL - N o UEER - FREREETHNE - XERKRERENE - BB
VAR A SSEE S —NavaX 5 -

5.2.1 Disoriented objects
90 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82

craftinginterpreters_zh.md 2024-09-25
5.2.1 JFEM@YIE

You'll note that, much like the Token class, there aren’t any methods here. It's a dumb structure. Nicely
typed, but merely a bag of data. This feels strange in an object-oriented language like Java. Shouldn't
the class do stuff?

MZERR] - (REAR) BTokenZk—#F - HPxBEETE - R2—MREBENEY - HPRFEFE -
BNNZE—EHIE - XElavaXFHNERNRESPBALESHE - MELEAZN R H—LF/ES ?

The problem is that these tree classes aren’t owned by any single domain. Should they have methods
for parsing since that's where the trees are created? Or interpreting since that's where they are
consumed? Trees span the border between those territories, which means they are really owned by
neither.

D) T XEMEAB T ELULMRNE - MEEBRTHHEOIZRN - BRI AR NI ? &
EAMEMEBRRNMESOER - HhEARRRHEBRBRNITE ? MBS M XENN ZERAFT - XEK
Bl EARTEE—7 -

In fact, these types exist to enable the parser and interpreter to communicate. That lends itself to types
that are simply data with no associated behavior. This style is very natural in functional languages like
Lisp and ML where all data is separate from behavior, but it feels odd in Java.

i

Kb XERBNTEERN (LB TSRERSRER H 777 - EMES TIERZERNBIEMIERER
TARRE - X XABELsp ML FRRHENESPEIEERN - BNEREESF - A/ENTA
HIENHW - BEEJavaPRRERETE -

Functional programming aficionados right now are jumping up to exclaim “See! Object-oriented
languages are a bad fit for an interpreter!” | won't go that far. You'll recall that the scanner itself was
admirably suited to object-orientation. It had all of the mutable state to keep track of where it was in
the source code, a well-defined set of public methods, and a handful of private helpers.

RN RENZHEENIELRRERRIT "BIE | BEONRNESAESIENERES | "RAIPBLAT W -
BOJBERICS - AR ABFEECHONR - CESMANTERSRRIREERREPNMUE - —HEX
REWAKTTENVENDBRHENTTE -

My feeling is that each phase or part of the interpreter works fine in an object-oriented style. It is the
data structures that flow between them that are stripped of behavior.

HHRTZ - EERNRONET - BRERNE NN ERSEDHELS LF - _ATECI ZERIEIES
WHB TR -

5.2.2 Metaprogramming the trees
5.2.2 TI=MTimiz

Java can express behavior-less classes, but | wouldn't say that it's particularly great at it. Eleven lines of
code to stuff three fields in an object is pretty tedious, and when we're all done, we're going to have 21
of these classes.

Javatl BIERZETIT AR - BRERERFIER - B11TTHBE—INEPERINFREMEIAZIRA - H3A]
ERTEMRE - BATRBE21DNXFRIL -
91/932

craftinginterpreters_zh.md 2024-09-25

| don't want to waste your time or my ink writing all that down. Really, what is the essence of each
subclass? A name, and a list of typed fields. That's it. We're smart language hackers, right? Let's
automate.

HARBIRAVIS B A RKIEXELE R R - EW - 8D FRNOARRZ2FT 22— DB —1PFERIIRM
B - RMNZRMESER - NIEHNEBENEM2,

Instead of tediously handwriting each class definition, field declaration, constructor, and initializer, we’'ll
hack together a script that does it for us. It has a description of each tree type—its name and fields—
and it prints out the Java code needed to define a class with that name and state.

SEZEIMFESMENENX —T—E B~ WERBMYBER - HI—EBRE—THARTHES - BEAB
BRMRE (RN FER) Wi - FITEHEX BB RBA ARSI EPAERJavaftis -

This script is a tiny Java command-line app that generates a file named "Expr.java”:
ZHAZ— 1B avaits R TN ARER - BEEK—1TRR" Exprjava"fI> 4 :

tool/GenerateAst.java - BIZEHT X 1

package com.craftinginterpreters.tool;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.List;

public class GenerateAst {
public static void main throws IOException {
if (args.length != 1) {
System.err.println("Usage: generate_ast <output directory>");
System.exit(64);

}
String outputDir = args[0@];
}
}
Note that this file is in a different package, instead of . This script isn't part of the

interpreter itself. It's a tool we, the people hacking on the interpreter, run ourselves to generate the
syntax tree classes. When it's done, we treat “Expr.java” like any other file in the implementation. We
are merely automating how that file gets authored.

AR BN XHES—ITEF - Z mAZ c BRI AAAZERERETEN -8 B2—1PI1E -
?*zﬂ]LﬂJfﬁ’——?ﬁﬁxa%E’J/\ B BT EMAREM B AN - SBHfE - ?ﬂzﬂ]?E”ExprJava"'ia—EMPEI’JH X
HTHEBAE - BNRAZEME Y XERIEMTST -

To generate the classes, it needs to have some description of each type and its fields.
NTERE AFENEMRAFREFERHIT LR -

tool/GenerateAst java - & main() 7.2 2570

92 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A

craftinginterpreters_zh.md 2024-09-25

String outputDir = args[@];
// FGER D F4a
defineAst(outputDir, "Expr", Arrays.asList(
"Binary : Expr left, Token operator, Expr right",
"Grouping : Expr expression",
"Literal : Object value",
"Unary : Token operator, Expr right"

));
/] FgERSLER

For brevity's sake, | jammed the descriptions of the expression types into strings. Each is the name of
the class followed by : and the list of fields, separated by commas. Each field has a type and a name.

AEEEN - FNRBARBEWEAIA T FRHED - B—IHEEENBR - [IR - MLLESDRIFERS
x - BPFREBE-PREN—DRR -

The first thing needs to do is output the base Expr class.
EEWMNE—HSEEH HEZEExXpr,

tool/GenerateAst.java - # main() 7 A/l .

private static void defineAst

throws IOException {
String path = outputDir + "/" + baseName +
PrintWriter writer = new PrintWriter(path, "UTF-8");

]

'.java";

writer.println("package com.craftinginterpreters.lox;");
writer.println();

writer.println("import java.util.List;");
writer.println();
writer.println("abstract class

+ baseName + " {");

writer.println("}");
writer.close();

When we call this, is “Expr”, which is both the name of the class and the name of the file it
outputs. We pass this as an argument instead of hardcoding the name because we'll add a separate
family of classes later for statements.

FATBAZDREES - Z"Expr' - EREERNBR - L2 THERXEFNRR - HIPFEFEASEE
- MAZXNRMETERS - BABBRANI B DRI — D EBIRAVEE -

Inside the base class, we define each subclass.
EEERNE BINEXENFE -

93 /932

craftinginterpreters_zh.md

tool/GenerateAst java - 7 defineAst() ZELwIN13 -~

writer.println("abstract class

// FIBEL D H YA
// The AST classes
for (String type :

+ baseName + " {");

types) {

String className = type.split(":")[0].trim();

String fields =

type.split(":")[1].trim();

defineType(writer, baseName, className, fields);

¥
/] FIBER LS
writer.println("}"

That code, in turn, calls:

XERCIEERRIERA :

)5

tool/GenerateAst.java - 7 defineAst()/Z BRI -

private static void

defineType(

PrintWriter writer, String baseName,
String className, String fieldList) {

writer.println("”
baseName + " {

// Constructor.
writer.println("

static class + className + extends +

o E

" + className + "(" + fieldList + ") {");

// Store parameters in fields.

String[] fields =

for (String field :

fieldList.split(", ");
fields) {

String name = field.split(" ")[1];

writer.println("

}

writer.println("

// Fields.
writer.println();

for (String field :

writer.println("

}

writer.println("

this.” + name + " = " + name + ";");

")

fields) {
final " + field + ";");

")

There we go. All of that glorious Java boilerplate is done. It declares each field in the class body. It

defines a constructor for the class with parameters for each field and initializes them in the body.

94 /932

2024-09-25

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82

craftinginterpreters_zh.md 2024-09-25

7 - FhBRYavatZ STl ¥ - BERBFEIR 7 BNFER - BAREX T — TSR - AEDMFREHR
S - AEEREPHEYRE -

Compile and run this Java program now and it blasts out a new “java” file containing a few dozen lines
of code. That file’s about to get even longer.

MEREFHCTE Mavale s - ESEM—DHN" Java" X - EPEZTLHTRE - BOXKFLEZLR/ER
A4,

5.3 Working with Trees
5.3 SAIRAN 454

Put on your imagination hat for a moment. Even though we aren’t there yet, consider what the
interpreter will do with the syntax trees. Each kind of expression in Lox behaves differently at runtime.
That means the interpreter needs to select a different chunk of code to handle each expression type.
With tokens, we can simply switch on the TokenType. But we don't have a “type” enum for the syntax
trees, just a separate Java class for each one.

TR —NE - REHNERBELR—L - BiEEE— MNERRHUWAMIEEEN - LoxPEBIPRENEZTT
AT RHEA—HF - SERERRRZFEEFARRONERRKABEIPRIAARE - W FEhERC - Bl
B2 AR ¥R HTER - BERIMVPRBEAEEIMZE— "type "M - REASMEEMERIRE

—Mavazt -
We could write a long chain of type tests:

AT URE — K HRENI,

if (expr instanceof Expr.Binary) {
} else if (expr instanceof Expr.Grouping) {

} else

But all of those sequential type tests are slow. Expression types whose names are alphabetically later
would take longer to execute because they'd fall through more i cases before finding the right type.
That's not my idea of an elegant solution.

BAAEXLEINFEENHERRE - KEZRRFRINFHINERENRER - MITERSTEREZHNE -
NEREIERRREZE - BNSBREZH BN - RAZHANOLHBERTE -

We have a family of classes and we need to associate a chunk of behavior with each one. The natural
solution in an object-oriented language like Java is to put those behaviors into methods on the classes
themselves. We could add an abstract method on Expr which each subclass would then
implement to interpret itself.

HMBE—1EE - HNFEF—HTASENERBEXK - HlavaZXFNEBONRES S RERNBRSR
BRREATHMAREERTED - Tl 1o LIFEExpr EARIMN— MRS 7305 - RRBNFREE
KRN TARBERBECSMS,

95/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

This works alright for tiny projects, but it scales poorly. Like | noted before, these tree classes span a
few domains. At the very least, both the parser and interpreter will mess with them. As you'll see later,
we need to do name resolution on them. If our language was statically typed, we'd have a type
checking pass.

XX F/NEIEREET - BENT BURE - MERZANIREIN - XEMKE- /LD - 2D - BT
MEBRRBINBIET T - BRERER - HOFEXNCIETRREN - MRFAINES ZFHSLE
B - RMNAEFRMEENE

If we added instance methods to the expression classes for every one of those operations, that would
smush a bunch of different domains together. That violates separation of concerns and leads to hard-
to-maintain code.

WMRENAB—MRIENRABAEPRNEATE - S F—EAFNIWREE—IE - XER T RERDBIR
W FAEFEEUEFRRS -

5.3.1 The expression problem

5.3.1 {AHiERE

This problem is more fundamental than it may seem at first. We have a handful of types, and a handful
of high-level operations like “interpret”. For each pair of type and operation, we need a specific
implementation. Picture a table:

XN OB BEREERM - VA —LRE - N—LESHIRFE - LW R - X TE—XKEMEBEIE - Ff]
HBE—NRERSKI - B—PE&:

interpret() resolve() analyze()
Binary
Grouping
Literal
Unary |

Rows are types, and columns are operations. Each cell represents the unique piece of code to
implement that operation on that type.

TREE - JZESF - BPRTBRRNEZIE ETIMZBRIFRE— (B -

An object-oriented language like Java assumes that all of the code in one row naturally hangs together.
It figures all the things you do with a type are likely related to each other, and the language makes it
easy to define them together as methods inside the same class.

BlavaZXFHEBNEMNES - RE—ITHNABERBEHEAMEE—IE - BINARN—PEEFRHRIFES
BECIBEZH AR - MEARXKESIURESREN—BEXAR—TEERARTIA -

96 /932

http://craftinginterpreters.com/resolving-and-binding.html
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Separation_of_concerns

craftinginterpreters_zh.md 2024-09-25

CLASSES

- e am o e MR Sm M S M S G S e e e A e W T mE A e e e om M omm e o omoam e e

NEW CLASS | ! - :

- o W T S o e T e o e e S e e e R S S A S e o . e = o

This makes it easy to extend the table by adding new rows. Simply define a new class. No existing code
has to be touched. But imagine if you want to add a new operation—a new column. In Java, that means
cracking open each of those existing classes and adding a method to it.

X %EF‘%}R—F CARPIMAFITRT RIKRZRESH - BREMEN—PHEENY - AFEERIERINE - B
RN ARREBRIMN—DRE (HW—31) - Flava®d - IEREZRACSERLLEIRARE PR
7JD7‘7‘/£ °

Functional paradigm languages in the ML family flip that around. There, you don’t have classes with
methods. Types and functions are totally distinct. To implement an operation for a number of different
types, you define a single function. In the body of that function, you use pattern matching—sort of a
type-based switch on steroids—to implement the operation for each type all in one place.

MLEEPRRB RS R A6 - ERXEEST - RAH AN - RENMRHZCEIRIH - BAFS
AREESI —MEE - RFBEX—TRE - ERREAP - Aol DUER A VL (RipE T KB R switchig
8) ER—DRE PSS E LB N AVERE -

This makes it trivial to add new operations—simply define another function that pattern matches on all
of the types.

XERRIMMIRIEIFFEBBE—RFEN S — N SAAREEAERIRI R EEN T -

.. ey ' LY ‘
I res . ']
“ “ e e !

— J
Y

PATTERN MATCHING FUNCTIONS NEW FUNCTION

But, conversely, adding a new type is hard. You have to go back and add a new case to all of the
pattern matches in all of the existing functions.

B2 - REKE - AINFEEZEMER - SUAESLEEHA R PHIAERILERIN— M Hcase,

97 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%AF%B7%E8%AE%B0%E4%BD%8F%EF%BC%8C%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E9%A1%B6%E5%B1%82%E4%BB%A3%E7%A0%81%E8%A7%86%E4%B8%BA%E9%9A%90%E5%BC%8F%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%8F%AA%E8%A6%81%E6%B7%BB%E5%8A%A0%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%EF%BC%8C%E6%88%91%E4%BB%AC%E5%B0%B1%E4%BC%9A%E8%BF%9B%E5%85%A5%E4%B8%80%E4%B8%AA%E5%B5%8C%E5%A5%97%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%96%E7%95%8C%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Each style has a certain “grain” to it. That's what the paradigm name literally says—an object-oriented
language wants you to orient your code along the rows of types. A functional language instead
encourages you to lump each column’s worth of code together into a function.

BMNELE—EN "WE" - XS LeABRMNFHERE—EDOXN RRES F E R R LB ITRAARH
88 - MERHESWSEMIREE SN CEEEN A —D FH,

A bunch of smart language nerds noticed that neither style made it easy to add both rows and columns
to the table. They called this difficulty the “expression problem” because—like we are now—they first
ran into it when they were trying to figure out the best way to model expression syntax tree nodes in a
compiler.

—EHERANES IR XMTMNBEHABRZRREPARINTNG - AIIRZDEXENREABZE A7 - 5
BRNIAE—F - MNEELEREERERPERRENB AN RBRETAN - -8R 7 %GR -

People have thrown all sorts of language features, design patterns, and programming tricks to try to
knock that problem down but no perfect language has finished it off yet. In the meantime, the best we
can do is try to pick a language whose orientation matches the natural architectural seams in the
program we're writing.

ANEEY F SEFMNESH Y RITEXAMEERD - BWRBAXNOR - BB —MTEmESEE
BEERE - SR - HAPMEHMERELEFE —MPSHN EERENEFNERRWALEKNES -

Object-orientation works fine for many parts of our interpreter, but these tree classes rub against the
grain of Java. Fortunately, there's a design pattern we can bring to bear on it.

EENSRERNNOBERNTFZSE I UEE LI - BEXEMESJavafIRREEMY - =ohZE - Ff)
O DIR A — MR THRIUREBARX DB -

5.3.2 The Visitor pattern

5.3.2 HIEIEER

The Visitor pattern is the most widely misunderstood pattern in all of Design Patterns, which is really
saying something when you look at the software architecture excesses of the past couple of decades.

PEERRNZMAE R EAPREZHRENRD - SEEMEE/L+ENRERZIRNRN - ZRIESE
gaue -

The trouble starts with terminology. The pattern isn't about “visiting”, and the “accept” method in it
doesn’t conjure up any helpful imagery either. Many think the pattern has to do with traversing trees,
which isn't the case at all. We are going to use it on a set of classes that are tree-like, but that's a
coincidence. As you'll see, the pattern works as well on a single object.

BBAEERE L - IMENAZRT "visiting (1510)) " - BA "accept" AR BIUEAFERETERNER -
2 NNARTPEXSEAMAER - BSLAFFNUL - HAWESLBE-AMEWRR ELERTE - BEXRZ2—1
Iha - WEFRW - ZRERNEENNE WO DIESEER -

The Visitor pattern is really about approximating the functional style within an OOP language. It lets us
add new columns to that table easily. We can define all of the behavior for a new operation on a set of

98 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BD%BF%E7%94%A8%E6%9C%AC%E5%9C%B0%E5%A0%86%E6%A0%88%E5%AD%98%E5%82%A8%E7%BC%96%E8%AF%91%E5%99%A8%E7%BB%93%E6%9E%84%E4%BD%93%E7%A1%AE%E5%AE%9E%E6%84%8F%E5%91%B3%E7%9D%80%E6%88%91%E4%BB%AC%E7%9A%84%E7%BC%96%E8%AF%91%E5%99%A8%E5%AF%B9%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%E7%9A%84%E5%B5%8C%E5%A5%97%E6%B7%B1%E5%BA%A6%E6%9C%89%E4%B8%80%E4%B8%AA%E5%AE%9E%E9%99%85%E9%99%90%E5%88%B6%E3%80%82%E5%A6%82%E6%9E%9C%E5%B5%8C%E5%A5%97%E5%A4%AA%E5%A4%9A%EF%BC%8C%E5%8F%AF%E8%83%BD%E4%BC%9A%E5%AF%BC%E8%87%B4C%E8%AF%AD%E8%A8%80%E5%A0%86%E6%A0%88%E6%BA%A2%E5%87%BA%E3%80%82%E5%A6%82%E6%9E%9C%E6%88%91%E4%BB%AC%E6%83%B3%E8%AE%A9%E7%BC%96%E8%AF%91%E5%99%A8%E8%83%BD%E5%A4%9F%E6%9B%B4%E5%81%A5%E5%A3%AE%E5%9C%B0%E6%8A%B5%E5%BE%A1%E9%94%99%E8%AF%AF%E7%94%9A%E8%87%B3%E6%81%B6%E6%84%8F%E7%9A%84%E4%BB%A3%E7%A0%81%EF%BC%88%E8%BF%99%E6%98%AFJavaScript%E8%99%9A%E6%8B%9F%E6%9C%BA%E7%AD%89%E5%B7%A5%E5%85%B7%E7%9C%9F%E6%AD%A3%E5%85%B3%E5%BF%83%E7%9A%84%E9%97%AE%E9%A2%98%EF%BC%89%EF%BC%8C%E9%82%A3%E4%B9%88%E6%9C%80%E5%A5%BD%E6%98%AF%E4%BA%BA%E4%B8%BA%E5%9C%B0%E8%AE%A9%E7%BC%96%E8%AF%91%E5%99%A8%E9%99%90%E5%88%B6%E6%89%80%E5%85%81%E8%AE%B8%E7%9A%84%E5%87%BD%E6%95%B0%E5%B5%8C%E5%A5%97%E5%B1%82%E7%BA%A7%E3%80%82

craftinginterpreters_zh.md 2024-09-25

types in one place, without having to touch the types themselves. It does this the same way we solve
almost every problem in computer science: by adding a layer of indirection.

pin)ZERISKEF LA AT OOPES FRVRE - BRI URE St ERPIRMFEIS] - FATTLIE— i
TN E XN —HEBRFIRENWABET A - MALMAEEERS - XS5RNE R ENBZ R FHREEER
HAARE AP EE -

Before we apply it to our auto-generated Expr classes, let's walk through a simpler example. Say we
have two kinds of pastries: beignets and crullers.

ENENAEIBEMEprE 2 A] - IEBENEE —NE-HEMGTF - EEARBEINIB M S0:Beignet(E) A
CrullerCHERB),

abstract class Pastry {

}

class Beignet extends Pastry {

}

class Cruller extends Pastry {

}

We want to be able to define new pastry operations—cooking them, eating them, decorating them,
etc—without having to add a new method to each class every time. Here's how we do it. First, we
define a separate interface.

HNAZEBEXHRREE (RIT - 8F RIFE) MALEBREREDIFMIITE - RINZ2XFHE
B - B - HNEX—TRIRAEONMS,

interface PastryVisitor {
void visitBeignet 5
void visitCruller ;

Each operation that can be performed on pastries is a new class that implements that interface. It has a
concrete method for each type of pastry. That keeps the code for the operation on both types all
nestled snugly together in one class.

OISR NITR B MEFRHER I RO - BUEMNRENEREABEERNTTE - XFE—K - #XR
MEAREREHZEMREE KD -

Given some pastry, how do we route it to the correct method on the visitor based on its type?
Polymorphism to the rescue! We add this method to Pastry:

LRE—MHER - RNWAUREELEFEBBRRIGDZEIERTTA ? 25K 73] | Fl]EPastry RN
XPNTTA

99/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%97%E8%8A%82%E7%A0%81%E8%99%9A%E6%8B%9F%E6%9C%BA%E5%92%8C%E7%9C%9F%E5%AE%9E%E7%9A%84CPU%E6%9E%B6%E6%9E%84%E6%9C%89%E4%B8%8D%E5%90%8C%E7%9A%84%E8%B0%83%E7%94%A8%E7%BA%A6%E5%AE%9A%EF%BC%8C%E4%B9%9F%E5%B0%B1%E6%98%AF%E5%AE%83%E4%BB%AC%E4%BC%A0%E9%80%92%E5%8F%82%E6%95%B0%E3%80%81%E5%AD%98%E5%82%A8%E8%BF%94%E5%9B%9E%E5%9C%B0%E5%9D%80%E7%AD%89%E7%9A%84%E5%85%B7%E4%BD%93%E6%9C%BA%E5%88%B6%E3%80%82%E6%88%91%E5%9C%A8%E8%BF%99%E9%87%8C%E4%BD%BF%E7%94%A8%E7%9A%84%E6%9C%BA%E5%88%B6%E6%98%AF%E5%9F%BA%E4%BA%8ELua%E5%B9%B2%E5%87%80%E3%80%81%E5%BF%AB%E9%80%9F%E7%9A%84%E8%99%9A%E6%8B%9F%E6%9C%BA%E3%80%82

craftinginterpreters_zh.md 2024-09-25

abstract class Pastry {
abstract void accept 5

}

Each subclass implements it.

class Beignet extends Pastry {

void accept {
visitor.visitBeignet(this);
}
}

And:

PLK:

class Cruller extends Pastry {

void accept {
visitor.visitCruller(this);

}
}

To perform an operation on a pastry, we call its method and pass in the visitor for the
operation we want to execute. The pastry—the specific subclass’s overriding implementation of
—turns around and calls the appropriate visit method on the visitor and passes itself to it.

EWRERHIT—MRE - BIISBERTEHN 75 HARBRNEWNITHRFvistorlEASEIE AZFE -
pastryZ5s——HF E F X MWEESI—=RIIX - fvisitor BB S ENVisitT)% - FREGEEAS
BEN -

That's the heart of the trick right there. It lets us use polymorphic dispatch on the pastry classes to
select the appropriate method on the visitor class. In the table, each pastry class is a row, but if you
look at all of the methods for a single visitor, they form a column.

XXM EIGNZOTE - BLERAIT MUt pastry2s FERZAIKE @ visitords FIMFETENFE - XN
TR - S pastryBEE2—1T - BUIRMRE—DvisitorFRB L% - BIITMEEK— 5,

100/932

craftinginterpreters_zh.md 2024-09-25

Beignet accept() ~| visitBeignet()
Cruller accept() - | visitCruller()

—

(- J
—~

PastryVYisitor class

We added one method to each class, and we can use it for as many visitors as we want
without ever having to touch the pastry classes again. It's a clever pattern.

BOIRBZERM T —D 7% - BMODIRERENEATAERHENHOE - MEFBRIEN
pastryZs - XZ2— P ERARET -

5.3.3 Visitors for expressions
5.3.3 RZXAIFEE

OK, let's weave it into our expression classes. We'll also refine the pattern a little. In the pastry example,
the visit and methods don't return anything. In practice, visitors often want to define
operations that produce values. But what return type should have? We can't assume every
visitor class wants to produce the same type, so we'll use generics to let each implementation fill in a
return type.

HH LB ERAREAELD - HEENXMERXET— = - ARS0FP - visitAl 73
FRBREIEAARA - ELEP - MNZEBREEXEBGEENERE - 8 RizB AT 4R EIZE

e ? FAIRBERIRE MHID) B R E=EMBAVEE - PRI IRHERZERIEE P SLPLBTER —MRE

KF o
Kﬁé

First, we define the visitor interface. Again, we nest it inside the base class so that we can keep
everything in one file.

Bt - RMNEXKOERED - @1 - HNECREERRD - UERABENATEHRE—IXXESD -

tool/GenerateAst java - 7 defineAst() 77 74 L5 -

writer.println("abstract class " + baseName + " {");

defineVisitor(writer, baseName, types);

That function generates the visitor interface.
XN =4 Bvisitori#Ez [-

tool/GenerateAst java - 7 defineAst() 77 74/ 00 -

101/932

craftinginterpreters_zh.md 2024-09-25

private static void defineVisitor(
PrintWriter writer, String baseName, List<String> types) {
writer.println(" interface Visitor<R> {");

for (String type : types) {
String typeName = type.split(":")[0].trim();
writer.println(" R visit" + typeName + baseName + " (" +

typeName + " " + baseName.toLowerCase() + ");");

writer.println(" 1}");
¥

Here, we iterate through all of the subclasses and declare a visit method for each one. When we define
new expression types later, this will automatically include them.

EXE - HNEBMFABENFE - HRABDFEFBRE— itk - SHNUEEXFHNREAELEN - 285
(2=

BXLEASR -
Inside the base class, we define the abstract method.
EREEP EXHZ FE -

tool/GenerateAst.java - 7 defineAst() 77 % Ll .

defineType(writer, baseName, className, fields);

}

/] FIBELFEA

// The base accept() method.

writer.println();

writer.println(" abstract <R> R accept(Visitor<R> visitor);");
/] FIBER DR

writer.println("}");

Finally, each subclass implements that and calls the right visit method for its own type.
&fa - BPFEIBSIMZTTE - FIREAEIEN NAVisitT A -

tool/GenerateAst.java - £ defineType() /7% L/ .

writer.println("” ")
// FILERSFFA

// Visitor pattern.
writer.println();

writer.println("” @Override");
writer.println("” <R> R accept(Visitor<R> visitor) {");
writer.println("” return visitor.visit" +
className + baseName + "(this);");
writer.println("” ")

102 /932

craftinginterpreters_zh.md 2024-09-25

There we go. Now we can define operations on expressions without having to muck with the classes or
our generator script. Compile and run this generator script to output an updated “Expr.java” file. It
contains a generated Visitor interface and a set of expression node classes that support the Visitor
pattern using it.

XNFY MERMNYUERARN LENIERFE - MEXTEXNEREMBHAHTEN - MEF ST NENRR
B - B — DNEMER "Exprjava "3 - ZXXHEPEIZ—MERKBVisitorE DM —HE A1z O 35 Visitor
BN RARA TR -

Before we end this rambling chapter, let's implement that Visitor interface and see the pattern in
action.

EARXEN—EZH] - BAIETIM— FXMVisitoriZzD - EEXMERAWETHER -
5.4 A (Not Very) Pretty Printer
54— (AZR) BT

When we debug our parser and interpreter, it's often useful to look at a parsed syntax tree and make
sure it has the structure we expect. We could inspect it in the debugger, but that can be a chore.

SARNBFHETRAERRN EEETENEANARRESHENEY - BBEZRAAR - HAILE
BidZRPIATE - BICEARME -

Instead, we'd like some code that, given a syntax tree, produces an unambiguous string representation
of it. Converting a tree to a string is sort of the opposite of a parser, and is often called “pretty printing”
when the goal is to produce a string of text that is valid syntax in the source language.

B - BNFE-LERDE - BEEEEMER T - ER—MRBNFFHERT - EEINERANFHEER
HrespVEERIE - SHMNBEREFE—TMEREBES PEIBEVNNN AT BN - BERKA "RRTEH",

That's not our goal here. We want the string to very explicitly show the nesting structure of the tree. A
printer that returned isn't super helpful if what we're trying to debug is whether operator
precedence is handled correctly. We want to know if the + or * is at the top of the tree.

XAZRAER - HMNBZFHFEIFB A ERMABRELSY - IRFNBRDNSRFFRORLCRZESE
SAIBIEHR - BRAIRME] E’\JﬂEﬂ SHRBT AR - BAVBHE - Z2EEBEMATRED -

To that end, the string representation we produce isn’t going to be Lox syntax. Instead, it will look a lot
like, well, Lisp. Each expression is explicitly parenthesized, and all of its subexpressions and tokens are
contained in that.

B - FANERNFHFERNEAAZLoEE » Kk - BEHEERRELsp - BPREABRENMIFER - 7
BEMmMBFRARNMEDERCEHEZEHP -

Given a syntax tree like:

BE—MEEM - W

103 /932

craftinginterpreters_zh.md 2024-09-25

123 |4567

It produces:

MEBERRN

* (-) (group))

Not exactly “pretty”, but it does show the nesting and grouping explicitly. To implement this, we define

a new class.
AZRRZER" BEEEHHBENER VTREMNDH - A7IMX— - BITEX 7 — P -

lox/AstPrinter.java - BIZR X1 .

package com.craftinginterpreters.lox;

class AstPrinter implements Expr.Visitor<String> {
String print {
return expr.accept(this);

}
}

As you can seeg, it implements the visitor interface. That means we need visit methods for each of the
expression types we have so far.

YAYRERDL - BRI visitorfZ [- XEKRERNFEANRNEHHBNE—FRIANLE R Ryisit3)5 -

lox/AstPrinter.java - 7£ print() 7 %/

return expr.accept(this);

}
// FIEE DA

public String visitBinaryExpr {

return parenthesize(expr.operator.lexeme,
expr.left, expr.right);

public String visitGroupingExpr {

104 /932

craftinginterpreters_zh.md 2024-09-25

return parenthesize("group", expr.expression);

}
public String visitLiteralExpr {
if (expr.value == null) return "nil";
return expr.value.toString();
}
public String visitUnaryExpr {
return parenthesize(expr.operator.lexeme, expr.right);
}

/] HIBE LR

Literal expressions are easy—they convert the value to a string with a little check to handle Java's
standing in for Lox's . The other expressions have subexpressions, so they use this
helper method:

FHERZARBE—EIIREZRN—IFEFSE - ABT—NMEERJavaF B0l 1IEELox®RInil - &
fiREABFRIE - FIAENZEER X MEENTTA

lox/AstPrinter java - £ visitUnaryExpr() 7 A /m 0] -

private String parenthesize {
StringBuilder builder = new StringBuilder();

builder.append("(").append(name);

for (Expr expr : exprs) {
builder.append(" ");
builder.append(expr.accept(this));

¥
builder.append(")");

return builder.toString();

It takes a name and a list of subexpressions and wraps them all up in parentheses, yielding a string like:

BER—EBMA—EBFREAFNSHE JRENEMEEERES T FER— MO FMNFRFS

(+12)

Note that it calls on each subexpression and passes in itself. This is the recursive step that
lets us print an entire tree.

HEIE BEBITNFREALEA FREBSEEHE - XEBADE - LA FTENEERN -

105/932

craftinginterpreters_zh.md 2024-09-25

We don’t have a parser yet, so it's hard to see this in action. For now, we'll hack together a little
method that manually instantiates a tree and prints it.

L BENa - FRLUREBRBRISKERNA - IWE - HAEERA—1 TERFNERBUE—PHFFET
e -

lox/AstPrinter.java - 7£ parenthesize() 77 %/] .

public static void main {
Expr expression = new Expr.Binary(

new Expr.Unary(
new Token(TokenType.MINUS, "-", null, 1),
new Expr.Literal(),

new Token(TokenType.STAR, "*", null, 1),

new Expr.Grouping(
new Expr.Literal()));

System.out.println(new AstPrinter().print(expression));

}

If we did everything right, it prints:

MRFAVEENT 7 - BRI

* (-) (group))

You can go ahead and delete this method. We won't need it. Also, as we add new syntax tree types, |
won't bother showing the necessary visit methods for them in AstPrinter. If you want to (and you want
the Java compiler to not yell at you), go ahead and add them yourself. It will come in handy in the next
chapter when we start parsing Lox code into syntax trees. Or, if you don't care to maintain AstPrinter,
feel free to delete it. We won't need it again.

WO BERFRENTTE - RINEEABFZEE L - B - SRNVFINFHENEENEREN - FASZEAstPrinter
PRARENXN NVt A - WRIREXFMOTERELlavafmiZz AW - BAMOILIBITANMNZXLETTE -
BN —F - IR0 RN LoxCERBRITNEZINE - BNk ERT - SE - NRIRABLF AstPrinter - o]l
BEEMERE - HIABREE T -

N TEEE - BERMEREIRENPEMDAS - 7 5lFRRParentheses(1ES), Exponents(15%0),
Multiplication/Division(ZEFR), Addition/Subtraction(II/&) - 8 7 ETictl - FF48E 15T 7t I Please Excuse My
Dear Aunt Sally’, "3: XHAZHEMNERMNCBEHWE—JENERTAR - EE=F2 HITEERFTE X
BRI AEARFEBERAONGBHORTRAI - A GLERFALENFSE L FXILEREBEZNE N -
FRANER - NERFHISOE - RAFELTNEATEHES —RINTS - A5 2N RIBEATENEEN
ANENX—MNEBE - BRI NZIEEX N TE A RHINBT AT SKERE? N LRI TEHRIES 26 BR—
o EMMEXBESERYT BRILR FN - EEYD "bacon with bacon with bacon with..." - N7 IEHE5T
BN FHE - BIOBFEEEELARNEEHEZRN "on the side "A4H - IRERPTFRESWHEBE 7 ENEEN
BEISEE - EMIEZOIMRREE - BENTEZ7BEZVEE - BEX (MRER) WTREFTEN A
WA EEEERNEN © A7: SchememIZBSMEXE LIEW - ERARBABENEILIIEE -

106 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
https://en.wikipedia.org/wiki/Unrestricted_grammar
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

MK - TEEEMARTRET - 28 WRRER - aUIEHEAXMEEER —LERER - MERNZATA
BEEBEMBOBE - ERMRARREENG ? MREELBEMETMERNAA - LEl1+/318 2 29 FH2 - &
MNEBEX—THZIEEN (AST) - MNP S—MEEERXERAIMPH—PITR - ASTER T EEM
BARZNERIL - MO BEBTHARTEEZRARN - FEEMNNCHEEE - BEMEENEIRARTEZR
- HBEEN T —LERESERAARENERAEFTESEMNEMIEENGE - BRIANBNZIESEHLE -
M1 EREBRERBIERREE BAXSIUEAHBES XWZELER - BRERAAMEINRmFS
o “Expr' ' Stmt" @M ERE - BEREFIMEMABILESIMREN] - A12: FMythonFlIronPythonHI Bl & Jim
HuguninBBERF R 7 /BB AN EMAWRE - EIENHAEStblavaBESXMIFRN - BERREA MR H
RBWIES - M3 XABHR EFRMENFHRRERDE - BORYT - ERERMNETHEENE LIZT - 12
REUEAZMEEZENOR - M4 WRINEZTERNTHoxWZIMHEX TERNMBBENTRZE - XN
MIAERBIIS - 215 XFhZErich GammaE AT (RITEX. O EANEQNSRRENTTE) —BPMBHE
BatEl, 26 ML - 27018 = (metalanguage) I EFR - BEZFHRobin MilnerfIft M AREIIBIER - 2FHE RIS
BESEENETESZZ— - ENFEREIESML, Caml, OCaml, HaskellfIF# - EZEScala, RustFISwiftEl B1R
SBAUAEMUE - PiELisp— 1 - BHERHARB T FRFHNIES 22— @ BIFEEL0ZEFHS X - B RITEBDA
EEHAIMEAN] - M7 BWCommon LispfICLOS, DylanFuliaXHHZF L A(Z DR NIBS HEER R
MFTEBFRIE - BIEEMENEHSEMOERBMERE - M8 ERITERD - XWMPHANBFE
CREGRE BEMBMEBHRXD ARG A - XS —LEEE AN BVt AREZTHR
EEHSEFAREN - SLHIFNM - SEEAR - EHEERENFASDIKN - I8N FAERARRZR
FESIREMPE - ERNEDERERR T NOUEAZHERNESPNALEL -

CHALLENGES
&

1. Earlier, | said that the |, *, and + forms we added to our grammar metasyntax were just syntactic
sugar. Take this grammar:

expr » expr ("(" (expr ("," expr)*)2 ")" | "." IDENTIFIER)+
| IDENTIFIER
| NUMBER

Produce a grammar that matches the same language but does not use any of that notational sugar.
Bonus: What kind of expression does this bit of grammar encode?

1~ ZEIFRY - HNEEETEEIPARMN . - FEARZEER - LXMEENH

expr - expr ("(" (expr ("," expr)*)? ")" | "." IDENTIFIER)+
| IDENTIFIER
| NUMBER

ER—TEE—ESHEERNEE - BAZRRELEERE -

MNE © X—RIEEARMR AT AFNRE ?

107 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82
https://en.wikipedia.org/wiki/Interpreter_pattern
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%AF%B7%E8%AE%B0%E4%BD%8F%EF%BC%8C%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E9%A1%B6%E5%B1%82%E4%BB%A3%E7%A0%81%E8%A7%86%E4%B8%BA%E9%9A%90%E5%BC%8F%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%8F%AA%E8%A6%81%E6%B7%BB%E5%8A%A0%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%EF%BC%8C%E6%88%91%E4%BB%AC%E5%B0%B1%E4%BC%9A%E8%BF%9B%E5%85%A5%E4%B8%80%E4%B8%AA%E5%B5%8C%E5%A5%97%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%96%E7%95%8C%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BD%BF%E7%94%A8%E6%9C%AC%E5%9C%B0%E5%A0%86%E6%A0%88%E5%AD%98%E5%82%A8%E7%BC%96%E8%AF%91%E5%99%A8%E7%BB%93%E6%9E%84%E4%BD%93%E7%A1%AE%E5%AE%9E%E6%84%8F%E5%91%B3%E7%9D%80%E6%88%91%E4%BB%AC%E7%9A%84%E7%BC%96%E8%AF%91%E5%99%A8%E5%AF%B9%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%E7%9A%84%E5%B5%8C%E5%A5%97%E6%B7%B1%E5%BA%A6%E6%9C%89%E4%B8%80%E4%B8%AA%E5%AE%9E%E9%99%85%E9%99%90%E5%88%B6%E3%80%82%E5%A6%82%E6%9E%9C%E5%B5%8C%E5%A5%97%E5%A4%AA%E5%A4%9A%EF%BC%8C%E5%8F%AF%E8%83%BD%E4%BC%9A%E5%AF%BC%E8%87%B4C%E8%AF%AD%E8%A8%80%E5%A0%86%E6%A0%88%E6%BA%A2%E5%87%BA%E3%80%82%E5%A6%82%E6%9E%9C%E6%88%91%E4%BB%AC%E6%83%B3%E8%AE%A9%E7%BC%96%E8%AF%91%E5%99%A8%E8%83%BD%E5%A4%9F%E6%9B%B4%E5%81%A5%E5%A3%AE%E5%9C%B0%E6%8A%B5%E5%BE%A1%E9%94%99%E8%AF%AF%E7%94%9A%E8%87%B3%E6%81%B6%E6%84%8F%E7%9A%84%E4%BB%A3%E7%A0%81%EF%BC%88%E8%BF%99%E6%98%AFJavaScript%E8%99%9A%E6%8B%9F%E6%9C%BA%E7%AD%89%E5%B7%A5%E5%85%B7%E7%9C%9F%E6%AD%A3%E5%85%B3%E5%BF%83%E7%9A%84%E9%97%AE%E9%A2%98%EF%BC%89%EF%BC%8C%E9%82%A3%E4%B9%88%E6%9C%80%E5%A5%BD%E6%98%AF%E4%BA%BA%E4%B8%BA%E5%9C%B0%E8%AE%A9%E7%BC%96%E8%AF%91%E5%99%A8%E9%99%90%E5%88%B6%E6%89%80%E5%85%81%E8%AE%B8%E7%9A%84%E5%87%BD%E6%95%B0%E5%B5%8C%E5%A5%97%E5%B1%82%E7%BA%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%97%E8%8A%82%E7%A0%81%E8%99%9A%E6%8B%9F%E6%9C%BA%E5%92%8C%E7%9C%9F%E5%AE%9E%E7%9A%84CPU%E6%9E%B6%E6%9E%84%E6%9C%89%E4%B8%8D%E5%90%8C%E7%9A%84%E8%B0%83%E7%94%A8%E7%BA%A6%E5%AE%9A%EF%BC%8C%E4%B9%9F%E5%B0%B1%E6%98%AF%E5%AE%83%E4%BB%AC%E4%BC%A0%E9%80%92%E5%8F%82%E6%95%B0%E3%80%81%E5%AD%98%E5%82%A8%E8%BF%94%E5%9B%9E%E5%9C%B0%E5%9D%80%E7%AD%89%E7%9A%84%E5%85%B7%E4%BD%93%E6%9C%BA%E5%88%B6%E3%80%82%E6%88%91%E5%9C%A8%E8%BF%99%E9%87%8C%E4%BD%BF%E7%94%A8%E7%9A%84%E6%9C%BA%E5%88%B6%E6%98%AF%E5%9F%BA%E4%BA%8ELua%E5%B9%B2%E5%87%80%E3%80%81%E5%BF%AB%E9%80%9F%E7%9A%84%E8%99%9A%E6%8B%9F%E6%9C%BA%E3%80%82

craftinginterpreters_zh.md 2024-09-25

2. The Visitor pattern lets you emulate the functional style in an object-oriented language. Devise a
complementary pattern for a functional language. It should let you bundle all of the operations on one
type together and let you define new types easily.

(SML or Haskell would be ideal for this exercise, but Scheme or another Lisp works as well.)

2, Visitor RIVIARILIEE BN RNES PRGRH - SR ESRIU—PEAIER - ZRIERTLL
R—DRE AR IFRAE—E - FRNYT BIFRIRE -

(SMLE;Haskel @XM 4: IR L - {BScheme HELisp A5t -)

3. In Reverse Polish Notation (RPN), the operands to an arithmetic operator are both placed before the
operator, so becomes . Evaluation proceeds from left to right. Numbers are pushed onto
an implicit stack. An arithmetic operator pops the top two numbers, performs the operation, and
pushes the result. Thus, this:

in RPN becomes:

Define a visitor class for our syntax tree classes that takes an expression, converts it to RPN, and returns
the resulting string.

:H]]]T

3 BER=FRZEARPN)F - ERCETHRIFBEWELE T ZA - TS c HENMNEE
BIET - BEEBREARIE - EABEFRLAIHMT - TEE - AREREAKRD - HI,

FERPNF IR T
12+ 43 - *

ABAIEEMETE X —"Vistorsk - ZEER—PRET - FEELARPN - FREERFFSE -

6.Parsing Expressions ZTERIAT

Grammar, which knows how to control even kings.
—Moliere

BA CEENENCEFEE - (EER)

108 /932

https://en.wikipedia.org/wiki/Reverse_Polish_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation

craftinginterpreters_zh.md 2024-09-25

This chapter marks the first major milestone of the book. Many of us have cobbled together a
mishmash of regular expressions and substring operations to extract some sense out of a pile of text.
The code was probably riddled with bugs and a beast to maintain. Writing a real parser—one with
decent error handling, a coherent internal structure, and the ability to robustly chew through a
sophisticated syntax—is considered a rare, impressive skill. In this chapter, you will attain it.

REZLFNE-TEZERRE - RMNPHOFSABSRFENREANZHFBRERSE—E - LEN—H#EX
RPRIN-EER - KERBOBERR rER - MERELF - HFE—TELENENTR 1 —BEARIFNVER
SATE ~ —HRYINBREMFNEE B RAT M D T E B ANBE N —RINAR— M FELR - LANRRZWIEE - &
X—EP -« RIF RS XMPIREE -

It's easier than you think, partially because we front-loaded a lot of the hard work in the last chapter.
You already know your way around a formal grammar. You're familiar with syntax trees, and we have
some Java classes to represent them. The only remaining piece is parsing—transmogrifying a sequence
of tokens into one of those syntax trees.

XLEWEPEHE - HAo2ENHINEL—FPIRAITAH FRZEEN T - (REENWEIEEE TWERE -
MEE TIEEN - M ERENB—ElavadSkRAEN] © lE—F FNHED 2B —F—Mric S A L
BEM PR —1 -

Some CS textbooks make a big deal out of parsers. In the '60s, computer scientists—understandably
tired of programming in assembly language—started designing more sophisticated, human-friendly
languages like Fortran and ALGOL. Alas, they weren't very machine-friendly for the primitive computers
of the time.

—LECSHABERTER EXEXE - 60FX - HENBNZER—MIBERSARMRE 7 RLRES RiE—
FRRITES 20 - WARKREFWIES - tEfFortranMALGOLA2 - [» X T ARG EN R - XLEES
XAl asAH AL -

These pioneers designed languages that they honestly weren't even sure how to write compilers for,
and then did groundbreaking work inventing parsing and compiling techniques that could handle
these new, big languages on those old, tiny machines.

HLEFXRNNRU 7 —EES - WRIE - MIEEANBWNATRERES - ARG 7N TIIE - RKBFY
BT AR BT - oI DUEARLEZEIR - /NEUROH 28 LA EEHTR) « KERIIES -

Classic compiler books read like fawning hagiographies of these heroes and their tools. The cover of
Compilers: Principles, Techniques, and Tools literally has a dragon labeled “complexity of compiler
design” being slain by a knight bearing a sword and shield branded “LALR parser generator” and
“syntax directed translation”. They laid it on thick.

ZHPIRIF DR GEX X LEEENMNIN TENIRIEZIE - (HFERRIE - BARMNITE) (Compilers:
Principles, Techniques, and Tools) WEE B —RiricE " HFERRITEXM'NE - #— 1 FHUMBENE L
RIE - SAE LARICE LALREAT 2R £ Al es M1 B AHI SEIF" - A IET W -

A little self-congratulation is well-deserved, but the truth is you don't need to know most of that stuff
to bang out a high quality parser for a modern machine. As always, | encourage you to broaden your
education and take it in later, but this book omits the trophy case.

109 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82
http://craftinginterpreters.com/representing-code.html
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82

craftinginterpreters_zh.md 2024-09-25

HHMNBEHRRZAZLRH - BERNE - RAFBHNEEPHAE 2R - i AR RFIFLESRE
EENTER - —MERE - REMIRET KES0E - UEBRERRE - BXARSME 7 XM%E -

6.1 Ambiguity and the Parsing Game
6.1 2 XS EEAT IR RY

In the last chapter, | said you can “play” a context-free grammar like a game in order to generate
strings. Parsers play that game in reverse. Given a string—a series of tokens—we map those tokens to
terminals in the grammar to figure out which rules could have generated that string.

E—B0 - RTINS L TR ERNBAR LAFH R - BTRULIERN SRR
% - AE—NERE(— RINEHTD) - BANTRLATERAEIE AP AL IR - AR ML T A5 A
PRI -

The “could have” part is interesting. It's entirely possible to create a grammar that is ambiguous, where
different choices of productions can lead to the same string. When you're using the grammar to
generate strings, that doesn’'t matter much. Once you have the string, who cares how you got to it?

"OIREFAE "REID RARR » 2B IR — N EEAEL - ERXNEEF - ARNEMRACEES
BAR—"FFE - ARERREBEIRLEAFFTEN B—RALKEE - —BERBE7FFEH - ESETFNRE
EARRERIE?

When parsing, ambiguity means the parser may misunderstand the user’s code. As we parse, we aren't
just determining if the string is valid Lox code, we're also tracking which rules match which parts of it
so that we know what part of the language each token belongs to. Here's the Lox expression grammar
we put together in the last chapter:

BEREERAN X EREBETRIEIZHRAFRE - IRMETEAN - RIIANBREFTEZEAE
BUHILox U - BREICELEMN SHBMLER S HLE - LERMNHES MrcBTESHWEM—as - F
HERNE L —=2EHLoxFRATEE

expression -» literal
| unary
| binary
| grouping ;
literal - NUMBER | STRING | "true" | "false" | "nil" ;
grouping > "(" expression ")" ;
unary - ("-" | "I") expression ;
binary -» expression operator expression ;
operator > M==" | M=t Mt | k=" | ="
B R VA

This is a valid string in that grammar:

PTHE—MREEENBUFRES

6 (/]3]]|L

110/932

craftinginterpreters_zh.md 2024-09-25

But there are two ways we could have generated it. One way is:

BE ARAMAATUEMZFFE - H—F :

1. Starting at , pick
2. For the left-hand , pick , and use ©.
3. For the operator, pick
4. For the right-hand , pick again.
5. In that nested expression, pick
N pan =l it o
2. W B RFE - FEER,
3. WTRIERT - &/,
4. T AL C BRERE °
5. ERNEW R - ;m#Fs-1,
Another is:
HZ:
1. Starting at , pick
2. For the left-hand , pick again.
3. In that nested expression, pick
4. Back at the outer , for the operator, pick
5. For the right-hand , pick ,and use 1.
N pan =l it o
2. W B C B o
3. ENER KRBT - 7®Fo/ 2,
4. R[ESNEH TR BE
5. X T AL it - FFEERAL.

Those produce the same strings, but not the same syntax trees:

ENFERERNF/E - B NAZRERN Z2H :
7]=30 £ 1=
N "
é —

S
3] [1

I
N
N
I
\

‘k\,
1
3

6

In other words, the grammar allows seeing the expression as or . The

rule lets operands nest any which way you want. That in turn affects the result of evaluating the
parsed tree. The way mathematicians have addressed this ambiguity since blackboards were first
invented is by defining rules for precedence and associativity.

1117932

craftinginterpreters_zh.md 2024-09-25

BAER - X MNEATLINEZREAEFZ) 0 MUBITRIFEUERT
ABRE - IRIKNESEMBN LT ELER - BEMNERBARLLE - HERNBRRZ PR R T7ARZE
MALFTRFE S RN -

. Precedence determines which operator is evaluated first in an expression containing a mixture
of different operators. Precedence rules tell us that we evaluate the / before the - in the above
example. Operators with higher precedence are evaluated before operators with lower
precedence. Equivalently, higher precedence operators are said to “bind tighter”.

s REFRE TE—TEHESARBEFEGREAP - MNSEFLENITA3 - ARV EFHAT -
EEERBIFP - HAE- ZRITHE) - RERBESNEEFTERLCRIRENEZEFTZRAUHE - B -
MIERRSHBEFRIRA "EBHE"

. Associativity determines which operator is evaluated first in a series of the same operator.
When an operator is left-associative (think “left-to-right”), operators on the left evaluate before
those on the right. Since - is left-associative, this expression:

o ZAEMREE—ZIMBEEREFPILUHEMMEET - MR- MEEFEESSHEILUAAZR NEE!
BN EUNREFEAUNBREFSZAIUE - BN B2EE5H - TEMNRER :

is equivalent to:

EMT .

(5-3) -

Assignment, on the other hand, is right-associative. This:

H—hHHE - WEZEEEH - W :

is equivalent to:

ENT

Without well-defined precedence and associativity, an expression that uses multiple operators is
ambiguous—it can be parsed into different syntax trees, which could in turn evaluate to different
results. We'll fix that in Lox by applying the same precedence rules as C, going from lowest to highest.

112 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82

craftinginterpreters_zh.md 2024-09-25

MFBRBREE XL RNEGH - ERS M EETNREATEMZEFTBIEX—r ol IR ET AR
BOTESA - ﬁ’ﬁizﬁbiéiimiT’ﬁE%ﬁrZﬁKHE’\Jéi% > HAELoxPSBARXN O - £HSCESHENMLT
ZAN - NMERIS 7252

Name Operators Associates
Equality &7 Left £4EE
Comparison EE3 Left Z45&
Term NNRGZE Left Z4& 5
Factor EFRIZE Left £4EHE
Unary —ToiaE R/ Right 545
Right now, the grammar stuffs all expression types into a single rule. That same rule is

used as the non-terminal for operands, which lets the grammar accept any kind of expression as a
subexpression, regardless of whether the precedence rules allow it.

EL{-E ZOBE AT ARIEAREE A MR —1 MW cp - XRANEAEERTRIFRPRIELLE
REFEEAPIURREMREORANMFAFREN - MAEREERANZERIF -

We fix that by stratifying the grammar. We define a separate rule for each precedence level.

HNVBIN B IR T D BEREBARZNDEE - BOVABNUTREX —EBIRRAN A4,

expression
equality
comparison
term
factor
unary
primary

2R R T 2 2R

Each rule here only matches expressions at its precedence level or higher. For example, matches
a unary expression like or a primary expression like .And can match but
also . The final rule covers the highest-precedence forms—literals and
parenthesized expressions.

IERARE NN TR E SR AT RN E B LT RKAORET - Flm - Lo —JoaRkis= (9)
BEREI (W) o B NUN - B ol BIVEEC ° BRGRY MNE =T RES
WA —FHEMRESTKERN

We just need to fill in the productions for each of those rules. We'll do the easy ones first. The top
rule matches any expression at any precedence level. Since has the lowest
precedence, if we match that, then it covers everything.

HMNARAFEEEZFRNNAIEMT - FATNE R - TNRH AR E] AVC R (R A S R A9 R
- BT LA RRE RERNLE 7B - #lE 7 —1A5,

113 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82

craftinginterpreters_zh.md 2024-09-25

expression -» equality

Over at the other end of the precedence table, a primary expression contains all the literals and
grouping expressions.

ERERERN S I - RENEERENFREMDAEHRE -

primary > NUMBER | STRING | "true" | "false" | "nil"
| "(" expression ")" ;

A unary expression starts with a unary operator followed by the operand. Since unary operators can
nest— is a valid if weird expression—the operand can itself be a unary operator. A recursive
rule handles that nicely.

—TCRBAL—TCRIEFL - BIRBIFEY - AA—mRIEF o UIBRE— REFENZIARER
—EMNRFUARBZ AU LUZR— D —TTRET - BTN T LR s B2 RX DA -

unary - (" "-") unary ;

But this rule has a problem. It never terminates.
BEXFANE—NTER - BXKTASLLE -

Remember, each rule needs to match expressions at that precedence level or higher, so we also need
to let this match a primary expression.

BICE - 8MINEFZELR XL CRRESRLRNWRES - RILRNEFTEEESERALE -

unary > ("!" | "-") unary
| primary ;

That works.
XEMOILLY -

The remaining rules are all binary operators. We'll start with the rule for multiplication and division.
Here's a first try:

TN E a8 R - BINENFENBREZWAN AL - TEAZFE—RE :
factor » factor ("/" | "*") unary
| unary ;

114 /932

craftinginterpreters_zh.md 2024-09-25

The rule recurses to match the left operand. That enables the rule to match a series of multiplication
and division expressions like . Putting the recursive production on the left side and
on the right makes the rule left-associative and unambiguous.

NGBV BC A SRR R - XAF—3K - s UL —ZBSOENRIARAT - AU ° REBYAERM T
PR A IR MAEARN - o] RN BB RECMRIRIEME A6,

All of this is correct, but the fact that the first symbol in the body of the rule is the same as the head of
the rule means this production is left-recursive. Some parsing techniques, including the one we're
going to use, have trouble with left recursion. (Recursion elsewhere, like we have in and the
indirect recursion for grouping in are not a problem.)

PrAXLEERZIEIER - ERNEFPRHE—IFSSHNLMEREREX N EMNZEE TR - —LEBITI
A BERFNTFECHOBETRA - FRIBLEEANSBER0E - (Hthih a0 - thnE b DUIRTE
DEPREZEZE T AZOA)

There are many grammars you can define that match the same language. The choice for how to model
a particular language is partially a matter of taste and partially a pragmatic one. This rule is correct, but
not optimal for how we intend to parse it. Instead of a left recursive rule, we'll use a different one.

RAUEXRZFER—TPESHEZL - NUNE—HFEEBESHITEE - —HoEmKOR - —so2KHE
XaJ& - M2 ERE - ENTRNEENETRIEEAAZENN - HITPFERARNANRLELE
YR -

factor > unary (("/" | "*") unary)* ;

We define a factor expression as a flat sequence of multiplications and divisions. This matches the same
syntax as the previous rule, but better mirrors the code we'll write to parse Lox. We use the same
structure for all of the other binary operator precedence levels, giving us this complete expression
grammar:

AR EFREAEXATRENREN R 72 - XERIERIMNEZMERE - BEFMtRE 7RI RERIE
HrLoxfI S - FATNEE ZtiaEFHMARERBERNES - NS FTEX P TBNRENEE !

expression -» equality ;
equality » comparison (("!=" | "==") comparison)* ;
comparison > term ((">" | "s>=" | "< | "<=") term)* ;
term > factor (("-" | "+") factor)* ;
factor > unary (("/" | "*") unary)* ;
unary > ("!" | "-") unary
| primary ;
primary > NUMBER | STRING | "true" | "false" | "nil"
|

"(" expression ")" ;

This grammar is more complex than the one we had before, but in return we have eliminated the previous
one’s ambiguity. It's just what we need to make a parser.

115/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82

craftinginterpreters_zh.md 2024-09-25

XMEALCFAIUBRIB N EEZ - BREIRBAERR 7RI —MEAEX PRIE X - XIERHA]H (FREITER
I FrEZERY -

6.2 Recursive Descent Parsing

%Y NED

There is a whole pack of parsing techniques whose names are mostly combinations of “L" and “R"—
LL(k), LR(1), LALR—along with more exotic beasts like parser combinators, Earley parsers, the shunting
yard algorithm, and packrat parsing. For our first interpreter, one technique is more than sufficient:

recursive descent.

MEB —REETRAKR - BIMINBFEARZZ "L"M "R "BWAHSG—LLK). LR(1). LALR—ABEZHFE - LWl
fRATERA S F . Earley parsers, D IS & A Mpackrat@AT - WTEMNPWE—PNERRIRKE - —PRAELE®

7 BEATRR,

Recursive descent is the simplest way to build a parser, and doesn’t require using complex parser
generator tools like Yacc, Bison or ANTLR. All you need is straightforward handwritten code. Don't be
fooled by its simplicity, though. Recursive descent parsers are fast, robust, and can support
sophisticated error handling. In fact, GCC, V8 (the JavaScript VM in Chrome), Roslyn (the C# compiler
written in C#) and many other heavyweight production language implementations use recursive

descent. It rocks.

B NEREWERITEHERNFE FAREERERNBETRER TE - WYacc, BisonS{ANTLR - {RAFRE
BHEFERE - EEAERTHERMTERYE - 23 NEETRERER - @0 FEOUDEZFEZRNERA

I8 - B3 | - GCC. V8 (Chromed#JavaScript VM), Roslyn(FBc# BRI c#miF) MIFZ HEMEEN ~mBES X
MEBER T T FRERETZA - BIREA -

Recursive descent is considered a top-down parser because it starts from the top or outermost
grammar rule (here) and works its way down into the nested subexpressions before finally
reaching the leaves of the syntax tree. This is in contrast with bottom-up parsers like LR that start with
primary expressions and compose them into larger and larger chunks of syntax.

BEATKERANS—HETRATRFE BHhEAERSBHENENEEMNES A - —H
ATHAREFERT BEIREBEMONF - XSIREE T H_CHW@TSH RSB - B2 TEEA
= (primary) FH 4 - S5 ELA MM R AREZRAT,

A recursive descent parser is a literal translation of the grammar’s rules straight into imperative code.
Each rule becomes a function. The body of the rule translates to code roughly like:

1 N AT SR 2 TP E AN B R E R L VBRI SCREE S - 8P HINEZ TR —ERE - A=
FEIEA B AREZXHR ¢

Grammar notation Code representation

Terminal Code to match and consume a token VLBCF 82— MEEHRIC
Nonterminal Call to that rule's function 1 BRI X 7 A8 BRI 5
or statement if&switchiZ G

116/ 932

https://en.wikipedia.org/wiki/LL_parser
https://en.wikipedia.org/wiki/LR_parser
https://en.wikipedia.org/wiki/LALR_parser
https://en.wikipedia.org/wiki/Parser_combinator
https://en.wikipedia.org/wiki/Earley_parser
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/LL_parser
https://en.wikipedia.org/wiki/LR_parser
https://en.wikipedia.org/wiki/LALR_parser
https://en.wikipedia.org/wiki/Parser_combinator
https://en.wikipedia.org/wiki/Earley_parser
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Parsing_expression_grammar
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Grammar notation Code representation

or or loop whileZkfor{&f

statement ifi& 9

The descent is described as “recursive” because when a grammar rule refers to itself—directly or
indirectly—that translates to a recursive function call.

MEEHR YT

SMZERNAN - WR—IHNGIHES (EENEE) mRZEANEANREIEA -
6.2.1 The parser class
6.2.1 Parser:
Each grammar rule becomes a method inside this new class:
BMEEMNE A LR —DTT0A

lox/Parser.java - BIZEFT X1 -

package com.craftinginterpreters.lox;
import java.util.lList;
import static com.craftinginterpreters.lox.TokenType.*;

class Parser {
private final List<Token> tokens;
private int current = 0;

Parser(List<Token> tokens) {
this.tokens = tokens;

Like the scanner, the parser consumes a flat input sequence, only now we're reading tokens instead of
characters. We store the list of tokens and use to point to the next token eagerly waiting to
be parsed.

SiafEs— Bt EEE - TMRIENBARS RAEZXRBMNEBSRWZBERCMAZFER - K=
REFTRICHIRFER AT —MRiC -

We're going to run straight through the expression grammar now and translate each rule to Java code.
The first rule, , simply expands to the rule, so that's straightforward.

HMNMEZBEZRITRENEEL - ARE—FANEE N Javaftis - E—KAN - ERIEA
MW - PRUIREZ -

lox/Parser.java - 7 Parser() 77 2/ 0 0 -

117 /932

craftinginterpreters_zh.md 2024-09-25

private Expr expression {
return equality();

}

Each method for parsing a grammar rule produces a syntax tree for that rule and returns it to the caller.
When the body of the rule contains a nonterminal—a reference to another rule—we call that other

rule’s method.

BOEATEANNB T AR R EAZ AN R ANEEN - FRFEREISERE - SANERFEEZ—PIELL
N0 Rt ST E 1021 M= A =g V)22 Rt STMID PV SP D7 AR B

&)
The rule for equality is a little more complex.

MUB—REZ

equality -» comparison (("!=" "==") comparison)* ;

In Java, that becomes:
Elava® « X=LTH

lox/Parser.java - 7 expression() /S BRI .

private Expr equality() {
Expr expr = comparison();

while (match(BANG_EQUAL, EQUAL_EQUAL)) {
Token operator = previous();
Expr right = comparison();
expr = new Expr.Binary(expr, operator, right);

}
return expr;
}
Let's step through it. The first nonterminal in the body translates to the first call to
in the method. We take that result and store it in a local variable.
RN —F TR - ANEPRE— IRER LR 7 F3AP X ME—RIFA - &

MFEMERFFEFRFE— " BELES -

Then, the loop in the rule maps to a loop. We need to know when to exit that loop.
We can see that inside the rule, we must first find either a | = or == token. So, if we don't see one of
those, we must be done with the sequence of equality operators. We express that check using a handy

method.

118 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82

craftinginterpreters_zh.md 2024-09-25

=W B BRES N—D B - HAMNFE2NEQRREXDER - IUIER - EANME
qﬂv%ﬂ]z\ﬁf‘ﬂﬂzﬁu—/\ g--1ric © BEIE - IRFANXREFEZEPE—IRIC - RIOVDAERBEEF(AHEE)
BEFNFES - BOEA—1TER TERPTEME -

lox/Parser.java - 7= equality() 77 0% /mm .

private boolean match {
for (TokenType type : types) {
if (check(type)) {
advance();
return true;

}
}

return false;

}

This checks to see if the current token has any of the given types. If so, it consumes the token and
returns . Otherwise, it returns and leaves the current token alone. The method is
defined in terms of two more fundamental operations.

EMBSHMERIRCEERTAENEEZ— - MRZ - MPETRZARCHIRE] ; &N - mURE]
FREZRIRC ° FEEHRR N EEARWBRIERENH -
The method returns if the current token is of the given type. Unlike , it never

consumes the token, it only looks at it.
MRZRIARCE TAESRE - N 73R3R (0] -5 AENZ - EMFBEZRIRIC - RZE -

lox/Parser.java - # match() 7.2 /5000

private boolean check {
if (isAtEnd()) return false;
return peek().type == type;

}

The method consumes the current token and returns it, similar to how our scanner’s
corresponding method crawled through characters.

FASBEBRIARNNFCHRETY - KT R#R P NN ERBEFZ/FNA -

lox/Parser.java - 7£ check() 75 %/ 0 .

private Token advance() {
if (!isAtEnd()) current++;
return previous();

}

119/932

craftinginterpreters_zh.md 2024-09-25

These methods bottom out on the last handful of primitive operations.

LT ARRBEAGE TILNERERE -

lox/Parser.java - 7= advance()/Z w0 .

private boolean isAtEnd() {
return peek().type == EOF;
}

private Token peek() {
return tokens.get(current);

}
private Token previous {
return tokens.get(current - 1);
}
checks if we've run out of tokens to parse. returns the current token we have yet to
consume, and returns the most recently consumed token. The latter makes it easier to use

and then access the just-matched token.

BN EELIET 7 HETRIRIC - 7RRBIHAERBERRZHBIARC -
SRORITHETRRC - REURKINERSER - RETVIBINIRILE R TR -

That's most of the parsing infrastructure we need. Where were we? Right, so if we are inside the
loop in , then we know we have found a ! = or == operator and must be parsing an
equality expression.

X R NFERAES ﬁﬂﬁﬁﬁlﬁ- ﬁﬂ]ﬁ?ﬂﬂﬂ[@?”ﬁ MRFAE AY B p - tmL
FERERNEEBE 7 —1 -2 -- 8T - AR-—E2EBET— TP EFAREA -

We grab the matched operator token so we can track which kind of equality expression we have. Then
we call again to parse the right-hand operand. We combine the operator and its two
operands into a new syntax tree node, and then loop around. For each iteration, we
store the resulting expression back in the same local variable. As we zip through a sequence of
equality expressions, that creates a left-associative nested tree of binary operator nodes.

FABRIBICECRVIRESIRE - REMUMAMBERH N BB —REAREN - ZE - RIIBREH

BT AR - HIPSRIESNENR MEIERESG R — TR BANT
o REFHREN - N TE—RER - RNERERREAFEER — e pr BREER - ENSEAREAF

FETESEN - - TH - TEET T REMNEESREMN A,

120/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82

craftinginterpreters_zh.md 2024-09-25

- - .

The parser falls out of the loop once it hits a token that’'s not an equality operator. Finally, it returns the
expression. Note that if the parser never encounters an equality operator, then it never enters the loop.
In that case, the method effectively calls and returns . In that way, this
method matches an equality operator or anything of higher precedence.

BEfRBR — MM ESHBRERNTS MaREEN - &F - B2REXNNHNFRAR - 1B5IE - NREZ
MEEMRBRIEFNEERT - K AZIBEARNS - EXFPELD - TR ARERFRE]
e BEFE—K BNMTERBLE— N SN BEGNE T EZ L TRIIZL T,

Moving on to the next rule.. ..

BEE TP -

comparison > term ((">" > < "<="") term)* ;

Translated to Java:
#E B Java -

lox/Parser.java - £ equality() 7 % /Zm] -

private Expr comparison {
Expr expr = term();

while (match(GREATER, GREATER_EQUAL, LESS, LESS_EQUAL)) {
Token operator = previous();
Expr right = term();
expr = new Expr.Binary(expr, operator, right);

}

return expr;

}

The grammar rule is virtually identical to and so is the corresponding code. The only
differences are the token types for the operators we match, and the method we call for the operands—

121/932

craftinginterpreters_zh.md 2024-09-25

now instead of . The remaining two binary operator rules follow the same

pattern.
HENNS NLFZE=HE - HNARBTEMIE - E—XA 2R RIFRFARCIE - mEMNE
REVRF B AN AZ mAZ » HERMAD o BIERFANBREARERT -

In order of precedence, first addition and subtraction:
BRBAFTRIRF - STHINEGE

lox/Parser.java - & comparison() 7 %/ .

private Expr term() {
Expr expr = factor();

while (match(MINUS, PLUS)) {
Token operator = previous();
Expr right = factor();
expr = new Expr.Binary(expr, operator, right);

}

return expr;

}

And finally, multiplication and division:
&fE - BERE

lox/Parser.java - # term() 7 2/ LI .

private Expr factor() {
Expr expr = unary();

while (match(SLASH, STAR)) {
Token operator = previous();
Expr right = unary();
expr = new Expr.Binary(expr, operator, right);

}

return expr;

}

That's all of the binary operators, parsed with the correct precedence and associativity. We're crawling
up the precedence hierarchy and now we've reached the unary operators.

AN _TaEF - CERRBIEBIMARNESHIRT T8 - F 1R - ZRUEREE - HIEL
E—Tis8& 7 -

122 /932

craftinginterpreters_zh.md 2024-09-25

unary > ("t "-") unary
| primary ;
The code for this is a little different.
ZANY BB LEALRE -

lox/Parser java - 7£ factor() 7 2/ ©

private Expr unary {
if (match(BANG, MINUS)) {
Token operator = previous();
Expr right = unary();
return new Expr.Unary(operator, right);

}

return primary();

}

Again, we look at the current token to see how to parse. If it'sa | or -, we must have a unary
expression. In that case, we grab the token and then recursively call again to parse the
operand. Wrap that all up in a unary expression syntax tree and we're done.

BIHFRY - BN EIRRRICUIAZ M EIATETA0 - WRZ2 H- - B —EBE—P—TRE - EXFP
Bt - BAEASIMCETER RETRIFY - A RXLEHEIRE — TR ATNE AN D - &
MEi5Em 1 -

Otherwise, we must have reached the highest level of precedence, primary expressions.

AN - HMeEE 7 RS RAINMRER - BIERRER -

primary > NUMBER | STRING | "true" | "false" | "nil"
| "(" expression ")" ;

Most of the cases for the rule are single terminals, so parsing is straightforward.
ZMN P KERD EBZ LT - oI AEEHITRRAT -

lox/Parser.java - 7£ unary() 7 A/m R .

private Expr primary() {
if (match(FALSE)) return new Expr.Literal(false);
if (match(TRUE)) return new Expr.Literal(true);
if (match(NIL)) return new Expr.Literal(null);

if (match(NUMBER, STRING)) {

123 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82

craftinginterpreters_zh.md 2024-09-25

return new Expr.Literal(previous().literal);

}

if (match(LEFT_PAREN)) {
Expr expr = expression();
consume(RIGHT PAREN, "Expect ')' after expression.");
return new Expr.Grouping(expr);

}

The interesting branch is the one for handling parentheses. After we match an opening (and parse the
expression inside it, we must find a) token. If we don't, that's an error.

ABHN—RZRIEESHNS - ARNEE 7 — ML GF@ER P EmRERE - HOIDAHE—1) iR -
MEPRAHE - BR2—THEIR -

6.3 Syntax Errors
6.3 BRI
A parser really has two jobs:
AR SEfm L AR I LA ¢
1. | Given a valid sequence of tokens, produce a corresponding syntax tree.
BE—PBAMTRCES - ERARNAVE AN -
2. || Given an invalid sequence of tokens, detect any errors and tell the user about their mistakes.
BE— D AITFCERS - NEIRF SR -

Don’t underestimate how important the second job is! In modern IDEs and editors, the parser is
constantly reparsing code—often while the user is still editing it—in order to syntax highlight and

support things like auto-complete. That means it will encounter code in incomplete, half-wrong states
all the time.

REEEE-ATENEEY | GNROIDEHERSD - AT BRSNS HEDHFTSIE - LAPE
FERIBRIDE - BT R AT B RATRD « S BRSNS B2 BRI R s - HERRAHR
M-

When the user doesn't realize the syntax is wrong, it is up to the parser to help guide them back onto
the right path. The way it reports errors is a large part of your language’s user interface. Good syntax
error handling is hard. By definition, the code isn't in a well-defined state, so there’s no infallible way to
know what the user meant to write. The parser can’t read your mind.

SHPRERRIEAERN - BTRZEFHE5ISMM]ERERINER L - £RNESHANRES @ HIRR
RafE FRARILEE - RENIBEZERUEZRERN - REEX - ABAAZRTREEXHRE - FRURA
OISE 7T ARE B MBS HESH 4 - BiTsOARERWEE -

There are a couple of hard requirements for when the parser runs into a syntax error. A parser must:

124 /932

craftinginterpreters_zh.md 2024-09-25

SBMTRBEERERN - BJLMEMER - BATSRUINEED -

Detect and report the error. If it doesn’t detect the error and passes the resulting malformed
syntax tree on to the interpreter, all manner of horrors may be summoned.

WNHRESER - ORERAQNEIER - FRBLFENBEEMERLBERES - SaBISiPog
B -

Avoid crashing or hanging. Syntax errors are a fact of life, and language tools have to be
robust in the face of them. Segfaulting or getting stuck in an infinite loop isn't allowed. While
the source may not be valid code, it's still a valid input to the parser because users use the parser
to learn what syntax is allowed.

B REREIERE - BAHREERPAYRRNSEL - AEXNEAER - H= LEMOJFFERIL - RIERN
[EALREAZARTR - BRRRNBYUEAZBUNN CHE - BRINREETHIIEFH A - BARF
e AETERR 7 BT L2 RVFRVIEA -

Those are the table stakes if you want to get in the parser game at all, but you really want to raise the

ante beyond that. A decent parser should:

MRRBS ERETRAENPR - XERZESENED - ERENBRESEL - R XL - — MRIFRVBENT
FREN1Z

Be fast. Computers are thousands of times faster than they were when parser technology was
first invented. The days of needing to optimize your parser so that it could get through an entire
source file during a coffee break are over. But programmer expectations have risen as quickly, if
not faster. They expect their editors to reparse files in milliseconds after every keystroke.

ZR - HENRRELEEYRBETR AR 7JLTE - PR ERCENTESE - MECEERIBERIE
BEABZENEXGFNHFELE—FAERTY - BEEBFANPEET LASEHR - EEER -]
AEMNNREREEERTREN/LEVARIEX 4 -

Report as many distinct errors as there are. Aborting after the first error is easy to implement,
but it's annoying for users if every time they fix what they think is the one error in a file, a new
one appears. They want to see them all.

ROgEZiRE L ARMEIR - £#F - MEREFLZRESSEIAN - BRUORBRIABFEEXHPRY
—PMERE - XER 75— DHER - IYAPRRERAARN - B E-RBIAENER -

Minimize *cascaded* errors. Once a single error is found, the parser no longer really knows
what's going on. It tries to get itself back on track and keep going, but if it gets confused, it may
report a slew of ghost errors that don't indicate other real problems in the code. When the first
error is fixed, those phantoms disappear, because they reflect only the parser's own confusion.
Cascaded errors are annoying because they can scare the user into thinking their code is in a
worse state than it is.

R/MELZEER - —EXRIA—PHER - BTSRMABRENERE VT4 - BB CRBIENFASE
T - BURERIEL EUESREAENMRIER - MXEBRAARPABPEERE O -

SHE-MERWPIELR - REMRERTBEKR Y - BABTNRARBR Y @EiTRES80REE - REKERRM
A BERENSIERFER ILBAPIANABECSHRIBLESERR B R B -

125/932

craftinginterpreters_zh.md 2024-09-25

The last two points are in tension. We want to report as many separate errors as we can, but we don't
want to report ones that are merely side effects of an earlier one.

EEMREMEEFEN - RMNFBERUESMRELMBER - BRI EREFLERZHEHMERVEFER
SHHEIR -

The way a parser responds to an error and keeps going to look for later errors is called error recovery.
This was a hot research topic in the '60s. Back then, you'd hand a stack of punch cards to the secretary
and come back the next day to see if the compiler succeeded. With an iteration loop that slow, you
really wanted to find every single error in your code in one pass.

BTSN — MR RME RN - AREESHEENE RS NUGEREE - REOFNE2— MR FRIR
A - B RBELE-BIA RGNS - F_RBREEREFRESENY - EENEANUEENER T -
MEMSBE-—RATPHIRBPINENMER -

Today, when parsers complete before you've even finished typing, it's less of an issue. Simple, fast error
recovery is fine.

WS - BRELEELRATABMAZBIMTHENR 7 - XABE— MO - B8 - RENERKERM I
g

6.3.1 Panic mode error recovery
6.3.1 BHEXHIRKE

Of all the recovery techniques devised in yesteryear, the one that best stood the test of time is called—
somewhat alarmingly—panic mode. As soon as the parser detects an error, it enters panic mode. It
knows at least one token doesn’t make sense given its current state in the middle of some stack of
grammar productions.

ENERUAABERERAT - REZRENEZRHN—FIERRERER (BRI AERR) - —BERfTEN
B—1MER - EMSBEARGERIN - ENEZE DB —MokenBRABXH - BABHAIKNWRSEE —LHEEE
B EVRY AL RIS -

Before it can get back to parsing, it needs to get its state and the sequence of forthcoming tokens
aligned such that the next token does match the rule being parsed. This process is called
synchronization.

ERFREATENTZA - ©RENB CRPRSTEDRRIRATRCFEIIXSST - & F —MricEE % LA LIEN 4T
BRI - XN ERIRARD,

To do that, we select some rule in the grammar that will mark the synchronization point. The parser
fixes its parsing state by jumping out of any nested productions until it gets back to that rule. Then it
synchronizes the token stream by discarding tokens until it reaches one that can appear at that point in
the rule.

AL - HATEBEZPEFE-LEHNRIFCRIL R - BTRSEFrERENEMNERIRIREZAN S - KE
EHBITIRS - 25 - EREFFIC - BERER— Do DIEEZANRIRE - PUILRE D IRCHR -

Any additional real syntax errors hiding in those discarded tokens aren’t reported, but it also means
that any mistaken cascaded errors that are side effects of the initial error aren't falsely reported either,

126 /932

craftinginterpreters_zh.md 2024-09-25

which is a decent trade-off.

XEFEFWIFCHRBENETEENBEIEREBAZHIRS - BEXNEKRERYBEIRSHEAE T REKE
RUOASW A RARE LR - X2 D ABRINE -

The traditional place in the grammar to synchronize is between statements. We don’t have those yet,
so we won't actually synchronize in this chapter, but we'll get the machinery in place for later.

BAPEFNERDM S ZIBEDZE - BINNERARLE - FIUBIAZER—ERELEMED - BRIZHE
PR B X LA R i -

6.3.2 Entering panic mode
6.3.2 AR GER

Back before we went on this side trip around error recovery, we were writing the code to parse a
parenthesized expression. After parsing the expression, it looks for the closing) by calling
Here, finally, is that method:

EHNMHEHERREZR - N EERERMIESRETNNNE - EBTREAZRE - B T3k
ERWER) - XB - KT olDISKIMBIITET

lox/Parser.java - 7 match() 7.2 /500

private Token consume {
if (check(type)) return advance();

throw error(peek(), message);

}

It's similar to in that it checks to see if the next token is of the expected type. If so, it
consumes it and everything is groovy. If some other token is there, then we've hit an error. We report it
by calling this:
B FEEL BN —MRCEEEMMNEE - IIRZ - EMSHETRZARIC - —UJERIRA - 41
REEHTHRC - BARMNMEER 781X - RIBIER FTENFERRSER

lox/Parser.java - # previous() 7 Z/Z . -

private ParseError error {
Lox.error(token, message);
return new ParseError();

}

First, that shows the error to the user by calling:

Bt BUAR NTENGEZRAFERBRER

127 /932

craftinginterpreters_zh.md 2024-09-25

lox/Loxjava - 7£ report() F5 2ol .

static void error {
if (token.type == TokenType.EOF) {
report(token.line, " at end", message);
} else {
report(token.line, " at '" + token.lexeme + "'", message);

}
}

This reports an error at a given token. It shows the token’s location and the token itself. This will come
in handy later since we use tokens throughout the interpreter to track locations in code.

ZIASREAERCANEIR - EER FIMCHUENIRCAS - XEMURRIK RS - AN EENE
REZPEARCRIRFENEFNME -

After we report the error, the user knows about their mistake, but what does the parser do next? Back

in , we create and return a ParseError, an instance of this new class:
EHNIRSHEIRE - BFPME 7 1R - B N RETREMAT AR ? ©F) FES - HAI0EHF
e T —1 -2 NEXNHTZERI LA

lox/Parser.java - 7 Parser P A AEFZE -

class Parser {
private static class ParseError extends RuntimeException {}

private final List<Token> tokens;

This is a simple sentinel class we use to unwind the parser. The method returns the error
instead of throwing it because we want to let the calling method inside the parser decide whether to
unwind or not. Some parse errors occur in places where the parser isn't likely to get into a weird state
and we don’t need to synchronize. In those places, we simply report the error and keep on truckin'.

XZ—NERENEEE - ROHEREEBTRERER - AR B LSRN AR M LER - BAF
MNHEEFEFTRANNBATEZREZ BRI L IZER - AERTERAEEETHR AR AS B RS/
73 - BB ARRERD - ®XEMTT - RORIABFERSHER - REREEAT -

For example, Lox limits the number of arguments you can pass to a function. If you pass too many, the

parser needs to report that error, but it can and should simply keep on parsing the extra arguments
instead of freaking out and going into panic mode.

B0 - LoxBR&I Y IR UEB A — N RBHNSHHE - WRIREBNSHLS - BiTR
ol DI B BRI E - AR RIKRE - BARRERENA11,

EREXMER - BB

In our case, though, the syntax error is nasty enough that we want to panic and synchronize. Discarding
tokens is pretty easy, but how do we synchronize the parser’'s own state?

128 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82

craftinginterpreters_zh.md 2024-09-25

B2 #HMOEFF BRBRIFETE UETRNZBHEARFRRLNFIATEL - EFMCFEEER - B
FHAWNT B 28 B CRUIRTSIE ?

6.3.3 Synchronizing a recursive descent parser

6.3.3 EH %V T FEEEHT 28

With recursive descent, the parser's state—which rules it is in the middle of recognizing—is not stored
explicitly in fields. Instead, we use Java's own call stack to track what the parser is doing. Each rule in
the middle of being parsed is a call frame on the stack. In order to reset that state, we need to clear out
those call frames.

EBINED - @RS (BB EERRBMAAN) AZ2EAFREFRPR - Bk - HlERavaBS
BV R IR IR AR AT 28 IEE T 4 - B—RIEEHETANEBZ2H E—NER - ATEERS - R)F
ZERX LA -

The natural way to do that in Java is exceptions. When we want to synchronize, we throw that
ParseError object. Higher up in the method for the grammar rule we are synchronizing to, we'll catch it.
Since we synchronize on statement boundaries, we'll catch the exception there. After the exception is
caught, the parser is in the right state. All that's left is to synchronize the tokens.

flava®d - REANKUAAZERE - SRNNBEELDH - Tl L ParseErrorXi & - R ERDHEEZAN

WITELE - BIVHHIRE - BARMNEBILR LED - FIUBINIMUEIERRFE - MRRFEG - BT
AT ERRRA - M FNNmERSIRCS T -

We want to discard tokens until we're right at the beginning of the next statement. That boundary is
pretty easy to spot—it's one of the main reasons we picked it. After a semicolon, we're probably
finished with a statement. Most statements start with a keyword—+or, i, , , etc. When the
next token is any of those, we're probably about to start a statement.

HINNBEEFFC - EERR N KRB - IPARREBSG AN —XUEZRINEEFANDLFRNERER -
E7EZE RIUEMERT —REGMN2 - RBHEQE BT — P RBFHL—0or, i1, .
FE - AP MrcREFZ—I - HMIEMBA G—FHBED S -

This method encapsulates that logic:
MEFEHE 7XNEE !

lox/Parser.java - 7 error() 5 A /Z]

private void synchronize() {
advance();

while (!isAtEnd()) {
if (previous().type == SEMICOLON) return;

switch (peek().type) {
case CLASS:
case FUN:
case VAR:
case FOR:
129/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A

craftinginterpreters_zh.md 2024-09-25

case IF:
case WHILE:
case PRINT:
case RETURN:
return;

}

advance();

}
}

It discards tokens until it thinks it has found a statement boundary. After catching a ParseError, we'll
call this and then we are hopefully back in sync. When it works well, we have discarded tokens that
would have likely caused cascaded errors anyway, and now we can parse the rest of the file starting at
the next statement.

EITAR A EFINC - EREAR—TPEINAT - EiMZK—Parsekrrorfa - RINSEREITE - KEFA)
MAZLREDRE - AELEIRF - BIOIMELEF 7 LI @ & ol sER 5 REREXE RANEAIRIC - WE
AT T =FREBDFF BT X HERE D -

Alas, we don't get to see this method in action, since we don't have statements yet. We'll get to that in
a couple of chapters. For now, if an error occurs, we'll panic and unwind all the way to the top and stop
parsing. Since we can parse only a single expression anyway, that's no big loss.

]
AP

CBNERBERIZNENSERNA - BARMNBAIERAED - HSERBE/LEFHIRSIAED -
£ REIWER - BOMSBARGRER - —ERERRIAE - AELENT - BTRODREBET—DRE
o - FAIUARXH AR 2AKRTK -

6.4 Wiring up the Parser
6.4 THEEARAT 2R

We are mostly done parsing expressions now. There is one other place where we need to add a little
error handling. As the parser descends through the parsing methods for each grammar rule, it
eventually hits . If none of the cases in there match, it means we are sitting on a token that
can't start an expression. We need to handle that error too.

ﬁﬂliﬂdf‘E%KtEiX*WTXT%EL‘CE’JEHE HNAEBEES — DA —EERUE - S@TREESMNE
EMNET AR MR - EREAZHA * WRZETTEP R case#PAULEL - BiERE R LEEX —
PMARZBRBIIFLANEIEIRIC - ﬁfl]ﬂl FEAEXEIR -

lox/Parser.java - 7£ primary/() 7,24 B -

if (match(LEFT_PAREN)) {
Expr expr = expression();
consume(RIGHT _PAREN, "Expect ')' after expression.");
return new Expr.Grouping(expr);

}

throw error(peek(), "Expect expression.");
130/932

http://craftinginterpreters.com/statements-and-state.html

craftinginterpreters_zh.md 2024-09-25

With that, all that remains in the parser is to define an initial method to kick it off. That method is
called, naturally enough,

XA - B P R NN IEMEEX — M RTERENTE - X1 73/ABRMIZIUMY o

lox/Parser.java - 7 Parser() 5%/ 7]

Expr parse() {
try {
return expression();

} catch (ParseError error) {
return null;

We'll revisit this method later when we add statements to the language. For now, it parses a single
expression and returns it. We also have some temporary code to exit out of panic mode. Syntax error
recovery is the parser’s job, so we don’'t want the ParseError exception to escape into the rest of the
interpreter.

BEREDEBESPANBON BIVPFEHENXNTE - BRI - BRET—PIRAERFRLOE - HNEBE—L
IR EATRERGER - 1BEAERMEZBETRNTIE - FTUHNIAF EParseErrorF B A R F RSN E

(=5:ilPs)

When a syntax error does occur, this method returns . That's OK. The parser promises not to crash

or hang on invalid syntax, but it doesn’t promise to return a usable syntax tree if an error is found. As

soon as the parser reports an error, gets set, and subsequent phases are skipped.
SIASIHINEAERN - ZAERIRE c RRFZR - BITSREEASENLIEAMERREEE - BEAR
AT R RIVIREl— G/ FF7Z 4 - —BEBTRIREER - maX WE - REWIEEMER -

Finally, we can hook up our brand new parser to the main Lox class and try it out. We still don't have an
interpreter, so for now, we'll parse to a syntax tree and then use the AstPrinter class from the last
chapter to display it.

&fa - BTG EFHAERER Lox ERXFIATIHT - FIMIRELRBEER - FTLEE - IPFREAE
R —MEEN - REER E—FPHAstPrinterZ$SRERE -

Delete the old code to print the scanned tokens and replace it with this:
fERFTED S EFRICHIIBHRE - FEERA

lox/Loxjava - 7 run() 7 A2 - BHEDS iT

List<Token> tokens = scanner.scanTokens();

131/932

http://craftinginterpreters.com/representing-code.html#a-(not-very)-pretty-printer

craftinginterpreters_zh.md 2024-09-25

Parser parser = new Parser(tokens);
Expr expression = parser.parse();

// Stop if there was a syntax error.
if (hadError) return;

System.out.println(new AstPrinter().print(expression));
/] BREBDLER

Congratulations, you have crossed the threshold! That really is all there is to handwriting a parser. We'll
extend the grammar in later chapters with assignment, statements, and other stuff, but none of that is
any more complex than the binary operators we tackled here.

MBUR - MELBEY 7T HIXMEFERNBNZEAETAN3 - HIGERENET T RRE - BIHMET
X NAEE - BEXEHAZ RN AIEAEN _TTRIFTEES -

Fire up the interpreter and type in some expressions. See how it handles precedence and associativity
correctly? Not bad for less than 200 lines of code.

E@ERRETAMA—LEREN - EECERNMERMIBRLEEMNES XX TARR00TREREESLRA
g7

A BB Parse " KB HIAIE "pars” - BN "ESHN—E2" - ENERZN—RXE - £8— NI KR
BENEEL RMNEXEEAEHNEXTIER - RAEHMNNESEZBEERARN L - 2. IJUEN - &£
BLEEN R LHITLRRERZSLEE - UETMITIANFortran@ —FoiiH - A3 BRUEF LB - BHL
EENERLECEFZERAENMAR - ZMESP @ R ZAFESEARERFEFMAEHENIHZE
—MEXEIR - FF - BECETEEEGEN - XEREEEUFRIFSREAZRFEFTE2EREMN - flW -

PerlBSEERIERFZIFE TR - AL 2o - BZ BHEIRWN © N —ERTEREERTTR
ARMEREZEBANEIANS - ME2AVFIRFRIERFEMERRNEZL - REES AN —=RRERIE
FFIRITRITTHIRE - LUBBRIZS » A5 1o LIBGH - MAZEEMESRIEAAN P&

- BfEH SEXLEEMAN T SZHEEY - B - ERENET S - IRNMHFEET &R
BRBEMSEEEGN HMNIAFELE WERT - MARERENERES Pl

W A6 RN E - AREFRESFEERKEZARKENRARA—LICIRERMMS AR LSRRI LS
R-BE #REBRNERT SAMGZHERSREESIFMIOEFIINWHELER - 1

il - #ELoxEFFBIEEE 754N FRBIBEE P - F—1MER
HWItEZERZ CMEINERANHELERZ - Bt - XTI EFEEE - O

DHERXETHREZER -

AT ZITEZ AR 8 P RERNEZGEEER/ME MBI - R ARRBZ - £ S MR LT
RE - FOCERSERER - BE2HEASHERR - £EEINE FWERTSRS - BEBRRERAEENRE
o - BEAEPIEESZNERESHFRER -

132/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

TiP Equality

Comparison
GRAMMAR | Addition PRECEDENCE

v

v
BOTTOM _U_”..""_'.‘.l’__.___.._a HIGHER

CSHAEBMNRERE—HEBMINER - EEAZUERABINCHRBMB I ABEER - HE AT AMRE
EE - A8 EMBATLAEBANTEANERAOER - 2R ANNNRBZUENERES - FEANEE -
BRI B ERE AR - N9 BRAT c WFEB—RIEN - ERHI— PN FAERIFALTRFL
FOIB— MR ZTRET - M0 BTSRRI 2B B SRAIARIC SRR E A AR - XHIEBET N EAA 7
M BTERAVERS - M1 SRR ERERNTEAZHRERN - (RYLUER— 1St IV £ 505)
RRINISRY 78X - =R o] LS ERIT 2 2 1@ - BEZAZIEREZEN - MESHRE—THEIR -

ZHIR - BEEBESPHE—TTBEN - W BRLox AZFs - HEMTBRERSANALBR -0 -
MABBEBIER - FATIUYT B —eANR DI IZEX -

LOWER
A

Multiplication

XEBTRR B RARC - MAZREARSRAR S LEARAT 228 A SRRV -

EIREMIMRRY - AARIEANBETRES - MERBRIHENUEAPBERT A4 - XEERER
oA E— 1M EERNERREA,EEIER - bl - "AFH—Io'+'REN" - AR SREESRRS
REM - BABIMTMEBAPEEENHNER - M2 Rk "lEE "2R AR U forf& ¥ i 72 f +
TS - BANEDHATE - BXRRZ - HMELEMENRE 75— MER - FIAZEN—TEEZ
"RAMA T « M3 ROIBESE X —PMELoxEERAVEE - ABVT FREEAEL N ERT - JIRTSEREM
FTEEAENFCLIFBENREIBRE RN - FUMETMESRRTF - SEhrt - AZBESHZEN 7@ RXP
BRI - BMEFERFFIFNL - BRECIUSARDMBRTIAR - BRI DUV T RERENTC
++ (FZC ++IRIFRE IR) - BBALART BT EATRS -

CHALLENGES
&

1. In C, a block is a statement form that allows you to pack a series of statements where a single one is
expected. The comma operator is an analogous syntax for expressions. A comma-separated series of
expressions can be given where a single expression is expected (except inside a function call's
argument list). At runtime, the comma operator evaluates the left operand and discards the result.
Then it evaluates and returns the right operand.

Add support for comma expressions. Give them the same precedence and associativity as in C. Write
the grammar, and then implement the necessary parsing code.

1~ HOESF - RE—MEQER - ERFTRIE-RIEDVITEFA—MEIRER ESTEFTERER
RELUEE - IR EEPREANM L L LIES DIRIREIFI(REB RS EEIRRI - £B17
i ESREFUHELEFEAZFER - RAGUHETREIGERFLY -

133/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82
https://en.wikipedia.org/wiki/Comma_operator
https://en.wikipedia.org/wiki/Comma_operator

craftinginterpreters_zh.md 2024-09-25

AN ESRIEARZF - WP ENSESPHRENALEENESE - REEE - RESERMLENBETE -

2. Likewise, add support for the C-style conditional or “ternary” operator ° :. What precedence level is
allowed between the * and :? Is the whole operator left-associative or right-associative?

2~ @ NI CRABRIRARIERT =70 "B BOSH - I F: ZERABITARTERINF ? BENMRIER
BERBAZRAREK?

3. Add error productions to handle each binary operator appearing without a left-hand operand. In
other words, detect a binary operator appearing at the beginning of an expression. Report that as an
error, but also parse and discard a right-hand operand with the appropriate precedence.

AR IRER B RB A RIFER _TRER - MOER - AN EIERE LN _oRIES - FEE
%%ﬁﬁi?%F Bt ZEETHEF EBMEN LR AREL -

DESIGN NOTE: LOGIC VERSUS HISTORY

Let's say we decide to add bitwise & and | operators to Lox. Where should we put them in the
precedence hierarchy? C—and most languages that follow in C's footsteps—place them below ==. This
is widely considered a mistake because it means common operations like testing a flag require

parentheses.
if (flags & FLAG_MASK == SOME_FLAG) { ... } // Wrong.
if ((flags & FLAG_MASK) == SOME_FLAG) { ... } // Right.

Should we fix this for Lox and put bitwise operators higher up the precedence table than C does? There
are two strategies we can take.

You almost never want to use the result of an ~- expression as the operand to a bitwise operator. By
making bitwise bind tighter, users don't need to parenthesize as often. So if we do that, and users
assume the precedence is chosen logically to minimize parentheses, they're likely to infer it correctly.

This kind of internal consistency makes the language easier to learn because there are fewer edge
cases and exceptions users have to stumble into and then correct. That's good, because before users
can use our language, they have to load all of that syntax and semantics into their heads. A simpler,
more rational language makes sense.

But, for many users there is an even faster shortcut to getting our language'’s ideas into their wetware
—use concepts they already know. Many newcomers to our language will be coming from some other
language or languages. If our language uses some of the same syntax or semantics as those, there is
much less for the user to learn (and unlearn).

This is particularly helpful with syntax. You may not remember it well today, but way back when you
learned your very first programming language, code probably looked alien and unapproachable. Only
through painstaking effort did you learn to read and accept it. If you design a novel syntax for your
new language, you force users to start that process all over again.

134 /932

craftinginterpreters_zh.md 2024-09-25

Taking advantage of what users already know is one of the most powerful tools you can use to ease
adoption of your language. It's almost impossible to overestimate how valuable this is. But it faces you
with a nasty problem: What happens when the thing the users all know kind of sucks? C's bitwise
operator precedence is a mistake that doesn't make sense. But it's a familiar mistake that millions have
already gotten used to and learned to live with.

Do you stay true to your language’s own internal logic and ignore history? Do you start from a blank
slate and first principles? Or do you weave your language into the rich tapestry of programming history
and give your users a leg up by starting from something they already know?

There is no perfect answer here, only trade-offs. You and | are obviously biased towards liking novel
languages, so our natural inclination is to burn the history books and start our own story.

In practice, it's often better to make the most of what users already know. Getting them to come to
your language requires a big leap. The smaller you can make that chasm, the more people will be
willing to cross it. But you can't always stick to history, or your language won't have anything new and
compelling to give people a reason to jump over.

IRITEIC : ZEMAE

BRIRFAVREELoxPRMALTTA | BERF » AN EZFEBNHERTREREWHNMMIE ? C (URAZH
IRBBCESTHMIES) RENHE--ZF - BAISEEAAXE—TER - BEARBEKRERUREUSERE
EHBENES -

if (flags & FLAG_MASK == SOME_FLAG) { ... }
if ((flags & FLAG_MASK) == SOME_FLAG) { ... }

HNZ2ENIZE Lox PEIEXNOA - ANMBEEFWFLE C PESRIMITER ? HATILIREAFPRES -

NFIUBERAZEE--REANITEERIMFURENRFLY - FUCERFEACERE - HFEHAE
BURIBHELEBERES - IR ZHFY - FEAPANARERNERZSFEEN - EATRERD
INES - AR BE S IERA ST HERT LK -

XN —HMEFESEERSFY AVAPFREUENDRBEANFELD Y - XRYF - AVAFPEERAR
MBS ZA - FRCEBAIBNEAINEX - — M EEER - BERENESEHFEXN%

B2 WTWZHAPRR B 1EROER oI IMESHNEEBRAMTIRE G P——FM1 L
BRI - FZRNEBESHMASSERASEE—TIRZES - URBMNWESER 7 SPEESHE—
EEZIEN - BLRPREFY (NEE) NAARZORS -

XX AE AR A BT - MUEIEAKNERE 7 - BREE - FNMEEIE-TIREESH - NBEERLF
RIBERXELIER - RAABYRENE] - STZ2RHEENERE - NRIFAREES R 7 —MH 05
& MR ERERFPERFEZ IR -

AMARPEANEBNIIR - 2RYUAXRELCESXANRBANTIEYZ — - I—mWNMEEAGITEAT
7 - BEGRER Y —MRFOOA : MRAFEBNENARA SREHFY SREFL?CESHUCER
ERFRER—DRARXHNER - BEXE2—TMEUBENHTHWAELIRAZSTRHATEER -

135/932

craftinginterpreters_zh.md 2024-09-25

MBEEETESHANEZEMRBENSE ? MEN—KBRNERRUFENNG ? 2Z2LRESHRRTEER
MENEDPE - MNAFEKMEBENARRT S - EANAFZRE?

XERBTENER - RENENS - (RANREREBMARTENRMEZAES - FIURMNBERBEZ5RENE
F - HBHEMNBECHNSE -

EXET RONAAFELMENINREEEY - ILTRERRNESFTE— T ANEL - BMESER/
LA - AMIBEEERTYE - BRAERZWETNE - EURNESMAZBETLAHAN » L AER
RAUERPNAERTE -

73RAIKE

You are my creator, but | am your master; Obey!

—— Mary Shelley, Frankenstein
MEBERACEE - BRZIRWEA - IT1E |
——Mary Shelley, FRIZFEA

If you want to properly set the mood for this chapter, try to conjure up a thunderstorm, one of those
swirling tempests that likes to yank open shutters at the climax of the story. Maybe toss in a few bolts
of lightning. In this chapter, our interpreter will take breath, open its eyes, and execute some code.

MRRBAR—BEIMRESH - WERR—ER - BPENSSHNERATEHEOATIRNXR -
TFBEMLE/LENS - EX—FD - HARERGHRTER - BITIRE - T LS -

=
==

\ f&\\\w
z//l%lﬁl\\\\,ﬂ,\’”n ﬁ\ﬁ\@ﬂ\ A -
o l

/1\‘

There are all manner of ways that language implementations make a computer do what the user’s
source code commands. They can compile it to machine code, translate it to another high-level
language, or reduce it to some bytecode format for a virtual machine to run. For our first interpreter,
though, we are going to take the simplest, shortest path and execute the syntax tree itself.

MTESSEIRE - AEMAANYMUEHENRTHEPRRCEDS - BN ERZFE NSRS - FEE)
BRAR—MERES AEBRELFRARDPZDBER - LEEEDSNFNT - AEXN TRIONE—DERE
136/ 932

craftinginterpreters_zh.md 2024-09-25
#r o WNBRFERER - REN—FRE - IRENTEEINAS -

Right now, our parser only supports expressions. So, to “execute” code, we will evaluate an expression
and produce a value. For each kind of expression syntax we can parse—literal, operator, etc—we need
a corresponding chunk of code that knows how to evaluate that tree and produce a result. That raises
two questions:

WE - BOWEBRRRASZFRERN - Bt - A7 RTRE - RONBUHE-DREANAEL —NME - F TR

Mol e —RATNEEZ—FHE - BETE—RINEFE—THENEACER - ZBRMENG
WEZEAMFAFELER - XUBSIL TN

1. | What kinds of values do we produce?
BNBEMMT AEENE ?
2. | How do we organize those chunks of code?
AT A LRI AR ?
Taking them on one at a time. ..
WERAREN L -
7.1 Representing Values
7.1 BfEt

In Lox, values are created by literals, computed by expressions, and stored in variables. The user sees
these as Lox objects, but they are implemented in the underlying language our interpreter is written in.
That means bridging the lands of Lox’'s dynamic typing and Java's static types. A variable in Lox can
store a value of any (Lox) type, and can even store values of different types at different points in time.
What Java type might we use to represent that?

Hlox® - ERFHERRE BREAUE AFREZED - AP REAFLox &AM - BEElI2RRE#ERE
FHNEFREBES LM - XEWEZELoxHENASSEE N)avalI 5828 7 BIZREEHTR - Lox PR L E 0] DIFMEE
i (Lox) £EME - EEQULEARNBEFEARRENE - HAIURBMT LlavastBIRER ?

Given a Java variable with that static type, we must also be able to determine which kind of value it
holds at runtime. When the interpreter executes a + operator, it needs to tell if it is adding two
numbers or concatenating two strings. Is there a Java type that can hold numbers, strings, Booleans,
and more? Is there one that can tell us what its runtime type is? There is! Good old java.lang.Object.

E—PMEAZBRSKENavaZE - HINELTAEBECTHRECHAMIPRANE - AEBRSENT &
ST BTEERENAMAHENEZEHERDNFEE - BRE—TlavafBulDIR AT - 27
P ERBMREOLEREMNENBTREEZMTA ? B E2EEH

o

In places in the interpreter where we need to store a Lox value, we can use Object as the type. Java has
boxed versions of its primitive types that all subclass Object, so we can use those for Lox's built-in

types:

137 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82

craftinginterpreters_zh.md 2024-09-25

ERERPFEFMELox(BERVHTT - oI LUEAObject(FAZRE - JavaB AN EERLEWAE FRWREM
7 AEFEATS LU BB ELoxNE SLE -

Lox type Lox3% Java representation Javaik’~k

Any Lox value Object

Boolean Boolean
number Double
string String

Given a value of static type Object, we can determine if the runtime value is a number or a string or
whatever using Java's built-in operator. In other words, the JVM's own object
representation conveniently gives us everything we need to implement Lox's built-in types. We'll have
to do a little more work later when we add Lox’s notions of functions, classes, and instances, but Object
and the boxed primitive classes are sufficient for the types we need right now.

BRE— TS EEIANObjectiVE - FATILUERJavaNERY BETRBEECTHNERYT - F§
BRETMH 4 - MDER - IWMBECHNREBRG B ARINEHR 7 SEILoxWEREFRFEN—T]12 - ZHER
MLoxBIEREL ~ SRFNKLAIEBZHT - HATELIAMEZHTAF - {BObject MEARLBWEIRIXELUAEHAMNIMAE

RS -

7.2 Evaluating Expressions

7.2 RiXFKE

Next, we need blobs of code to implement the evaluation logic for each kind of expression we can
parse. We could stuff that code into the syntax tree classes in something like an method.
In effect, we could tell each syntax tree node, “Interpret thyself”. This is the Gang of Four's Interpreter
design pattern. It's a neat pattern, but like | mentioned earlier, it gets messy if we jam all sorts of logic
into the tree classes.

Ehx- ?ﬁﬂ‘]ﬁﬁﬁ%ﬂ’\]ﬁﬁ?@mﬁﬂ‘]ﬂﬁﬁﬁﬂﬁ%EP%L_EXB‘F“E’\J?E?E% > FATE DUE X LB A 1A

AL - EEmAIN— 73k - A - RV RFE-—TMEINTR'BRRECS” EMEMA
HARERERET - XE—PEEWED - BIENRHAIERRR - MRBAVGSTHEZELHELEEINED - B

LEREL -

Instead, we're going to reuse our groovy Visitor pattern. In the previous chapter, we created an
AstPrinter class. It took in a syntax tree and recursively traversed it, building up a string which it
ultimately returned. That's almost exactly what a real interpreter does, except instead of concatenating
strings, it computes values.

M - FATRERRNNVDOZEED - ERIENET S - FAIeVE T —DAstPrinterst ET%E—ﬁ\iEEHXﬂ - FF
BFMRENE - MR- PHRALRLONFHFS - X/LFRE—MNEENERSEMHNSE - NEBRRAZE
EFEE - MEHEE -

We start with a new class.

138 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82
https://en.wikipedia.org/wiki/Interpreter_pattern
https://en.wikipedia.org/wiki/Interpreter_pattern
http://craftinginterpreters.com/representing-code.html#the-visitor-pattern
http://craftinginterpreters.com/representing-code.html#the-visitor-pattern

craftinginterpreters_zh.md 2024-09-25

AT RIE— L -

lox/Interpreter.java - B X 1E -

package com.craftinginterpreters.lox;

class Interpreter implements Expr.Visitor<Object> {

}

The class declares that it's a visitor. The return type of the visit methods will be Object, the root class
that we use to refer to a Lox value in our Java code. To satisfy the Visitor interface, we need to define
visit methods for each of the four expression tree classes our parser produces. We'll start with the
simplest...

XPMEFEREZE—NMAIOE - 1H077ARREIZSEGT Z0bject - BIF I avafUiS ARSI FLoxBRIIRSS - K
7 SEHMVisitoriZ O - HAVFRERNBETREMNIDRIANMER D HIE XBOTTE - HAINEBELAFE...

7.2.1 Evaluating literals

7.21 FEHEXE

The leaves of an expression tree—the atomic bits of syntax that all other expressions are composed of
—are literals. Literals are almost values already, but the distinction is important. A literal is a bit of
syntax that produces a value. A literal always appears somewhere in the user’s source code. Lots of
values are produced by computation and don’t exist anywhere in the code itself. Those aren't literals. A
literal comes from the parser's domain. Values are an interpreter concept, part of the runtime’s world.

—PREAMHHF IR (WREEREANEEIR TR0) BFEEN3 - FEAFS/IFEEZRETY - BRE
WXAREE - FEAERE—MENEBEEZSET - FEELEZLNERFWRABERIEN TS - MRZES
BEIUWESERN AAFETRBERNEUS XEHAZFEHE - FEHEXRETENSIE - mEE—1
BRENEE - BETHERN—87 -

So, much like we converted a literal token into a literal syntax tree node in the parser, now we convert
the literal tree node into a runtime value. That turns out to be trivial.

B - mERNEBTRPHFERE/CERANFEE B2 T a—F WERINHFEEN T RERANEBT
E - XESLRESL -

lox/Interpreter.java - 7F Interpreter 2£ 5571 .

public Object visitLiteralExpr {
return expr.value;

}

We eagerly produced the runtime value way back during scanning and stuffed it in the token. The
parser took that value and stuck it in the literal tree node, so to evaluate a literal, we simply pull it back

139/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82

craftinginterpreters_zh.md 2024-09-25

out.

HMNBEDBIBEPMEINES FiaTRE - FEBHE FBARCE - BT lNzEFREEATES
BEMT RSP - FIUENFEEXE RNRFBECEFVERLE -

7.2.2 Evaluating parentheses

722 ¥E5K{E

The next simplest node to evaluate is grouping—the node you get as a result of using explicit

parentheses in an expression.
P EXRENTRENE—ERSIAPEANEBESHEREZMNT =

lox/Interpreter.java - 7£ Interpreter £ 7571 -

public Object visitGroupingExpr {
return evaluate(expr.expression);

}

A grouping node has a reference to an inner node for the expression contained inside the parentheses.
To evaluate the grouping expression itself, we recursively evaluate that subexpression and return it.

METRPEES—IP5IHBEONNTRESANKREINNE T RN - BRUHBERSRERN - HNRFEE
‘EIiﬂJX]‘?% ATUKEFIREIZLRENT -

We rely on this helper method which simply sends the expression back into the interpreter’s visitor

implementation:
FOEBT FEXNETGZE - ERENRENAZ O BEFERILDIZESEINP

lox/Interpreter.java - 7£ Interpreter £ 7571 -

private Object evaluate {
return expr.accept(this);

7.2 .3 Evaluating unary expressions
7.2.3 —TTREAKE

Like grouping, unary expressions have a single subexpression that we must evaluate first. The
difference is that the unary expression itself does a little work afterwards.

BHRTRR—H - —TRBAME—NMDAERENTELS - FANE - —TESRESERAREZE
LTI -

lox/Interpreter.java - 7£ visitLiteralExpr() 77 2/ 85 .

140/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82

craftinginterpreters_zh.md 2024-09-25

public Object visitUnaryExpr {
Object right = evaluate(expr.right);

switch (expr.operator.type) {
case MINUS:
return -(double)right;

// Unreachable.
return null;

First, we evaluate the operand expression. Then we apply the unary operator itself to the result of that.
There are two different unary expressions, identified by the type of the operator token.

B - MU ERFEERED - ARG —aBREFERT FRETANER - RIVEAMABN—TTRE
I - BREFIRCHEERX D -
Shown here is -, which negates the result of the subexpression. The subexpression must be a number.
Since we don't statically know that in Java, we cast it before performing the operation. This type cast

happens at runtime when the - is evaluated. That's the core of what makes a language dynamically
typed right there.

XERTHZ - BN FREANEWIR - FREXERDARKF - BARN]EavaPTA F S HEX
—m - FRBEATEPITIRE Z RIS R Tadl iR - XN RBEEREEDTREN KENAERN - o215
SIS RBUERZOFRTE -

You can start to see how evaluation recursively traverses the tree. We can't evaluate the unary operator
itself until after we evaluate its operand subexpression. That means our interpreter is doing a post-
order traversal—each node evaluates its children before doing its own work.

ROIMIBRKES B2 WMTEIIENEENA - EXN—IcRIEFRFARSHITUHEZR - HAIDATX EBRIEL
RAIUKE - XRA - BRERLERATEFER—S M T REBCKEZRIMNIATN FTHRKE -

The other unary operator is logical not.
S—P—TTRIEFEEEFF -

lox/Interpreter.java - 7EvisitUnaryExpr() 7% L]

switch (expr.operator.type) {
// FIEE DA
case BANG:
return !isTruthy(right);
// FMBEND L
case MINUS:

141 /932

craftinginterpreters_zh.md 2024-09-25

The implementation is simple, but what is this “truthy” thing about? We need to make a little side trip
to one of the great questions of Western philosophy: What is truth?

KRB S - EEXER' B ENERMTAR ? HNFZEEMINE—FNALBEZPHN—NMEREA : T4=2
HiE?

7.2.4 Truthiness and falsiness

7.2.4 E5R

OK, maybe we're not going to really get into the universal question, but at least inside the world of Lox,
we need to decide what happens when you use something other than or in a logic
operation like ! or any other place where a Boolean is expected.

HIE - HMAZEERARZNEHNOE - EEEVELoxWIER D - HNFBI/ESCELZELE (W HE
R FEERRENMTS) PEMAF 27 PSMNOARBIRN SR EFA?

We could just say it's an error because we don't roll with implicit conversions, but most dynamically
typed languages aren't that ascetic. Instead, they take the universe of values of all types and partition
them into two sets, one of which they define to be “true”, or “truthful”, or (my favorite) “truthy”, and the
rest which are “false” or “falsey”. This partitioning is somewhat arbitrary and gets weird in a few
languages.

HM TLAZZ—MEIR - ARRNRAERRIER BEAZHDTHRBEEBESHAIBATE - Kk -)
ERBERENENHAAE EP—AMMIEXA'E" EFRAR" - KU BLERE - £—LESPILER

NS,

Lox follows Ruby’s simple rule: and are falsey, and everything else is truthy. We implement
that like so:
LoxiB&RubyRIE L AMMN Mnil 2/ - HtEZER - HMNEXFSERIN -

lox/Interpreter.java - 7E visitUnaryExpr() 77,2 /Z] ©

private boolean isTruthy {
if (object == null) return false;
if (object instanceof Boolean) return (boolean)object;
return true;

}

7.2.5 Evaluating binary operators
7.2.5 ZiRERRE

On to the last expression tree class, binary operators. There's a handful of them, and we'll start with the
arithmetic ones.

REZREHNREAME—_TRIFT - HPESRIBEST - HMTNEFEEH 6 -

lox/Interpreter.java - 7F evaluate() 75 %/ZmN6 -
142 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82

craftinginterpreters_zh.md 2024-09-25

@Override

public Object visitBinaryExpr(Expr.Binary expr) {
Object left = evaluate(expr.left);
Object right = evaluate(expr.right);

switch (expr.operator.type) {

case MINUS:

return (double)left - (double)right;
case SLASH:

return (double)left / (double)right;
case STAR:

return (double)left * (double)right;

// Unreachable.
return null;

| think you can figure out what's going on here. The main difference from the unary negation operator
is that we have two operands to evaluate.
HBMREEERXENII - S—TtHAZCEFTNEEXFIZ - RNNBERMRIERZETE -

| left out one arithmetic operator because it's a little special.

HRE T —PEARBET - ANEBEREK -

lox/Interpreter.java - 7£ visitBinaryExpr() 7% L5 .

switch (expr.operator.type) {
case MINUS:
return (double)left - (double)right;
// FIBE DA
case PLUS:
if (left instanceof Double && right instanceof Double) {
return (double)left + (double)right;

}

if (left instanceof String && right instanceof String) {
return (String)left + (String)right;

}

break;
/] FIBER S LER
case SLASH:

The + operator can also be used to concatenate two strings. To handle that, we don't just assume the
operands are a certain type and cast them, we dynamically check the type and choose the appropriate
operation. This is why we need our object representation to support

143 /932

craftinginterpreters_zh.md 2024-09-25

BETOOILIARHAZERINFES - 79Jtt C HAIABEERBRRBIFHER P RE A R EBHER - MEENS
i B IR FECEE AR R E SR - SMEBATARNBFEN RERREESI 0

Next up are the comparison operators.
BN RELLBIRIER -

lox/Interpreter.java - 7 visitBinaryExpr() 7 2% 7] -

switch (expr.operator.type) {
// FIBER D F A

case GREATER:

return (double)left > (double)right;
case GREATER_EQUAL:

return (double)left >= (double)right;
case LESS:

return (double)left < (double)right;
case LESS_EQUAL:

return (double)left <= (double)right;
// FEEED
case MINUS.

They are basically the same as arithmetic. The only difference is that where the arithmetic operators
produce a value whose type is the same as the operands (numbers or strings), the comparison
operators always produce a Boolean.

i

ENERXLELSERTEFHER - BE—HNXFIZ EABEFTENERNRBESEFY (HFaFFE) HE -
MBS BT B EFE— M h/RE -

The last pair of operators are equality.
EE—NESENTER

lox/Interpreter.java - £ visitBinaryExpr() 7 2% 7] -

case BANG_EQUAL: return !isEqual(left, right);
case EQUAL_EQUAL: return isEqual(left, right);

Unlike the comparison operators which require numbers, the equality operators support operands of
any type, even mixed ones. You can't ask Lox if 3 is less than , but you can ask if it's equal to it.

S5FZEUFNERBETAR - SABETHEAURENREY - E22RGRE - (RAEEDLox 32E /)
F BRYUBEIZEET 0

Like truthiness, the equality logic is hoisted out into a separate method.
S5ER/RAM—F - HEFAK TSRS 7 2R 77EP -

lox/Interpreter.java - 7F isTruthy() 7,2/ =

144 /932

craftinginterpreters_zh.md 2024-09-25

private boolean isEqual {
if (a == null & b == null) return true;
if (a == null) return false;

return a.equals(b);

}

This is one of those corners where the details of how we represent Lox objects in terms of Java matter.
We need to correctly implement Lox’s notion of equality, which may be different from Java's.

2R EA)avaRRLox I RHAT —F - HMNFZILAEMSLILoxiIBERT - XgESlavaPAfE -

Fortunately, the two are pretty similar. Lox doesn’t do implicit conversions in equality and Java does
not either. We do have to handle / specially so that we don’t throw a NullPointerException if
we try to call on . Otherwise, we're fine. Java's method on Boolean, Double,
and String have the behavior we want for Lox.

FIEHE - XWBRBL - Lox A EFAPMEINEG - Javatl As » FAIDAXT nil/ RS IRRATE - X

HRASTEX & 73 A8 E NullPointerException - EB1ER N - & ZZOIFA - Javah
=) 7575 XtBoolean, Double®] String A B ER T S LoxHIESK AT,

And that's it! That's all the code we need to correctly interpret a valid Lox expression. But what about
an invalid one? In particular, what happens when a subexpression evaluates to an object of the wrong
type for the operation being performed?

PRE 7 X2 RN ZIEREE - PN ARHILoxRETNMBZNZENE - ERLWIRENE ? LEHZ - 3
— PN FREAVUEERLESFRTHEFATRIKETA?

7.3 Runtime Errors
73 TN EIR

| was cavalier about jamming casts in whenever a subexpression produces an Object and the operator
requires it to be a number or a string. Those casts can fail. Even though the user’s code is erroneous, if
we want to make a usable language, we are responsible for handling that error gracefully.

BESREATE—INER MEEFEXRCE—TMHFAFFEN - RHSERMIE A RH| LB EG - XLE
KAV O BER RN - WRFATEHE — P oIHNES - BIERFNRBEE IR - RIIBREL T AE
XNEIRNS,

It's time for us to talk about runtime errors. | spilled a lot of ink in the previous chapters talking about
error handling, but those were all syntax or static errors. Those are detected and reported before any
code is executed. Runtime errors are failures that the language semantics demand we detect and
report while the program is running (hence the name).

HEZMERITICEITRER Y - EAENETF - RIE 7/ RIZZZITICHERVE - EXEHZ2EINBESE
iR - XEHZERERIT ZANETRNNREN - BTN EREESENEXRHNERRBITRQONNIRER
wpE (RALEE) -

145/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Right now, if an operand is the wrong type for the operation being performed, the Java cast will fail
and the JVM will throw a ClassCastException. That unwinds the whole stack and exits the application,
vomiting a Java stack trace onto the user. That's probably not what we want. The fact that Lox is
implemented in Java should be a detail hidden from the user. Instead, we want them to understand
that a Lox runtime error occurred, and give them an error message relevant to our language and their
program.

MAE - MRBEEN T EERTHRERZEEIREE - IBAJavaZ#FR K - IVMFHH —
ClassCastException ° XS pkin HE-ME MR RENAER - AREAFP ML avali R IRIRER < Xol&:
ERMEBZEN - Lox@AJava WX —B LN ZE— M AP RENAT - Bk - BIO)FEMIDBER N RS
HZELoxizTHER - HAMIT— P SRMNWEBEBS NIV ERERNERER -

The Java behavior does have one thing going for it, though. It correctly stops executing any code when
the error occurs. Let's say the user enters some expression like:

A - JavaRIITABSEA— MR - SEERAEN - EXEEMEIETRE - B3R - BRBATY —LERE
= - BB

* (3 / -"muffin")

You can’t negate a muffin, so we need to report a runtime error at that inner - expression. That in turn
means we can't evaluate the / expression since it has no meaningful right operand. Likewise for the *.
So when a runtime error occurs deep in some expression, we need to escape all the way out.

RIBEXS "muffin"BRAL - BRI FZZERNEHN - REAPRE—DBITHER - INEREHNTEAUTE /&
AT BERNERARFELEN N T REAMZWU - Wit - SENREVFAEMETHBERN - H0)FE
Z-ERERENE -

We could print a runtime error and then abort the process and exit the application entirely. That has a
certain melodramatic flair. Sort of the programming language interpreter equivalent of a mic drop.

BATOILUTEN—NMEITHREIR - AP IEHEH T RENARER - XA—RMEY - BREHREESHESR
HE "mic drop”,

Tempting as that is, we should probably do something a little less cataclysmic. While a runtime error
needs to stop evaluating the expression, it shouldn't kill the interpreter. If a user is running the REPL and
has a typo in a line of code, they should still be able to keep the session going and enter more code
after that.

REZXMUELARBA - HAHFMNZ P —LEABLAKEERNEE - BRETHERFEEFELEXNREIRU
& BEANZRILHERESR - WWRAFIEEZTTREPL - HAEHE—THREP LI VIR - N ZIDAREBIRSS
S - AEZEREMABZHNE -

7.3.1 Detecting runtime errors

7.3.1 18 MBTHER

146 /932

craftinginterpreters_zh.md 2024-09-25

Our tree-walk interpreter evaluates nested expressions using recursive method calls, and we need to
unwind out of all of those. Throwing an exception in Java is a fine way to accomplish that. However,
instead of using Java's own cast failure, we'll define a Lox-specific one so that we can handle it how we
want.

FAONEN R BT ETFABERATERENRA - MERNFZEBURLABERNBRAE - #lava
PIHFEERINX—RF A - B2 - i) ERJavaB CRERAKEIR - MEEX—LoxTHIE
R - BERMBRTLUZRBNEEZNSNVETE -

Before we do the cast, we check the object’s type ourselves. So, for unary -, we add:
R TG R A - FMVCECRENRARE - B - T —mREF- - HOFERMAD :

lox/Interpreter.java - fEvisitUnaryExpr() 7% L] .

case MINUS:
// FEES A
checkNumberOperand(expr.operator, right);
// FIBER DL
return -(double)right;

The code to check the operand is:
ERFLRLIENT

lox/Interpreter.java - 7£ visitUnaryExpr() 77 24 /Z] -

private void checkNumberOperand {
if (operand instanceof Double) return;
throw new RuntimeError(operator, "Operand must be a number.");

}

When the check fails, it throws one of these:
HRBEBRKE - KBsE— MU FHER

lox/RuntimeError.java - FrZ B CIHEXHE -

package com.craftinginterpreters.lox;

class RuntimeError extends RuntimeException {
final Token token;

RuntimeError(Token token, String message) {
super(message);
this.token = token;
¥
}

147 /932

craftinginterpreters_zh.md 2024-09-25

Unlike the Java cast exception, our class tracks the token that identifies where in the user’s code the
runtime error came from. As with static errors, this helps the user know where to fix their code.

Slava¥(fFEAE - HAREIRFIEZRC - ISR B PREETHERNMUEN - SESHER
—# XBEPTHFMEEMEEENRES -

We need similar checking for the binary operators. Since | promised you every single line of code
needed to implement the interpreters, I'll run through them all.

HNEEN _TioEFHTEUNNE - BARZN T ER NI BRMENE—TRE - BAHFIEE]
E—NB ik -

Greater than:
AT

lox/Interpreter.java - £ visitBinaryExpr() 7% L5 .

case GREATER:
// HIBE DA
checkNumberOperands (expr.operator, left, right);
/] FrBER LA
return (double)left > (double)right;

Greater than or equal to:
RTET:
lox/Interpreter.java - £ visitBinaryExpr() 7% L5 .

case GREATER_EQUAL:

// LIRS FFYA
checkNumberOperands(expr.operator, left, right);
// FiBEH
return (double)left >= (double)right;

Less than:
INTF

lox/Interpreter.java - £ visitBinaryExpr() 7 2% 757 -

case LESS:

// FIEER D Ha
checkNumberOperands(expr.operator, left, right);
// FIBEB7
return (double)left < (double)right;

148 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82

craftinginterpreters_zh.md

Less than or equal to:
INFET

lox/Interpreter.java - £ visitBinaryExpr() /7% L5 .

case LESS_EQUAL:

// FIBEBDH A
checkNumberOperands (expr.operator, left,
[/ FIGERD L
return (double)left <= (double)right;

Subtraction:
%

lox/Interpreter.java - 7£ visitBinaryExpr() 7 % L5 .

case MINUS:

// FIBEB D H A
checkNumberOperands (expr.operator, left,
/] FIBERDLE
return (double)left - (double)right;

Division:
FRI% -

lox/Interpreter.java - £ visitBinaryExpr() 7% L5 .

case SLASH:

// FIEER D H A
checkNumberOperands (expr.operator, left,
/] FIBEBDLE
return (double)left / (double)right;

Multiplication:
FO%

lox/Interpreter.java - £ visitBinaryExpr() 77 % L5 .

case STAR:
// ¥ FA

checkNumberOperands (expr.operator, left,

149 /932

2024-09-25

right);

right);

right);

right);

craftinginterpreters_zh.md 2024-09-25

/] FrIBEB LR
return (double)left * (double)right;

All of those rely on this validator, which is virtually the same as the unary one:
FREXLEEKH T FEX MRS - B E5—tiiEsE4EEA10 ¢

lox/Interpreter.java - 7 checkNumberOperand() 7,2 /Z 7] .

private void checkNumberOperands {
if (left instanceof Double && right instanceof Double) return;

throw new RuntimeError(operator, "Operands must be numbers.");

}

The last remaining operator, again the odd one out, is addition. Since + is overloaded for numbers and
strings, it already has code to check the types. All we need to do is fail if neither of the two success
cases match.

>

U"FE’\J%U: NMEER - UERFEN— mENE - AT BENBFNFHEHTER - EPELANE
KA - RINFBEZHRMZEZXATIB R E ALK -

lox/Interpreter.java - 7£ visitBinaryExpr() 7 A L E#—7T .

return (String)left + (String)right;

}
/] BHEBDFHA
throw new RuntimeError(expr.operator,
"Operands must be two numbers or two strings.");

/] BYMEIDLER
case SLASH:

That gets us detecting runtime errors deep in the bowels of the evaluator. The errors are getting
thrown. The next step is to write the code that catches them. For that, we need to wire up the
Interpreter class into the main Lox class that drives it.

ZERMMIUETERWATRNZTHNER - BRECEBENET - T—TREREEFRXLEERNR
19 - ALt - BNBE R InterpreterdSE BN BRI LoxFE 2

7.4 Hooking Up the Interpreter
VE B RRR RS

The visit methods are sort of the guts of the Interpreter class, where the real work happens. We need to
wrap a skin around them to interface with the rest of the program. The Interpreter's public APl is simply
one method.

150/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82

craftinginterpreters_zh.md 2024-09-25

visit/3;AZ InterpretersRZ0E 7 - EIERMTFREXERTR - RINFELRENEL—ER - LUESEFR
HER D X1 - BR[O AHAPIRZE—FTTA -

lox/Interpreter.java - 7 Interpreter 25245571 .

void interpret {
try {
Object value = evaluate(expression);
System.out.println(stringify(value));
} catch (RuntimeError error) {
Lox.runtimeError(error);

}
}

This takes in a syntax tree for an expression and evaluates it. If that succeeds,
object for the result value.

returns an

converts that to a string and shows it to the user. To convert a
Lox value to a string, we rely on:

ZIASEW—TREANNEEN - FNERTUHE - MREIN T - AR RE—=MYRIER
ERE - FERERENFREHBRRGAD - Z2FLoxE¥AFRE - HMEEE NENFE

lox/Interpreter.java - 7= isEqual() 77,2/ .

private String stringify {
if (object == null) return "nil";

if (object instanceof Double) {
String text = object.toString();
if (text.endsWith(".e")) {

text = text.substring(9, text.length() - 2);
}

return text;

return object.toString();
}

This is another of those pieces of code like that crosses the membrane between the user’s

view of Lox objects and their internal representation in Java.

—BR#& —HNRE - BEZ T LoxX RRAFRERM B ElavaT W NERRK °

It's pretty straightforward. Since Lox was designed to be familiar to someone coming from Java, things
like Booleans look the same in both languages. The two edge cases are

, Which we represent using
Java's , and numbers.

XIREE - BT LoxMIRI E&EFJavaEAEME - FibBoolean 7MW AAERMMIBES PELERE—HHN - R
ERMBLFRBERE01 1 E1IBJavald KA E -

151/932

craftinginterpreters_zh.md 2024-09-25

Lox uses double-precision numbers even for integer values. In that case, they should print without a
decimal point. Since Java has both floating point and integer types, it wants you to know which one
you're using. It tells you by adding an explicit . © to integer-valued doubles. We don't care about that,

so we hack it off the end.

LoxED@EX}‘ HETERNBEERF A - EXPERT - TTHNNZAT/ NS - B ava@lNEAEF R A
HE . CRZELCNELEEERNZEM—FEE - ©ESERZRBERINE LRN—MIRHERY . o REHAF - 3
AR ?A FRUEAEE AR -

7.4.1 Reporting runtime errors
7.4.1 /REBITHER

If a runtime error is thrown while evaluating the expression, catches it. This lets us report
the error to the user and then gracefully continue. All of our existing error reporting code lives in the
Lox class, so we put this method there too:

MREUEREANLEI FBTHER - TASNERR - KER(NIUEAFPREXMEIR -
RN AR SINAT - BAI BB ERRENBEAELoEGES - FIUBEANTEX N TANERD

lox/Lox.java - # error() 7 2 /Z 0 -

static void runtimeError {
System.err.println(error.getMessage() +
"\n[line " + error.token.line + "]");
hadRuntimeError = true;

}

We use the token associated with the RuntimeError to tell the user what line of code was executing
when the error occurred. Even better would be to give the user an entire call stack to show how they
got to be executing that code. But we don't have function calls yet, so | guess we don't have to worry
about it.

FAEASRuntimeErrorREARIIRCHK B IFAFHRAEN EERTHM—TRE - BEFMNHEESRF —15%x
ZREAER - RERMMNZ2WET 0T 2B - BRMNBALRKBREER - FRAURERN LB LD

5 .
After showing the error, sets this field:
BRERZRE ZWRELFFE

lox/Loxjava - 7 LoxZEF 570 ©

static boolean hadError = false;
// FIBE DA
static boolean hadRuntimeError = false;

/] FIEES
public static void main throws IOException {

152 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82

craftinginterpreters_zh.md 2024-09-25

That field plays a small but important role.
XN FRIEAER/NMEREEZENAS -

lox/Lox.java - 7£ runFile() 7% L5 -

run(new String(bytes, Charset.defaultCharset()));

// Indicate an error in the exit code.
if (hadError) System.exit(65);

// FIEE A

if (hadRuntimeError) System.exit(70);
// FIBEB L

If the user is running a Lox script from a file and a runtime error occurs, we set an exit code when the
process quits to let the calling process know. Not everyone cares about shell etiquette, but we do.

MRAF A EPETLoxMIA - FEAE TZTHER - RMNEEREERENRE—TRES - EILERHE
Mg - AZB D AGEF shel WRIZE - BRINNEF M2,

7.4.2 Running the interpreter
7.4.2 iL1TRETR 2R

Now that we have an interpreter, the Lox class can start using it.
MEFHANE 7RSSR - LoxEOUIHBRFERE Y -

lox/Lox.java - 7 LoxZEF 5] .

public class Lox {
// FIEE A
private static final Interpreter interpreter = new Interpreter();
// FIBEB LR
static boolean hadError = false;

We make the field static so that successive calls to inside a REPL session reuse the same
interpreter. That doesn't make a difference now, but it will later when the interpreter stores global
variables. Those variables should persist throughout the REPL session.

RAUEEANFERGBEABSH - B REPLAIEPESBA 1 () NS ESERE—RES - BAX
—EREHARS - BLUEYRESESEHEBLRNRABKE - K2 BE RN RS REPLAE D
AT -

Finally, we remove the line of temporary code from the last chapter for printing the syntax tree and
replace it with this:

153 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A
http://craftinginterpreters.com/parsing-expressions.html

craftinginterpreters_zh.md 2024-09-25

&fa - MR E—F| AT EEENMROABTIRRARE - FREERA

lox/Lox.java - 7 run() 7 A PEHE—7T -

if (hadError) return;

interpreter.interpret(expression);

We have an entire language pipeline now: scanning, parsing, and execution. Congratulations, you now
have your very own arithmetic calculator.

HMNMEB—DCBWESEE | 3 - BATANT - REMR - RAEE JIREBCHERITES -

As you can see, the interpreter is pretty bare bones. But the Interpreter class and the Visitor pattern
we've set up today form the skeleton that later chapters will stuff full of interesting guts—variables,
functions, etc. Right now, the interpreter doesn’t do very much, but it's alive!

UIEFR DL - I RRRZIFBEMER - BERMNSREUNERSRLENAOEBERLL 7 —NER - FEHNE
TPHERABHENAS (XE - HBTE) - T - BERNIEFAS - BEZER!

A ERE - BRERCIDIERMER E N - HERECERSRT - RSN eEEXD - BXEEZEH

XSRH D AR E (ANEIREAES B) EAARRNARE - NHFHEERE - XEREZR XA -

A2 BNBENEHNS —HEEERBNNAT - Javatl BEMEIX—= - FENNRRRNIEE FRIIRITE
154 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82

craftinginterpreters_zh.md 2024-09-25

e kilAlavaREE—THBERNEERE - A3 EN—F - SHNKMBEN - HAPRFANIFRFTERE

o BEMEHFTR - M AERTRAANEESSREXNT R - A - EFFTRESHREIN - B
MNRBRIARMRIZTXWTIR © ELoxP - RINNBELAEBRZ SR Y —MHR - RABERNFZRTRIEREUE
MRERIAWAE - A5 FlavaScriptd - FRHHZHR - BEFHHAZE - WAHZEW - BEHAHZE.. L2
B - 0=/ - BFFH "0 "2EM -

£ Python o - ZEFHFHZE - MEE IS F—1F - BEMZERIITZRA -

FEPHPS - HFONFRF S "0 "HZRA - KZIUEMIFEFHFEEEKR - BRI ? A6 REFERRIHA]
ERXEREE Y ESEXH—MMIR ? E R EA R - AR ERENIRF T ERIFR - MRXLERF
HARIER BXPMEENZZAF TN - AIUXAZ— M ES2ASSIAT - MRBNBZRNWHDERE
g MW (IR BRINZ2—BW) - RITABZERR clox MEXEMA - A7 RBEXPRBANUELER

A7 ° ARIMEEE 754 (BAE Y BEHHITA) - HORLIOZSEIFAINaN (-~
BT) B - FEMNZE - NaNAFTEEC -
Flava® - EXREA doubleRY-- R EREZNE - B2 K3 DoubleRy FERRIE - LoxER 7 fa

Z - RALABEIEEE - XEMPWARBOBSE T ESAREEEFPSNAEERN—E S - 28 RiNTE2ILUAR
RN RE—DMEILEIR - SRECESPIE—NMEH IR SIMRFKBENEEALERNER - CGESHME
XEMR - CES B AT XENRIERE T REMMNEE - BEtEL 7 B8WEK - —BRERMERE TR
FHRWEEE - —t)ET T - ROBMRESESZHENALEZRE - R - ASHESHERNELEN - HE
HESTETHNNENAS BREFKEASBRMEFRFEEANTTNME © A9 FFIA "RuntimeError "X
MNEFL AR - EANJavaiE X T —RuntimeExceptionzf « RTHEBRBERNW—HRNANSERZ - BES
HNEMEESTMESPELFEANBIRNPR - EFNZFHLoxEEREF 7 - M0 S—MUPRIEXGERE © T

ERMRIFHRVEE ZH] - HAICHEXR MR - BRENBE—TERE - ERTHIENBNSH -
mEERE - IVERAXPRYBELEREN - BANWEBRRERSBTNE

RZBIR ST ED"left" M right” - X3 - FAIOILHEEETERARFEHZALNELRIEY - M1 EHF - &
MNZEAEXFMHFRAFRER - PUIARjloxMcloxB TIESRERE - GRXFVEBESH— M EFENLRIERLL
RIVE - ERZ2TEN—TERED - AP ZBERALEMRBTXEMNT - MIRTIA— - I EFE
AEREER RS LIEfTR S i - AM2: MRAFIEEZTREPL - WA ALIRERI T AR - EHEREIRS
ZiE - BMRAFERN - LA BAMNE - RESEHT -

CHALLENGES
&

1. Allowing comparisons on types other than numbers could be useful. The operators might have a
reasonable interpretation for strings. Even comparisons among mixed types, like could
be handy to enable things like ordered collections of heterogeneous types. Or it could simply lead to
bugs and confusion.

Would you extend Lox to support comparing other types? If so, which pairs of types do you allow and
how do you define their ordering? Justify your choices and compare them to other languages.

1 RN F ZIMORBATIERIEZ TN ERNGE S - RIEFUENFZHEESENER - AE2RGEE
ZIBJRILEE - 1 WGBS RN ERES - SN IESBERTELL -

MEBAEZYT BLoxIZ W EMSAEWLER ? IRZE - B rMLELBR LR - DRI E X BIWIRRE ? ik
ARIRRVEZERFF SEMBESHITIER -

2. Many languages define + such that if either operand is a string, the other is converted to a string
and the results are then concatenated. For example, would yield . Extend the
155/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82
https://en.wikipedia.org/wiki/IEEE_754
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A

craftinginterpreters_zh.md 2024-09-25

code in to support that.

2 - FZESHHENZE - IREP—PRFUEFFEH - 53— 1M RIEEMSHKERNFFE - RENHDE
RPFHZEER - Bl - RIS RN 22 = PRRBUS ST -

3. What happens right now if you divide a number by zero? What do you think should happen? Justify

your choice. How do other languages you know handle division by zero, and why do they make the
choices they do?

Change the implementation in to detect and report a runtime error for this case.

3 - MRRA—NEIRLO0RKEM A 2 RANRIZR 4 2 ERRRAEE - (RANBHEMIES SR ER
B - A AR E B OREE 2

By DRSS - UGN RSETHER -
DESIGN NOTE: STATIC AND DYNAMIC TYPING
RIS | BASREMSEE

Some languages, like Java, are statically typed which means type errors are detected and reported at
compile time before any code is run. Others, like Lox, are dynamically typed and defer checking for
type errors until runtime right before an operation is attempted. We tend to consider this a black-and-
white choice, but there is actually a continuum between them.

It turns out even most statically typed languages do some type checks at runtime. The type system
checks most type rules statically, but inserts runtime checks in the generated code for other operations.

For example, in Java, the static type system assumes a cast expression will always safely succeed. After
you cast some value, you can statically treat it as the destination type and not get any compile errors.
But downcasts can fail, obviously. The only reason the static checker can presume that casts always
succeed without violating the language’s soundness guarantees, is because the cast is checked at
runtime and throws an exception on failure.

A more subtle example is covariant arrays in Java and C#. The static subtyping rules for arrays allow
operations that are not sound. Consider:

Object[] stuff = new Integer[1l];
stuff[@] = "not an int!";

This code compiles without any errors. The first line upcasts the Integer array and stores it in a variable
of type Object array. The second line stores a string in one of its cells. The Object array type statically
allows that—strings are Objects—but the actual Integer array that refers to at runtime should
never have a string in it! To avoid that catastrophe, when you store a value in an array, the JVM does a
runtime check to make sure it's an allowed type. If not, it throws an ArrayStoreException.

Java could have avoided the need to check this at runtime by disallowing the cast on the first line. It
could make arrays invariant such that an array of Integers is not an array of Objects. That's statically
sound, but it prohibits common and safe patterns of code that only read from arrays. Covariance is safe

156 / 932

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)#Covariant_arrays_in_Java_and_C.23

craftinginterpreters_zh.md 2024-09-25

if you never write to the array. Those patterns were particularly important for usability in Java 1.0
before it supported generics.

James Gosling and the other Java designers traded off a little static safety and performance—those
array store checks take time—in return for some flexibility.

There are few modern statically typed languages that don't make that trade-off somewhere. Even
Haskell will let you run code with non-exhaustive matches. If you find yourself designing a statically
typed language, keep in mind that you can sometimes give users more flexibility without sacrificing too
many of the benefits of static safety by deferring some type checks until runtime.

On the other hand, a key reason users choose statically typed languages is because of the confidence
the language gives them that certain kinds of errors can never occur when their program is run. Defer
too many type checks until runtime, and you erode that confidence.

ALES - Wlava - ZRAREYN ZIERSEEMUNBETZE - SERFHLVAHREREER - HthiE
= - Wllox - BENASREW - FFRBBRINEHRRIBTREHENTERREZA - MWD TNAXZE—
FERENIBRER - B LEMNZERESLS— -

SR - KBHFSIENESTIEBTRIET —ERENE - KEKXAIBSMREZEEENIN - B
EERNRBREA T BITRRELSSHEEFE -

B0 - FElavah - BSREAAZREBRFEMREAXCDZALEHRINNT - EERBREMEZE - TLUFHE
BAHMAABEREE MAZEIMETRFER - ER MERERXZKW - BSUER ZFIUBEBEANERE
SHNEEMHRIENER MRERREZZENINN - E—REZ - BHFREFSESTHRITRERE - FEX
WSl 5+

—PEMBHEF2lavaFlc# PRV EEAE - FANBSFEEMN AR ZRVEFE - ZREUFE

Object[] stuff = new Integer[1];
stuff[@] = "not an int!";

XEABERFTRKBEETER - F—THUENBEEALD L ERAFED DN RHRARENEESD - 5
TRBRNETEFEEEFT T RETRE - WREHEREBSH AT ZBRIF—FFEENg—EZ
TSI ANBHEAET AN ZEEFHEE | N7 BRBXFRE - JREZHEHPFE—MEN - VM
HTETRNE - DIBRZEZ LR - TIRAZ - WML ArrayStoreExceptions,

Javatl LUBI RIENE— TR TG B RRBRELTRHONEX —KR - BoUMEHARTALE - XFEIHA
MAZNREA - XUEBSKEAEESERN - 1E|Eiﬁ’éﬂ:T,\Mﬁﬁléﬁqﬂiﬁﬁﬂﬁﬁﬁ’ﬂﬁmﬁi\%ﬁﬁ%ﬁﬁ SRES
MARABHABEARNS - BLAMLBZLER - EXFHZEZE - XERAX Tlava 1.0090]HELAHEE -

James GoslingME ftJavalz I it 7 — R SLZ 2 MU (XEHAHFRLEFTECENE) REN—LR
e

NVFFRBERNICESREESHMERLESEML 7N - BElfEHaskelltL o PR 1TIFH 2 ILRRTE - IR
RECIEERW —PSRMES - Bich - BRROLIBEN —ERENERRIBTRREAFEZHR
- MASMERSLZENRSZER -

157 /932

https://en.wikipedia.org/wiki/Covariance_and_contravariance_(computer_science)#Covariant_arrays_in_Java_and_C.23

craftinginterpreters_zh.md 2024-09-25

H—HHE APRFEFSEEESHN—IREBREARZ - XMPESILAIAEE £t ERFRETN - FLEL
MR RKZEASKRE - FEZHRBENERRICTH - WA ELD -

8. RIATLFIIRAS Statements and State

All my life, my heart has yearned for a thing | cannot name.
—— André Breton, Mad Love
KLH—5F - HOOANLEESK PRI EZIRNERRE -

The interpreter we have so far feels less like programming a real language and more like punching
buttons on a calculator. “Programming” to me means building up a system out of smaller pieces. We
can't do that yet because we have no way to bind a name to some data or function. We can't compose
software without a way to refer to the pieces.

FIBRINLE - HMNREABRSNVEEALEEEEHA—MELNESHTRE - EREZE TSR ERRE - X
HEE - "RE "ERERBRNROWREE DAY - OB ASH T ZHEY - BARNET R/ —1 2R
PBEBFENBIRH R - BNV ABEETAS IR/ R BREER N RERG -

To support bindings, our interpreter needs internal state. When you define a variable at the beginning
of the program and use it at the end, the interpreter has to hold on to the value of that variable in the
meantime. So in this chapter, we will give our interpreter a brain that can not just process, but
remember.

N XFHHE - BNNBERRFERTRERS - MRIREBFHRRAEN T —1MEE - AEERUERTE -
BL@EBRRVINEXHERFZEENE - FIUER—ED - BMNSGERESR TR - s AMUIUEZE -
Bolllig,

var drink = "tea"; print drink: /"tea"

O oOO

Q o

State and statements go hand in hand. Since statements, by definition, don‘t evaluate to a value, they
need to do something else to be useful. That something is called a side effect. It could mean
producing user-visible output or modifying some state in the interpreter that can be detected later.
The latter makes them a great fit for defining variables or other named entities.

158 /932

craftinginterpreters_zh.md 2024-09-25

RSB DZHEHEMD - BARBEEX - BOAZHEL—TERE MEFEU—LEBERAEER - X
LS BWARNEIER (side effect) - EURERRE=EAF UUNEL - SABENERSZPH—LRT - ML
ISERLETUHERENE - FEPHUEESEQFEESTEXZRENHtha A LIE -

In this chapter, we'll do all of that. We'll define statements that produce output () and create
state (var). We'll add expressions to access and assign to variables. Finally, we'll add blocks and local
scope. That's a lot to stuff into one chapter, but we'll chew through it all one bite at a time.

EX—8F RNSKIUAARLE - HIISEXATUF=EREMOIRRSHED - RARSAMREIRKIFOMN
HELAXLETE &F HMNSSIANERNFBHBEAE - I—B2HHNAELZT - BEHMNE—s—xith
EerIEE -

8.1 Statements

8.1154

We start by extending Lox's grammar with statements. They aren’t very different from expressions. We
start with the two simplest kinds:

HESRT RLoxEZUZFESY - BASREAFRBRANAR - HMNNRMERE LRI

1. | An expression statement lets you place an expression where a statement is expected. They
exist to evaluate expressions that have side effects. You may not notice them, but you use them
all the time in C, Java, and other languages. Any time you see a function or method call followed
by a ;, you're looking at an expression statement.

KEXNFYULULERRZANEFTEEINUE - BINEFEEN FUHEFRIERNRER - Go8E
RAARRTEAN] - BEXMREC JavaMEMES T —EEEARENEDN - MRRER—PEREET
FRERRERE - BEINWEIRE—TRBNED -

2. | A statement evaluates an expression and displays the result to the user. | admit it's weird
to bake printing right into the language instead of making it a library function. Doing so is a
concession to the fact that we're building this interpreter one chapter at a time and want to be
able to play with it before it's all done. To make print a library function, we'd have to wait until
we had all of the machinery for defining and calling functions before we could witness any side
effects.

BAZUE—MREN - ARERBAGHP - 3FOAE EROAESSD - MAZIETEM
—PNERE - ZREFEA2 - IEHEETABHNRIRBNLLL - BIRNZUETARUZIHEXD
BRESR AREABETHEERNMBIEZAEBEATE - IRIE A —DARAEFERE - 3
N AERHE 7 EXTMBRRBRFRBENGIZE - TEBER B AEER -

RSN

New syntax means new grammar rules. In this chapter, we finally gain the ability to parse an entire Lox
script. Since Lox is an imperative, dynamically typed language, the “top level” of a script is simply a list
of statements. The new rules are:

MR ARERERNEEAN - EXED - BMNEZTRES TETEDLoxBIARIEES - BT Lox2— i<
B~ hASRERIES - AR TR RZ2—HIED - HIHMNWME

159 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82

craftinginterpreters_zh.md 2024-09-25

program -» statement* EOF ;

statement

2

exprStmt
| printstmt ;

exprStmt > expression ";" ;
printStmt -» "print" expression ";" ;
The first rule is now , Which is the starting point for the grammar and represents a complete

Lox script or REPL entry. A program is a list of statements followed by the special “end of file” token.
The mandatory end token ensures the parser consumes the entire input and doesn't silently ignore
erroneous unconsumed tokens at the end of a script.

MAESE—FANZ R EEENER - KR — D TEHLoxMIARHREPLAAIL - 72— M55
* - REIRERR XXHER(EOR IR - @t ERIFCI UARENREBRBRFABRARE - AR
B REEM AL R EIRN - ROBFEWIRIC -

Right now, only has two cases for the two kinds of statements we've described. We'll fill in
more later in this chapter and in the following ones. The next step is turning this grammar into
something we can store in memory—syntax trees.

)T REWMIER - 23NN THANELORIZED - HIPFEASEEME FROETT P4
BFZNA - #H FPRUEBFXME IR EANRNIUFEERNTPHRA—EEN - -

8.1.1 Statement syntax trees

8.1.1 StatementiZ ;%

There is no place in the grammar where both an expression and a statement are allowed. The operands
of, say, + are always expressions, never statements. The body of a loop is always a statement.

BAPRAM SR ERREI - TorEmiEg - BEF (10) NEFRERERER - mMAR2EY -
BAMERCDZE—MED -

Since the two syntaxes are disjoint, we don't need a single base class that they all inherit from. Splitting
expressions and statements into separate class hierarchies enables the Java compiler to help us find
dumb mistakes like passing a statement to a Java method that expects an expression.

EAXPIPEAZAETH - FIAEMARZREHE—DENERERERSE - FRENNE DR N RIRAIRE
- olff)avafm B FE B HANIAM—ERBENER - I EIEBAFEREANavali ik °

That means a new base class for statements. As our elders did before us, we will use the cryptic name
“Stmt". With great foresight, | have designed our little AST metaprogramming script in anticipation of
this. That's why we passed in “Expr” as a parameter to . Now we add another call to
define Stmt and its subclasses.

XEREBZRNEQOR—IIVES - EMFNWRIERSE - BOVRER St I TNRWHNEF - RRBZ
0 ERUHATRAST TR EMANMEL T NE T X—R - RBENT AR Expr fEAS LS 1
c MERNTAME =D IERBARESN it MBERIFE -

160/932

craftinginterpreters_zh.md 2024-09-25

tool/GenerateAst.java - # main() 7 % LHEZ .

"Unary : Token operator, Expr right"

))s

// FrIBEB A

defineAst(outputDir, "Stmt", Arrays.asList(
"Expression : Expr expression",
"Print : Expr expression"

));
// FIGERD LR

T RN NAEMLBOUSERR : Appendix Il: Expression statement, Print statement.

Run the AST generator script and behold the resulting “Stmt.java” file with the syntax tree classes we
need for expression and statements. Don't forget to add the file to your IDE project or makefile

or whatever.

IWITASTERZEMA - EEERK Xt HREERAIM BAMENEEMNSS - AERICH
24 NINZIDEDN B imakefile St B ST A -

8.1.2 Parsing statements

8.1.2 BBHTiES
The parser's method that parses and returns a single expression was a temporary hack to get
the last chapter up and running. Now that our grammar has the correct starting rule, , We can
turn into the real deal.

fRtrasay FESBHRE—IMRET - X2—MaENAE - 2R 7L EL—SNRBEENHEITE

¥ - W - HOEESEA 7 IEBREHRAN - Bl CHATTUERRE 7T -

lox/Parser.java, _parse() /7% - BH7 1T :

List<Stmt> parse() {
List<Stmt> statements = new ArraylList<>();
while (!isAtEnd()) {
statements.add(statement());

}

return statements;

}

This parses a series of statements, as many as it can find until it hits the end of the input. This is a
pretty direct translation of the rule into recursive descent style. We must also chant a minor
prayer to the Java verbosity gods since we are using ArrayList now.

161/932

http://craftinginterpreters.com/appendix-ii.html
http://craftinginterpreters.com/appendix-ii.html#expression-statement
http://craftinginterpreters.com/appendix-ii.html#print-statement

craftinginterpreters_zh.md 2024-09-25

ZIARRAUBES T — 2S5BS - EFmPRARNSNEEAL - X2—TIFREZRIRN MNE
WA T RERNBN AT - BT HANINEERArrayList - PR TE MG aval T 2 # i — N/ VN R

lox/Parser.java - #FIZ1CFT .

package com.craftinginterpreters.lox;
/] FIEE S A

import java.util.Arraylist;

// FIBEB LR

import java.util.list;

A program is a list of statements, and we parse one of those statements using this method:
— M EFME—RIED - MEMNIUBZS VENGZENTE—FRIED :

lox/Parser.java - 7 expression() 75 A /Z w0l -

private Stmt statement() {
if (match(PRINT)) return printStatement();

return expressionStatement();

}

A little bare bones, but we'll fill it in with more statement types later. We determine which specific
statement rule is matched by looking at the current token. A token means it's obviously a
statement.

XZ—NERMER - EEHRRINNZERESHEIRE - RIIBZEBIprCRBELERFREDN
iy MCBEREEERZ—T Fa -

If the next token doesn't look like any known kind of statement, we assume it must be an expression
statement. That's the typical final fallthrough case when parsing a statement, since it's hard to
proactively recognize an expression from its first token.

WARF—MRCEERAGEABMEENED - RIVMANNE—ER—TRENET - XEFEMEIN R
WERERKM I - BARMNREEI S —MrcESRBE—PRESR -

Each statement kind gets its own method. First
BMEQREEAEECHTGIE - BLE

lox/Parser.java - 7£ statement() 7,2/ -

private Stmt printStatement {
Expr value = expression();
consume (SEMICOLON, "Expect ';' after value.");

162 /932

craftinginterpreters_zh.md 2024-09-25

return new Stmt.Print(value);

}

Since we already matched and consumed the token itself, we don't need to do that here. We
parse the subsequent expression, consume the terminating semicolon, and emit the syntax tree.

EARMNEL I EE CAS - FMUXBEAFTEEEHR - LB FBEENRER - HEERTR
BORIENDS - FAEMBEN -

If we didn't match a statement, we must have one of these:
MRV BUCE R B P—E—XFTEHNEG :

lox/Parser.java - 7£ printStatement() 5,2/ -

private Stmt expressionStatement {
Expr expr = expression();
consume (SEMICOLON, "Expect ';' after expression.");
return new Stmt.Expression(expr);

}

Similar to the previous method, we parse an expression followed by a semicolon. We wrap that Expr in
a Stmt of the right type and return it.

SR AEL - HAIBEFT—PNEEF 2 SHRER - HAPHFExpri RAE— D IEREERIStmtS - FiR[D]
B

8.1.3 Executing statements
8.1.3 TIED

We're running through the previous couple of chapters in microcosm, working our way through the
front end. Our parser can now produce statement syntax trees, so the next and final step is to interpret
them. As in expressions, we use the Visitor pattern, but we have a new visitor interface, Stmt.Visitor, to

implement since statements have their own base class.

FNEE/LE—FP—Dig@85e v BRR0AIIR TIE - AR TRINE LI EEEEN - FLUF—
L MZ&RE—L MENEETERE - IREN—HF - ROERRRVisitori® = - BEHNBELI— 1
winEEzEO - AANEBEBTEECHESE -

We add that to the list of interfaces Interpreter implements.
BATRERINR InterpreterSLIAYIFE O HIR P -

lox/Interpreter.java - Z#177°3

/] BREDHEA
class Interpreter implements Expr.Visitor<Object>,
Stmt.Visitor<Void> {

163 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82

craftinginterpreters_zh.md 2024-09-25

void interpret {

Unlike expressions, statements produce no values, so the return type of the visit methods is Void, not
Object. We have two statement types, and we need a visit method for each. The easiest is expression

statements.
S5FEHARE - BEYAEFTEE - Bibvisit 5 ERRESEEZ - MAZ - BNBRTETIEE -

MIRAEFE—visith)k - REBRNERENED !

lox/Interpreter.java - 7= evaluate() 77 2 /Z 001 .

public Void visitExpressionStmt {
evaluate(stmt.expression);
return null;

}
We evaluate the inner expression using our existing method and discard the value. Then
we return . Java requires that to satisfy the special capitalized Void return type. Weird, but what
can you do?
BOERRER FTEHERNERED - AEFHEERE - KERIERE - AR JavaZ KR IA

MRS VoidiR[EIZEAEER[O1ZE - BRHE - BIREEBRTATVER ?
The statement’s visit method isn’t much different.
BavisitF AR B AARNAR -

lox/Interpreter.java - 7 visitExpressionStmt() 75,2/]

public Void visitPrintStmt {
Object value = evaluate(stmt.expression);
System.out.println(stringify(value));
return null;

}

Before discarding the expression’s value, we convert it to a string using the method we
introduced in the last chapter and then dump it to stdout.

EEFREANEZA - HERL—F5IAH TRRERIRAFS S - RERER LR stdout,

Our interpreter is able to visit statements now, but we have some work to do to feed them to it. First,
modify the old method in the Interpreter class to accept a list of statements—in other
words, a program.

164 /932

craftinginterpreters_zh.md

BNWEBRSMETAIEET Y - EERNEFTEM—ETENEYRMAREERD - 5L - BY
Interpreter22H[RAH 73k - ILHEBEEBER —HIET—AR—RER -

lox/Interpreter.java - 1£2¢ interpret() /5% - ZH87T -

void interpret {

try {
for (Stmt statement : statements) {

execute(statement);

}

} catch (RuntimeError error) {
Lox.runtimeError(error);

}
}

This replaces the old code which took a single expression. The new code relies on this tiny helper
method:

XERAEER 7 REVESNREAIBRE - FCEEBT NEN/NEEITTE -

lox/Interpreterjava - 7= evaluate() 77 4/] .

private void execute {
stmt.accept(this);

}

That's the statement analogue to the method we have for expressions. Since we're
working with lists now, we need to let Java know.

2024-09-25

XBEPITFARIBRIEAAN % XEXBUIEEG - RARMNEFERSIZER - FILEEEE)avat 5|
A—F -
lox/Interpreter.java

package com.craftinginterpreters.lox;
// FEER e

import java.util.list;

/] FrIBEB LR

class Interpreter implements Expr.Visitor<Object>,

The main Lox class is still trying to parse a single expression and pass it to the interpreter. We fix the

parsing line like so:
LoxERPINRZREN ENRANF R ELAERR - RATPREBENT -

lox/Lox.java - 7 run() 7 A PERE—7T -

165/932

craftinginterpreters_zh.md 2024-09-25

Parser parser = new Parser(tokens);

List<Stmt> statements = parser.parse();

And then replace the call to the interpreter with this:
REN I R SRRERZE IR
lox/Loxjava - 7F run() 77 E P ER—7T

if (hadError) return;

interpreter.interpret(statements);

Basically just plumbing the new syntax through. OK, fire up the interpreter and give it a try. At this
point, it's worth sketching out a little Lox program in a text file to run as a script. Something like:

BEARMEXN B AHITED - OK - Boi@@ERF NN —1 - MEBLEENAHPEU—/NHLoxEFHK
ERMAZTT - BEZE :

print "one";
print true;
print 2 + 1;

It almost looks like a real program! Note that the REPL, too, now requires you to enter a full statement

instead of a simple expression. Don't forget your semicolons.

BEEERME—TESINER | BHER - REPLIETERMRIEATENED - MARE LKL © LA
ERICEHENDS

8.2 Global Variables

82 xFLE

Now that we have statements, we can start working on state. Before we get into all of the complexity of
lexical scoping, we'll start off with the easiest kind of variables—globals. We need two new constructs.

=l 45

MERMNEELE FED - aDUTRAERESY - ERARWEAERSNEREZA - BI)TAEEENEE
(ZBRTE) Fard - RINBER DG -

1. | Avariable declaration statement brings a new variable into the world.

TEFREIRTUE-—THEE -

166 / 932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96%E7%A8%8B%E8%AF%AD%E8%A8%80%EF%BC%8C%E7%94%9A%E8%87%B3%E6%98%AF%E5%9C%A8%E5%AD%A6%E4%B9%A0%E7%AC%AC%E4%B8%80%E7%A7%8D%E8%AF%AD%E8%A8%80%E6%97%B6%EF%BC%8C%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E7%9A%84%E7%AE%80%E5%8D%95%E6%80%A7%E4%BC%9A%E6%9C%89%E6%89%80%E5%B8%AE%E5%8A%A9%E3%80%82%E6%88%91%E5%AD%A6%E4%B9%A0%E7%9A%84%E7%AC%AC%E4%B8%80%E9%97%A8%E8%AF%AD%E8%A8%80%E6%98%AFBASIC%EF%BC%8C%E8%99%BD%E7%84%B6%E6%88%91%E6%9C%80%E5%90%8E%E4%B8%8D%E5%86%8D%E4%BD%BF%E7%94%A8%E4%BA%86%EF%BC%8C%E4%BD%86%E6%98%AF%E5%9C%A8%E6%88%91%E8%83%BD%E5%A4%9F%E7%86%9F%E7%BB%83%E4%BD%BF%E7%94%A8%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%AE%8C%E6%88%90%E6%9C%89%E8%B6%A3%E7%9A%84%E5%B7%A5%E4%BD%9C%E4%B9%8B%E5%89%8D%EF%BC%8C%E5%A6%82%E6%9E%9C%E8%83%BD%E5%A4%9F%E4%B8%8D%E9%9C%80%E8%A6%81%E8%80%83%E8%99%91%E4%BD%9C%E7%94%A8%E5%9F%9F%E8%A7%84%E5%88%99%EF%BC%8C%E8%BF%99%E4%B8%80%E7%82%B9%E5%BE%88%E5%A5%BD%E3%80%82

craftinginterpreters_zh.md 2024-09-25

var beverage = "espresso";

This creates a new binding that associates a name (here "beverage”) with a value (here, the string

)-

ZIEON IR —TIRE - F—1ER (XEZ) M—ME (REEF/H)
REGHEXR -

2. || Once that's done, a variable expression accesses that binding. When the identifier “beverage” is
used as an expression, it looks up the value bound to that name and returns it.

—EFRTH - BERBATN I LUAOIZHTE - SIRIRT beverage" AF— N REAN - BEFEERK
S5ZzRMPENEFHEMD -

print beverage;

Later, we'll add assignment and block scope, but that's enough to get moving.
HE - BROSAMBENRERD - BEXECEEBREEENFT -
8.2.1 Variable syntax
8.2.1 TEIEZE

As before, we'll work through the implementation from front to back, starting with the syntax. Variable
declarations are statements, but they are different from other statements, and we're going to split the
statement grammar in two to handle them. That's because the grammar restricts where some kinds of
statements are allowed.

SarE—# - HAPFNEEHE - MABIEIERRTASEEL - TEFAZ—MED - BElAEBTEMED - &
f]iEstatementEHA— DA _RUEZIBEN - KZERAEZZRGIFE MIE LPLERERVIETZWADIFRY ©

The clauses in control flow statements—think the then and else branches of an i statement or the
body of a —are each a single statement. But that statement is not allowed to be one that
declares a name. This is OK:

EHREYPRFEI—LIEW - 113L B A PR Gl NE—HZ—MEY - BEXMEYAN
ZZ2—1TEREAMRNIED - FEANEBZO0KA :

if (monday) print "Ugh, already?";

But this is not:

BE FENRBALT

167 /932

craftinginterpreters_zh.md 2024-09-25

if (monday) var beverage = "espresso";

We could allow the latter, but it's confusing. What is the scope of that variable? Does it
persist after the i1 statement? If so, what is its value on days other than Monday? Does the variable
exist at all on those days?

B T FEE - BRESSARR - DENFRAEZEMTA? MBOUERZEEEEERET
E?NMRFENE EHERGTENERT A ? XM LBEREEREFY M —EFE?

Code like this is weird, so C, Java, and friends all disallow it. It's as if there are two levels of
“precedence” for statements. Some places where a statement is allowed—Ilike inside a block or at the
top level—allow any kind of statement, including declarations. Others allow only the “higher”
precedence statements that don't declare names.

XENRBAERSTE - FIUC JavaRELIESPEHARITFRMEEL - BOMFEAER DN NELR - BERFEY
B 5 ——LEMNE B RNNE P TEAS—al IR RERNET - BIREEREMA - mEMM S RoirB
LAEIBIRA ~ MERBESHESD -

To accommodate the distinction, we add another rule for kinds of statements that declare names.

N ERXFX A - FAVABRRIMAEQIRERN ¢ 5 —5AMN

program -» declaration* EOF ;

declaration > varDecl
| statement ;

statement - exprStmt
| printstmt ;

Declaration statements go under the new rule. Right now, it's only variables, but later it

will include functions and classes. Any place where a declaration is allowed also allows non-declaring

statements, so the rule falls through to . Obviously, you can declare stuff at

the top level of a script, so routes to the new rule.
FEIREQRE TR M- Bl - XBRETE - BEEELASE SR - FE 1SRRI
FEar—NEERBIIES - AT M= TR * B - IR MR E R
—LERE - Bl MM BLZEEEBRFTAN -

The rule for declaring a variable looks like:

BR—TTERNANWT

varDecl -» "var" IDENTIFIER ("=" expression)? ";" ;

168 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%BB%A3%E7%A0%81%E5%9D%97%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%BD%A2%E5%BC%8F%E7%B1%BB%E4%BC%BC%E4%BA%8E%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B8%AD%E7%9A%84%E6%8B%AC%E5%8F%B7%E3%80%82%E2%80%9C%E5%9D%97%E2%80%9D%E6%9C%AC%E8%BA%AB%E5%A4%84%E4%BA%8E%E2%80%9C%E8%BE%83%E9%AB%98%E2%80%9D%E7%9A%84%E4%BC%98%E5%85%88%E7%BA%A7%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%8F%AF%E4%BB%A5%E5%9C%A8%E4%BB%BB%E4%BD%95%E5%9C%B0%E6%96%B9%E4%BD%BF%E7%94%A8%EF%BC%8C%E5%A6%82%60if%60%E8%AF%AD%E5%8F%A5%E7%9A%84%E5%AD%90%E8%AF%AD%E5%8F%A5%E4%B8%AD%E3%80%82%E8%80%8C%E5%85%B6%E4%B8%AD*%E5%8C%85%E5%90%AB%E7%9A%84*%E5%8F%AF%E4%BB%A5%E6%98%AF%E4%BC%98%E5%85%88%E7%BA%A7%E8%BE%83%E4%BD%8E%E7%9A%84%E8%AF%AD%E5%8F%A5%E3%80%82%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%9D%97%E4%B8%AD%E5%A3%B0%E6%98%8E%E5%8F%98%E9%87%8F%E6%88%96%E5%85%B6%E5%AE%83%E5%90%8D%E7%A7%B0%E3%80%82%E9%80%9A%E8%BF%87%E5%A4%A7%E6%8B%AC%E5%8F%B7%EF%BC%8C%E4%BD%A0%E5%8F%AF%E4%BB%A5%E5%9C%A8%E5%8F%AA%E5%85%81%E8%AE%B8%E6%9F%90%E4%BA%9B%E8%AF%AD%E5%8F%A5%E7%9A%84%E4%BD%8D%E7%BD%AE%E4%B9%A6%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84%E8%AF%AD%E5%8F%A5%E8%AF%AD%E6%B3%95%E3%80%82

craftinginterpreters_zh.md

2024-09-25

Like most statements, it starts with a leading keyword. In this case

. Then an identifier token for the
name of the variable being declared, followed by an optional initializer expression. Finally, we put a

bow on it with the semicolon.

— MRRFIRIC - (ENFERTEATR

a'n

BARZHECD—F - BU—TRIERBFHL - XBRvar - REE
HE—MENIRERAREN - &F - UL—T2SIEREE -

To access a variable, we define a new kind of primary expression

ATHBEE - BIOVEFEENX

— MR ERRER

primary "true" | "false" | "nil"

NUMBER | STRING
"(" expression ")"
IDENTIFIER ;

I

——

That

clause matches a single identifier token, which is understood to be the name of the
variable being accessed.

FIBIRIEE S MRRFIRIC - ZIRCSWIBBRNEEHONTENZIR -

These new grammar rules get their corresponding syntax trees. Over in the AST generator, we add a
new statement tree for a variable declaration.

TRE ==

LB AN T ZEMNAEEN - FEASTERZRT - HATATEFEARM—DHOEDN -

tool/GenerateAst.java - & main() 7 ;AL M—17 - Bl — 11220, -

"Expression : Expr expression",
"Print : Expr expression",
"Var

: Token name, Expr initializer"

));

It stores the name token so we know what it's declaring, along with the initializer expression. (If there
isn't an initializer, that field is)

BEE 7 BIRRC - UEHANFE

ARSI /A
) o

CIESMNEBHIRIERZET (MRKRE - FRMZ

Then we add an expression node for accessing a variable

RRBENAN—IREATTRATIHOESE -

tool/GenerateAst.java - & main() 7 ;AL —77 - Bl —1T22Z 0], -

169 /932

craftinginterpreters_zh.md 2024-09-25

"Literal : Object value",
"Unary : Token operator, Expr right",
/] HIEEH T

"Variable : Token name"
// #ﬁiuﬂﬂ/u
));

It's simply a wrapper around the token for the variable name. That's it. As always, don't forget to run
the AST generator script so that you get updated “Expr.java” and “Stmt.java” files.

XAZNLEZRRINCHEREE - MERXH - BER—F - IS 7BTASTEMZSRMAR - XEHRHEESEIE
¥TBY "Exprjava " "Stmtjava "X -

8.2.2 Parsing variables
8.2.2 BITLE

Before we parse variable statements, we need to shift around some code to make room for the new
rule in the grammar. The top level of a program is now a list of declarations, so the

entrypoint method to the parser changes.

TERTEEEGZA - HNFB2ER—LERE - AEEPROFHAN fEh—LEz=E - WE - BFH
EINEEFREQNAIKR - PR SR T EZNAOZERENL :

lox/Parser.java - 7£ parse() 5 /%P EHE 1T -

List<Stmt> parse {
List<Stmt> statements = new ArraylList<>();
while (!isAtEnd()) {
/] BREBDFH A
statements.add(declaration());

/] BRE DG

return statements;

That calls this new method:
SERA NEFEE :

lox/Parser.java - 7£ expression() 77 A /m /] -

private Stmt declaration() {

try {
if (match(VAR)) return varDeclaration();

return statement();

170/932

craftinginterpreters_zh.md 2024-09-25

} catch (ParseError error) {
synchronize();
return null;

}
}

Hey, do you remember way back in that earlier chapter when we put the infrastructure in place to do
error recovery? We are finally ready to hook that up.

RACTIENET R - TR 7 —DHEITERRENERE ? WERNZ T ILIHEER T -

This method is the method we call repeatedly when parsing a series of statements in a
block or a script, so it's the right place to synchronize when the parser goes into panic mode. The
whole body of this method is wrapped in a try block to catch the exception thrown when the parser
begins error recovery. This gets it back to trying to parse the beginning of the next statement or
declaration.

SFATENTRABAR PR —ZINEDH - TARHREE A - RIL=@TRE AR RET
i - EMEHITELHERLE - ZFANEDEMREMIPRE—PtryIRD - LUK R T IRk E R
NRE - XFOJDULERAT R PAE R AT N — B DS SRRIHL -

The real parsing happens inside the try block. First, it looks to see if we're at a variable declaration by
looking for the leading keyword. If not, it falls through to the existing method that
parses and expression statements.

BEIFRART TIEREHEtrylRD - BE - CRIERAEN - REFHMZEESLEFAED - IRAZEN

& MEHABEW TR - BT MEYFRAT
Remember how tries to parse an expression statement if no other statement matches?
And reports a syntax error if it can’t parse an expression at the current token? That

chain of calls ensures we report an error if a valid declaration or statement isn't parsed.

HicE S2ERBEEEGRNEZHENT —MREXEIBE ? M MRTEES
ANEAIRCR BT RIAT - ML —MEAER ? X—Z5ERE I DUREE#ET THRIEREE TN =k

EHHEIR
When the parser matches a token, it branches to:
LRI E—DMartrichy - B2

lox/Parser.java - # printStatement() 7 % /. -

private Stmt varDeclaration {
Token name = consume(IDENTIFIER, "Expect variable name.");

Expr initializer = null;
if (match(EQUAL)) {
initializer = expression();

}

171/932

http://craftinginterpreters.com/parsing-expressions.html

craftinginterpreters_zh.md 2024-09-25

consume(SEMICOLON, "Expect ';' after variable declaration.");
return new Stmt.Var(name, initializer);

}

As always, the recursive descent code follows the grammar rule. The parser has already matched the
token, so next it requires and consumes an identifier token for the variable name.

52— - BEANERNBIBEEBZINN - BRSEULE 7 vartric - MR N REBHE —MRIRFIRC
TERZEERNRTR -

Then, if it sees an = token, it knows there is an initializer expression and parses it. Otherwise, it leaves
the initializer . Finally, it consumes the required semicolon at the end of the statement. All this
gets wrapped in a Stmt.Var syntax tree node and we're groovy.

e - MRKE-IRC - BrSmAEREAE — M RIEREN - FNERTENR - &N - BFIEFRITA
°E‘§)’E’ SHRBOREFFEND S - RERHAAE XL KR — /\StmtVarlu/HXTW,\ﬁEP

Parsing a variable expression is even easier. In , we look for an identifier token.
BITTERFINEZE/E - & B HNBEEEX—MRIRFIRIC -

lox/Parser.java - 7£ primary/() 7,2 B0 -

return new Expr.Literal(previous().literal);

}
// FIBE D HE
if (match(IDENTIFIER)) {
return new Expr.Variable(previous());

}
/] FTigEin 4
if (match(LEFT_PAREN)) {

That gives us a working front end for declaring and using variables. All that's left is to feed it into the
interpreter. Before we get to that, we need to talk about where variables live in memory.

XARAMRHE FERRMEAZENT AR - R MM HERARRSRD - £t RNNFEZWIEEEHR
NEFEPHUE -

8.3 Environments

8.3 IR

The bindings that associate variables to values need to be stored somewhere. Ever since the Lisp folks
invented parentheses, this data structure has been called an environment.

TESEZENHERAFTEREFERE MM - EMLsp KRBEESLIK - XMEIRES W EIRATER,

172 /932

craftinginterpreters_zh.md 2024-09-25

ENVIRONMENT

var a=1; a — 1
var b=2; b — 2

You can think of it like a map where the keys are variable names and the values are the variable’s, uh,
values. In fact, that's how we'll implement it in Java. We could stuff that map and the code to manage it
right into Interpreter, but since it forms a nicely delineated concept, we'll pull it out into its own class.

ROLEEBER— RS - EPRETEZWN - EMEEERNEN6 - Kfr L - XTHEHA]EJavah KA
SMA - NI EFERZRSRPMAZBRSF REEBAE - BEENTBHA ¥ —MREFEE - 13T
R ERIE B IRA9E S -

Start a new file and add:
I E S - RIS ¢

lox/Environment.java - BIZEHT X 14

package com.craftinginterpreters.lox;

import java.util.HashMap;
import java.util.Map;

class Environment {
private final Map<String, Object> values = new HashMap<>();

}

There's a Java Map in there to store the bindings. It uses bare strings for the keys, not tokens. A token
represents a unit of code at a specific place in the source text, but when it comes to looking up
variables, all identifier tokens with the same name should refer to the same variable (ignoring scope for
now). Using the raw string ensures all of those tokens refer to the same map key.

HopfER—"Nava MapRREFHERR - RERRREFTHFEAR - MAZERFIC - —MRICERIRREXR
DPREUEN—TMBET BREEEREEN - BEAHEZRNIRASIFCH N ZEaHERNTE (ERR
BEIERE) - ERREFFSIURIEAAEXLEIFCHSIEREBRRE R -

There are two operations we need to support. First, a variable definition binds a new name to a value.
BINBEXFHMRE - B5 - 2L8TENIEF - I —MNBRE—MEHTHE

lox/Environment.java - # Environment 3£ #5517 .

void define {
values.put(name, value);

}

173 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%AD%E7%A7%B0%E4%B9%8B%E4%B8%BA**%E6%98%A0%E5%B0%84**%E6%88%96**%E5%93%88%E5%B8%8C%E6%98%A0%E5%B0%84**%E3%80%82%E5%85%B6%E4%BB%96%E8%AF%AD%E8%A8%80%E7%A7%B0%E5%AE%83%E4%BB%AC%E4%B8%BA**%E5%93%88%E5%B8%8C%E8%A1%A8**%E3%80%81**%E5%AD%97%E5%85%B8**(Python%E5%92%8Cc#)%E3%80%81**%E5%93%88%E5%B8%8C%E8%A1%A8**(Ruby%E5%92%8CPerl)%E3%80%81**%E8%A1%A8**(Lua)%E6%88%96**%E5%85%B3%E8%81%94%E6%95%B0%E7%BB%84**(PHP)%E3%80%82%E5%BE%88%E4%B9%85%E4%BB%A5%E5%89%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%A2%AB%E7%A7%B0%E4%B8%BA**%E5%88%86%E6%95%A3%E8%A1%A8**%E3%80%82

craftinginterpreters_zh.md 2024-09-25

Not exactly brain surgery, but we have made one interesting semantic choice. When we add the key to
the map, we don’t check to see if it's already present. That means that this program works:

ABEREXE - BERMNZENML 7 —PEBRIENRE - SRMNEREFFRINRE - RELEXRESER
i - XEWKE FENTEEEMM

var a = "before";
print a; // "before".
var a = "after";

print a; // "after".

A variable statement doesn't just define a new variable, it can also be used to redefine an existing
variable. We could choose to make this an error instead. The user may not intend to redefine an
existing variable. (If they did mean to, they probably would have used assignment, not .) Making
redefinition an error would help them find that bug.

DEEBFGAMIUEN —THEE - IO BATEREX—TPEBNEE - HNYTLIERFEFEA—IEIREK
SAIE - HFOBER]EEMENBENTE (NIRMITBXFM - IEREARE - mA2var) - FEEX
fEABIRALEB AP A WX o) -

However, doing so interacts poorly with the REPL. In the middle of a REPL session, it's nice to not have
to mentally track which variables you've already defined. We could allow redefinition in the REPL but
not in scripts, but then users would have to learn two sets of rules, and code copied and pasted from
one form to the other might not work.

M - XEMSREPLAIR BRE - ESREPLVREF - HHZUEAFAVERFICREEEX 7 MPLELE - 3
IalLAEREPLP AR EEX - EHARPARY - BEXHFE—K - AERASAZIREAN - B —MA /Y
RBERHENEE S —FE R RO BETABIT T,

So, to keep the two modes consistent, we'll allow it—at least for global variables. Once a variable exists,
we need a way to look it up.

PREL - AYRIERMELNG— - RINVERADTFEEX —E2PWTZRTENL - —BE—1EEFHE - HA)
MBEYLIERZEENTTA -

lox/Environment java - # Environment ZE2557] -

class Environment {
private final Map<String, Object> values = new HashMap<>();
// FEER D Fa
Object get {
if (values.containsKey(name.lexeme)) {
return values.get(name.lexeme);

}

throw new RuntimeError(name,

"Undefined variable '" + name.lexeme + "'.");

174 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E5%85%B3%E4%BA%8E%E5%8F%98%E9%87%8F%E5%92%8C%E4%BD%9C%E7%94%A8%E5%9F%9F%E7%9A%84%E5%8E%9F%E5%88%99%E6%98%AF%EF%BC%8C%E2%80%9C%E5%A6%82%E6%9E%9C%E6%9C%89%E7%96%91%E9%97%AE%EF%BC%8C%E5%8F%82%E8%80%83Scheme%E7%9A%84%E5%81%9A%E6%B3%95%E2%80%9D%E3%80%82Scheme%E7%9A%84%E5%BC%80%E5%8F%91%E4%BA%BA%E5%91%98%E5%8F%AF%E8%83%BD%E6%AF%94%E6%88%91%E4%BB%AC%E8%8A%B1%E4%BA%86%E6%9B%B4%E5%A4%9A%E7%9A%84%E6%97%B6%E9%97%B4%E6%9D%A5%E8%80%83%E8%99%91%E5%8F%98%E9%87%8F%E8%8C%83%E5%9B%B4%E7%9A%84%E9%97%AE%E9%A2%98%E2%80%94%E2%80%94Scheme%E7%9A%84%E4%B8%BB%E8%A6%81%E7%9B%AE%E6%A0%87%E4%B9%8B%E4%B8%80%E5%B0%B1%E6%98%AF%E5%90%91%E4%B8%96%E7%95%8C%E4%BB%8B%E7%BB%8D%E8%AF%8D%E6%B3%95%E4%BD%9C%E7%94%A8%E5%9F%9F%EF%BC%8C%E6%89%80%E4%BB%A5%E5%A6%82%E6%9E%9C%E4%BD%A0%E8%B7%9F%E9%9A%8F%E4%BB%96%E4%BB%AC%E7%9A%84%E8%84%9A%E6%AD%A5%EF%BC%8C%E5%B0%B1%E5%BE%88%E9%9A%BE%E5%87%BA%E9%94%99%E3%80%82Scheme%E5%85%81%E8%AE%B8%E5%9C%A8%E9%A1%B6%E5%B1%82%E9%87%8D%E6%96%B0%E5%AE%9A%E4%B9%89%E5%8F%98%E9%87%8F%E3%80%82

craftinginterpreters_zh.md 2024-09-25

void define {

This is a little more semantically interesting. If the variable is found, it simply returns the value bound to
it. But what if it's not? Again, we have a choice:

XEBXY FEAB—LL - IRHF TXNESE - REBROSZHENE - BOREEHRIINR ? HIINEEM
— N

. Make it a syntax error.
HHIEREIR

o Make it a runtime error.
MBI IR

. Allow it and return some default value like
RIFIZIRIEFIREIFIAME (#n11)

Lox is pretty lax, but the last option is a little too permissive to me. Making it a syntax error—a compile-
time error—seems like a smart choice. Using an undefined variable is a bug, and the sooner you detect
the mistake, the better.

Lox@REMRH - BERE—TEANBREERIETRER Y - EEFAEEER (— M RENOER) UF2—
NHRERERE - FRAREXNEEMELZE—MER - AF#EERINX MERMBET -

The problem is that using a variable isn't the same as referring to it. You can refer to a variable in a
chunk of code without immediately evaluating it if that chunk of code is wrapped inside a function. If
we make it a static error to mention a variable before it's been declared, it becomes much harder to
define recursive functions.

OBET - ZHF-TZBEAAERT F/AE - URNBRIRAERYF - WILELBRPSIHEE - AL
YA ESRE - MRFAVESIARERNEESF—TESER - BAENXE TR EFENMEXE S -

We could accommodate single recursion—a function that calls itself—by declaring the function’s own
name before we examine its body. But that doesn’'t help with mutually recursive procedures that call
each other. Consider:

BYERERBIE ZAITHERERERR - Rl UFE—5
ERREYFRERA8 - ERITIE :

BZE XTAMEEM

fun is0dd {

if (n == 0@) return false;
return isEven(n - 1);

}

fun isEven {
if (n == @) return true;

175/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%99%E5%8F%AF%E8%83%BD%E4%B8%8D%E6%98%AF%E5%88%A4%E6%96%AD%E4%B8%80%E4%B8%AA%E6%95%B0%E5%AD%97%E6%98%AF%E5%A5%87%E5%81%B6%E6%80%A7%E7%9A%84%E6%9C%80%E6%9C%89%E6%95%88%E6%96%B9%E6%B3%95%EF%BC%88%E6%9B%B4%E4%B8%8D%E7%94%A8%E8%AF%B4%E5%A6%82%E6%9E%9C%E4%BC%A0%E5%85%A5%E4%B8%80%E4%B8%AA%E9%9D%9E%E6%95%B4%E6%95%B0%E6%88%96%E8%B4%9F%E6%95%B0%EF%BC%8C%E7%A8%8B%E5%BA%8F%E4%BC%9A%E5%8F%91%E7%94%9F%E4%B8%8D%E5%8F%AF%E6%8E%A7%E7%9A%84%E4%BA%8B%E6%83%85%EF%BC%89%E3%80%82%E5%BF%8D%E8%80%90%E4%B8%80%E4%B8%8B%E5%90%A7%E3%80%82

craftinginterpreters_zh.md 2024-09-25

return isOdd(n - 1);

}
The function isn't defined by the time we are looking at the body of where it's
called. If we swap the order of the two functions, then isn't defined when we're looking at
's body.
HHNEE J3ERS 7 AEWEROIHER R BRER - RFAIRIGER DRI -
BrEBR FAEN &R FIERBTE X A9,

Since making it a static error makes recursive declarations too difficult, we'll defer the error to runtime.
It's OK to refer to a variable before it's defined as long as you don’t evaluate the reference. That lets
the program for even and odd numbers work, but you'd get a runtime error in:

RN EREFZMERaERAFPE TEE - BEHIIEXNMEREREETHN - E— 1N T2WEN ZAI5]
BEloll RERANSIBHET AE - XEPULAIENFEHACBES TE - E2NTUTREN - R
S/BH—1NBITREBIR

print a;
var a = "too late!";

As with type errors in the expression evaluation code, we report a runtime error by throwing an
exception. The exception contains the variable's token so we can tell the user where in their code they
messed up.

SREAUTECEFHEEER—F - HNBENE—IMFRERRSBTHER - FEPESIZEERRC - U
BERMNSFHAPAENTAUNELI FHER

8.3.1 Interpreting global variables
8.3.1 BEEFLE

The Interpreter class gets an instance of the new Environment class.

Interpreter25 =FKENEnvironmentZE) — LA -

lox/Interpreter.java - 7£ Interpreter £ 5571 -

class Interpreter implements Expr.Visitor<Object>,
Stmt.Visitor<Void> {

private Environment environment = new Environment();

void interpret {

We store it as a field directly in Interpreter so that the variables stay in memory as long as the
interpreter is still running.

176 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%80%E4%BA%9B%E9%9D%99%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%E8%AF%AD%E8%A8%80%EF%BC%8C%E5%A6%82Java%E5%92%8CC#%EF%BC%8C%E9%80%9A%E8%BF%87%E8%A7%84%E5%AE%9A%E7%A8%8B%E5%BA%8F%E7%9A%84%E9%A1%B6%E5%B1%82%E4%B8%8D%E6%98%AF%E4%B8%80%E8%BF%9E%E4%B8%B2%E7%9A%84%E5%91%BD%E4%BB%A4%E5%BC%8F%E8%AF%AD%E5%8F%A5%E6%9D%A5%E8%A7%A3%E5%86%B3%E8%BF%99%E4%B8%AA%E9%97%AE%E9%A2%98%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E5%AE%83%E4%BB%AC%E8%AE%A4%E4%B8%BA%E7%A8%8B%E5%BA%8F%E6%98%AF%E4%B8%80%E7%BB%84%E5%90%8C%E6%97%B6%E5%87%BA%E7%8E%B0%E7%9A%84%E5%A3%B0%E6%98%8E%E3%80%82%E8%AF%AD%E8%A8%80%E5%AE%9E%E7%8E%B0%E5%9C%A8%E6%9F%A5%E7%9C%8B%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%E4%B9%8B%E5%89%8D%EF%BC%8C%E4%BC%9A%E5%85%88%E5%A3%B0%E6%98%8E%E6%89%80%E6%9C%89%E7%9A%84%E5%90%8D%E5%AD%97%E3%80%82%3Cbr/%3E%E5%83%8FC%E5%92%8CPascal%E8%BF%99%E6%A0%B7%E7%9A%84%E8%80%81%E5%BC%8F%E8%AF%AD%E8%A8%80%E5%B9%B6%E4%B8%8D%E6%98%AF%E8%BF%99%E6%A0%B7%E5%B7%A5%E4%BD%9C%E7%9A%84%E3%80%82%E7%9B%B8%E5%8F%8D%EF%BC%8C%E5%AE%83%E4%BB%AC%E4%BC%9A%E5%BC%BA%E5%88%B6%E7%94%A8%E6%88%B7%E6%B7%BB%E5%8A%A0%E6%98%8E%E7%A1%AE%E7%9A%84%E5%89%8D%E5%90%91%E5%A3%B0%E6%98%8E%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%9C%A8%E5%90%8D%E7%A7%B0%E5%AE%8C%E5%85%A8%E5%AE%9A%E4%B9%89%E4%B9%8B%E5%89%8D%E5%85%88%E5%A3%B0%E6%98%8E%E5%AE%83%E3%80%82%E8%BF%99%E6%98%AF%E5%AF%B9%E5%BD%93%E6%97%B6%E6%9C%89%E9%99%90%E7%9A%84%E8%AE%A1%E7%AE%97%E8%83%BD%E5%8A%9B%E7%9A%84%E4%B8%80%E7%A7%8D%E8%AE%A9%E6%AD%A5%E3%80%82%E5%AE%83%E4%BB%AC%E5%B8%8C%E6%9C%9B%E8%83%BD%E5%A4%9F%E9%80%9A%E8%BF%87%E4%B8%80%E6%AC%A1%E6%96%87%E6%9C%AC%E9%81%8D%E5%8E%86%E5%B0%B1%E7%BC%96%E8%AF%91%E5%AE%8C%E4%B8%80%E4%B8%AA%E6%BA%90%E6%96%87%E4%BB%B6%EF%BC%8C%E5%9B%A0%E6%AD%A4%E8%BF%99%E4%BA%9B%E7%BC%96%E8%AF%91%E5%99%A8%E4%B8%8D%E8%83%BD%E5%9C%A8%E5%A4%84%E7%90%86%E5%87%BD%E6%95%B0%E4%BD%93%E4%B9%8B%E5%89%8D%E5%85%88%E6%94%B6%E9%9B%86%E6%89%80%E6%9C%89%E5%A3%B0%E6%98%8E%E3%80%82

craftinginterpreters_zh.md 2024-09-25

BINEEFEFA—IFREEEERRSRD X5 - RERRRNEEST TENSBERNEFF -
We have two new syntax trees, so that's two new visit methods. The first is for declaration statements.
BIOBRDIAEEN - FIUXMER MELREE - 8- PERTHERIEIN -

lox/Interpreter.java - 7 visitPrintStmt() = 2 /G m] .

public Void visitVarStmt {
Object value = null;
if (stmt.initializer != null) {
value = evaluate(stmt.initializer);
}

environment.define(stmt.name.lexeme, value);
return null;

If the variable has an initializer, we evaluate it. If not, we have another choice to make. We could have
made this a syntax error in the parser by requiring an initializer. Most languages don't, though, so it
feels a little harsh to do so in Lox.

MRZTEAWRIET - BN EKRE - IRRE - WMFEM—1ERE - RM)JUBIERTRP EL
ARIEXNSERAN—NMERER - BE - AZSHESHASRXAM - FAIAELoxPXHFMATERETZ -

We could make it a runtime error. We'd let you define an uninitialized variable, but if you accessed it
before assigning to it, a runtime error would occur. It's not a bad idea, but most dynamically typed
languages don't do that. Instead, we'll keep it simple and say that Lox sets a variable to if itisn't
explicitly initialized.

AT LUEEMANBITIHER - RIORDFBEX—DRYBIENEE - BURCENEREZALETE - e
REBORER - ZAZ—THER BEASZ be?S*fﬂEﬁlm%%BKz—:gﬁﬁi c B - BAERRE RS
M- HEWR - MREERBREADGE - LxZHEEREAN L,

var a;
print a;

Thus, if there isn’t an initializer, we set the value to , Which is the Java representation of Lox's
value. Then we tell the environment to bind the variable to that value.

EIE - WRRBEYBESR - HIFERA XM ELox®P RN LB JavaRRER © RE - HISFHIE L
MREESZEHTHE -

Next, we evaluate a variable expression.
ERER - BRINENEEREIKRE -

lox/Interpreter.java - 7E visitUnaryExpr() 772 /Z 0] ©
177 1932

craftinginterpreters_zh.md 2024-09-25

public Object visitVariableExpr {
return environment.get(expr.name);

}

This simply forwards to the environment which does the heavy lifting to make sure the variable is
defined. With that, we've got rudimentary variables working. Try this out:

XEREZERMFRFELINRE LIS R T —EESNTRIEZEECHEX - XF - Fllzi L
SFHEANESEFET - ST

var a = 1;
var b = 2;
print a + b;

We can’t reuse code yet, but we can start to build up programs that reuse data.
HINNEABEERRE - BEHMN I UM EEBEREIENER -

8.4 Assignment
8.4 1B

It's possible to create a language that has variables but does not let you reassign—or mutate—them.
Haskell is one example. SML supports only mutable references and arrays—variables cannot be
reassigned. Rust steers you away from mutation by requiring a modifier to enable assignment.

ROJMEIZ—fiES - HPAZE - BEAFIFNZ %E%ﬂ”ﬂﬁ (SHEL) - HaskellshE—BIF - SMLR
*F UL HNBE—TEARE %ﬁ%%ﬁmﬁtﬁ ° RustlZBE ZKnu tARRAFHERE - AM5ISAFZEIE
WEE

Mutating a variable is a side effect and, as the name suggests, some language folks think side effects
are dirty or inelegant. Code should be pure math that produces values—crystalline, unchanging ones—
like an act of divine creation. Not some grubby automaton that beats blobs of data into shape, one
imperative grunt at a time.

FUTBE AR BEEY - —EESTRANAERSRED RN - RBIZROEONE - T
KFEEE— S - FENE—RR LB —# - HA2—ERENEDIE BHERERAER
X —RRT—RBD -

Lox is not so austere. Lox is an imperative language, and mutation comes with the territory. Adding support
for assignment doesn’t require much work. Global variables already support redefinition, so most of the
machinery is there now. Mainly, we're missing an explicit assignment notation.

LoxX’RBRAME * Loxg@— TR INIES - JEMESEERN HINBERFIHAATELSZ I E -
ERTLEBEEXF TBEN - FILLZNBINAH A NEELEE - TE2ENZE - HNRPVPEXANBERS -

178 /932

craftinginterpreters_zh.md 2024-09-25

8.4.1 Assignment syntax
8.4.1 MEIEE

That little = syntax is more complex than it might seem. Like most C-derived languages, assignment is
an expression and not a statement. As in C, it is the lowest precedence expression form. That means
the rule slots between and (the next lowest precedence expression).

SV i%fitt%f‘;ﬂ%%‘&%’éj% c BARZBHCOKEES—1F - MWER—1REN - MAZR—MET - MCE
SH—1F - EEAAREFENREALRN - KEERSZANE B EZFLT A0 (F—"nK
TIRAFRIA _C) ZI8] -

expression - assignment ;
assignment -» IDENTIFIER "=" assignment
| equality ;
This says an is either an identifier followed by an = and an expression for the value, or an
(and thus any other) expression. Later, will get more complex when we add

property setters on objects, like:

Xl - — D (WEDN) BAZ—MRRT - BIR—N-M—PMNNENKRER ; BAZ—1EF
A (THMEEMUEE) REX - HE - SRNENRIANEEREINN - WENSZSEMES - L0 :

instance.field = "value";

The easy part is adding the new syntax tree node.
RERENE D HERMNHAEEHNT R -

tool/GenerateAst.java - & main() 7% L -

defineAst(outputDir, "Expr", Arrays.asList(
// FBER A

"Assign : Token name, Expr value",
/] FrIBEB LR
"Binary : Expr left, Token operator, Expr right",

It has a token for the variable being assigned to, and an expression for the new value. After you run the
AstGenerator to get the new Expr.Assign class, swap out the body of the parser’s existing
method to match the updated rule.

HPESHEETENFC - —MHEMERRER - BTTAstGenerator{SEIFTRY KZfE - B#
RERP AR TENTER - DR &R -

lox/Parser.java - 7£ expression() 7,2 PE—1T .

179/932

craftinginterpreters_zh.md 2024-09-25

private Expr expression {

return assignment();

Here is where it gets tricky. A single token lookahead recursive descent parser can't see far enough to
tell that it's parsing an assignment until after it has gone through the left-hand side and stumbled onto
the =. You might wonder why it even needs to. After all, we don't know we're parsing a + expression
until after we've finished parsing the left operand.

XEFRTEMRF - B NRICAIIEZE D N EETR AR ENRCH B8R -trc 2/F - 7 BEFIlT i RIERE
BITNEWEESD - ROERE - ITAFTERXHEM ? £5 - BRI R A RIFRRRET 2R ME IR
FHZE KA -

The difference is that the left-hand side of an assignment isn't an expression that evaluates to a value.
It's a sort of pseudo-expression that evaluates to a “thing” you can assign to. Consider:

XAET - MERZINEMAZILOKENRER - ME—PHRER - HEHNE—MRIUBERN &
7o ZRLIMUB ¢

var a = "before";
a = "value";

On the second line, we don't evaluate = (which would return the string “before”). We figure out what
variable a refers to so we know where to store the right-hand side expression’s value. The classic terms
for these two constructs are I-value and r-value. All of the expressions that we've seen so far that
produce values are r-values. An |-value “evaluates” to a storage location that you can assign into.

EE TP - BRI RTKE (MRKEZRE before”) - HMNBEFBRIEBERNZMHTLEE - XHFEHA]
MAEZEMERFANRAIANE - IR MITHEEREZEENGE - FEAINLE - HIBEZIREF
FENRZNEBZEE CEUHE ZEI—1FREUE - RYIUEERE -

We want the syntax tree to reflect that an I-value isn't evaluated like a normal expression. That's why
the Expr.Assign node has a Token for the left-hand side, not an Expr. The problem is that the parser
doesn’t know it's parsing an |-value until it hits the =. In a complex I-value, that may occur many tokens
later.

BNABZEEIMEBRMEELZEAZEENRENIBHFUE - XTEAT LExprAssignTT RZEMZ —1
Token - MAZExpr - BIBAET - FH=RE2ER-THNELEERNT—1TEAE E—PERNAED - JekEd
WRZIRCZET EIRAE -

makelList().head.next = node;

We have only a single token of lookahead, so what do we do? We use a little trick, and it looks like this:

180/932

https://en.wikipedia.org/wiki/Value_(computer_science)#lrvalue
https://en.wikipedia.org/wiki/Value_(computer_science)#lrvalue

craftinginterpreters_zh.md 2024-09-25

HNARAZEIE—NRC - BRANZELADE ? FAVEA—N/NRT5 - BERE FEXFA0:

lox/Parser.java - 7£ expressionStatement() 7 2%/ 0 -

private Expr assignment {
Expr expr = equality();

if (match(EQUAL)) {
Token equals = previous();
Expr value = assignment();

if (expr instanceof Expr.Variable) {
Token name = ((Expr.Variable)expr).name;
return new Expr.Assign(name, value);

}

error(equals, "Invalid assignment target.");

}

return expr;

}

Most of the code for parsing an assignment expression looks similar to that of the other binary
operators like +. We parse the left-hand side, which can be any expression of higher precedence. If we
find an =, we parse the right-hand side and then wrap it all up in an assignment expression tree node.

TR ERAIARE D NBEEXR %ﬁﬁﬁ,ﬁ\ TR ER (W) RIEZEEL - MAOTET LRS- Bolll
EREARERESHRE - MREANEKIM—1- - BETANAZR - HIEEHRA—IPERREAMTR
o o

One slight difference from binary operators is that we don’t loop to build up a sequence of the same

operator. Since assignment is right-associative, we instead recursively call to parse the
right-hand side.

S5 mmBEFN—TMMENET - RIVAZIBAWEBERREFHFS - BEARERFESAREKN - FiRK
%Y1 A REFTAMAE -

The trick is that right before we create the assignment expression node, we look at the left-hand side
expression and figure out what kind of assignment target it is. We convert the r-value expression node
into an I|-value representation.

REET HURBERZEATRZA - RNCEBLLNREN - FERTEMTARENHERT - RERK
MM AEREA T RERAZENRRE -

This conversion works because it turns out that every valid assignment target happens to also be valid

syntax as a normal expression. Consider a complex field assignment like:

XMERZANN - BASKIER - 8MEYNEEEREFTEFaERREANEREENT - BE—TE
KWEMMERE - WF -

181/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%A6%82%E6%9E%9C%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%EF%BC%8C%E4%BD%86%E6%88%91%E4%BB%AC%E4%B8%8D%E4%BC%9A%E6%8A%9B%E5%87%BA%E8%AF%A5%E9%94%99%E8%AF%AF%EF%BC%8C%E5%9B%A0%E4%B8%BA%E8%A7%A3%E6%9E%90%E5%99%A8%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%A4%84%E4%BA%8E%E9%9C%80%E8%A6%81%E8%BF%9B%E5%85%A5%E6%81%90%E6%85%8C%E6%A8%A1%E5%BC%8F%E5%92%8C%E5%90%8C%E6%AD%A5%E7%9A%84%E6%B7%B7%E4%B9%B1%E7%8A%B6%E6%80%81%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%8D%B3%E4%BD%BF%E5%AD%98%E5%9C%A8%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%EF%BC%8C%E4%BD%A0%E4%B9%9F%E5%8F%AF%E4%BB%A5%E4%BD%BF%E7%94%A8%E8%BF%99%E4%B8%AA%E6%8A%80%E5%B7%A7%E3%80%82%E5%AE%9A%E4%B9%89%E4%B8%80%E4%B8%AA**%E8%A6%86%E7%9B%96%E8%AF%AD%E6%B3%95**%EF%BC%8C%E4%B8%80%E4%B8%AA%E5%8F%AF%E4%BB%A5%E6%8E%A5%E5%8F%97%E6%89%80%E6%9C%89%E6%9C%89%E6%95%88%E8%A1%A8%E8%BE%BE%E5%BC%8F%E5%92%8C%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E7%9A%84%E5%AE%BD%E6%9D%BE%E8%AF%AD%E6%B3%95%E3%80%82%E5%A6%82%E6%9E%9C%E4%BD%A0%E9%81%87%E5%88%B0%E4%BA%86%60=%60%EF%BC%8C%E5%B9%B6%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%B5%8B%E5%80%BC%E7%9B%AE%E6%A0%87%E5%88%99%E6%8A%A5%E5%91%8A%E9%94%99%E8%AF%AF%E3%80%82%E7%9B%B8%E5%AF%B9%E5%9C%B0%EF%BC%8C%E5%A6%82%E6%9E%9C%E6%B2%A1%E6%9C%89%E9%81%87%E5%88%B0%60=%60%EF%BC%8C%E8%80%8C%E4%B8%94%E5%B7%A6%E4%BE%A7%E4%B8%8D%E6%98%AF%E6%9C%89%E6%95%88%E7%9A%84%E8%A1%A8%E8%BE%BE%E5%BC%8F%E4%B9%9F%E6%8A%A5%E5%91%8A%E4%B8%80%E4%B8%AA%E9%94%99%E8%AF%AF%E3%80%82

craftinginterpreters_zh.md 2024-09-25

newPoint(x + 2, 9).y = 3;

The left-hand side of that assignment could also work as a valid expression.

ZRERAINEMNTZE—NERNRE -

newPoint(x + 2, 0).y;

The first example sets the field, the second gets it.
—MIFIREZFER - F_MHFRINZFE -

This means we can parse the left-hand side as if it were an expression and then after the fact produce a
syntax tree that turns it into an assignment target. If the left-hand side expression isn't a valid
assignment target, we fail with a syntax error. That ensures we report an error on code like this:

XEKE - HNTUBRTREA—HFENTEMNAS - %J’éiﬁi—ﬁ\%iim OFHERABERR - MRED
NRBAAZ—TEINEER R - MSEA—MEEERN2 - KFEJLBRERIZU N ENCENERE

BIR

a+b=c;

Right now, the only valid target is a simple variable expression, but we'll add fields later. The end result
of this trick is an assignment expression tree node that knows what it is assigning to and has an
expression subtree for the value being assigned. All with only a single token of lookahead and no
backtracking.

Wi - E—AUNEEETME - NERNERERE - BERMNEEZANMNELEFR - XMRIOHNRELS
B TMEERLIAMNTR ZHRHEZERTARE FEHE-IREAFMATHEZRERNE - hERE
HRAA T — MRS - FAERABLEN -

8.4.2 Assignment semantics

We have a new syntax tree node, so our interpreter gets a new visit method.
BB —PHREENT R - FIURNERSRTEE— M HRNEEA -

lox/Interpreter.java - 7£ visitVarStmt() 5% /2w .

public Object visitAssignExpr {
Object value = evaluate(expr.value);
environment.assign(expr.name, value);
return value;

}

182 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%97%A9%E5%9C%A8%E8%A7%A3%E6%9E%90%E4%B8%80%E7%AB%A0%EF%BC%8C%E6%88%91%E5%B0%B1%E8%AF%B4%E8%BF%87%E6%88%91%E4%BB%AC%E8%A6%81%E5%9C%A8%E8%AF%AD%E6%B3%95%E6%A0%91%E4%B8%AD%E8%A1%A8%E7%A4%BA%E5%9C%86%E6%8B%AC%E5%8F%B7%E8%A1%A8%E8%BE%BE%E5%BC%8F%EF%BC%8C%E5%9B%A0%E4%B8%BA%E6%88%91%E4%BB%AC%E4%BB%A5%E5%90%8E%E4%BC%9A%E7%94%A8%E5%88%B0%E3%80%82%E8%BF%99%E5%B0%B1%E6%98%AF%E4%B8%BA%E4%BB%80%E4%B9%88%E3%80%82%E6%88%91%E4%BB%AC%E9%9C%80%E8%A6%81%E8%83%BD%E5%A4%9F%E5%8C%BA%E5%88%86%E8%BF%99%E4%BA%9B%E6%83%85%E5%86%B5%EF%BC%9A

craftinginterpreters_zh.md 2024-09-25

For obvious reasons, it's similar to variable declaration. It evaluates the right-hand side to get the value,
then stores it in the named variable. Instead of using on Environment, it calls this new
method:

BRE XS5TEFRREL - 554 WANRERZELGEINE RAEHEFRFIGRTED - XBERFEH
EnvironmentSf - MERB NENHEE

lox/Environment.java - 7£ get() 2 /G m] -

void assign {
if (values.containsKey(name.lexeme)) {
values.put(name.lexeme, value);
return;

}

throw new RuntimeError(name,
"Undefined variable '" + name.lexeme + "'.");

The key difference between assignment and definition is that assignment is not allowed to create a
new variable. In terms of our implementation, that means it's a runtime error if the key doesn't already

exist in the environment’s variable map.

BESEXNWEEZEXFET WEEFALTFUEFTE - BRMNNKAMS - XERENRAIRHLEMET
DPAFEZENR - BME—TBITIERN3,

The last thing the method does is return the assigned value. That's because assignment is an

expression that can be nested inside other expressions, like so:

AN ERE—HSEMEROZWATENE - XREEANBEZ—1MREN - JUREEEMKREI
BHE - mERE

var a = 1;
print a = 2;

Our interpreter can now create, read, and modify variables. It's about as sophisticated as early BASICs.
Global variables are simple, but writing a large program when any two chunks of code can accidentally
step on each other’s state is no fun. We want local variables, which means it's time for scope.

AR RIMAE LI IAENEE - L%DEHHE’\JBASICS—FLE@ ° i\%mg?ﬁ'ﬁﬁ BRERE—
PREBFN - AERRABEHTEANMELR TR - EAF I Y - RINFRFFEE - XEKREZE
IMEIE FEAF L ¢ -

8.5 Scope
8.5 fEFRI

183 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E4%B8%8EPython%E5%92%8CRuby%E4%B8%8D%E5%90%8C%EF%BC%8CLox%E4%B8%8D%E5%81%9A%5B%E9%9A%90%E5%BC%8F%E5%8F%98%E9%87%8F%E5%A3%B0%E6%98%8E%5D(http://craftinginterpreters.com/statements-and-state.html#design-note)%E3%80%82

craftinginterpreters_zh.md 2024-09-25

A scope defines a region where a name maps to a certain entity. Multiple scopes enable the same
name to refer to different things in different contexts. In my house, “Bob"” usually refers to me. But
maybe in your town you know a different Bob. Same name, but different dudes based on where you
say it.

EREE X 7 BB EFELEN—PXE - 2 MEREATFE— M BREARN LT XFEEARNA
A - ERX - "‘Bob"BBENZEREC - 1EEE1/\E/‘]% - REJBEINIR 59 —"Bob » E—1&%F - ETIRAVAR
IR ¥ ARIA -

Lexical scope (or the less commonly heard static scope) is a specific style of scoping where the text of
the program itself shows where a scope begins and ends. In Lox, as in most modern languages,
variables are lexically scoped. When you see an expression that uses some variable, you can figure out
which variable declaration it refers to just by statically reading the code.

ENEERE (BB D UHBRSERE) 2—MERNERASENS N - BFEASHNXAER 7 ERERTT
RS RNUEN 14, Lox - MIAZEICES —1F - BETDAFRARABN - SIRBEIEA F REZSHRE
IR - REBE RS RSRAE I MR EEERNEESHR -

For example:

2B

var a
print a;

"first";

var a = "second";
print a;

Here, we have two blocks with a variable = declared in each of them. You and | can tell just from
looking at the code that the use of = in the first statement refers to the first 2, and the second
one refers to the second.

X8 - BOERTMRPEEX T —PEEq - HM]IUMNRBEFEL - £F N BYPERNENESE—
o FEINEBEQRONERE _NEE -

FIRST BLOCK SECOND BLOCK

a —+» "first” a —» 'second”

This is in contrast to dynamic scope where you don’'t know what a name refers to until you execute
the code. Lox doesn’t have dynamically scoped variables, but methods and fields on objects are
dynamically scoped.

184 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82

craftinginterpreters_zh.md 2024-09-25

XSSEREER XL - ESIERET - BERNTRBRNTMERBRBEONZT 4 - LoxRBENSIERE
LE BENZRERTAMFRENSIERER -

class Saxophone {

play() {
print "Careless Whisper";

}
}

class GolfClub {

play() {
print "Fore!";

}
}

fun playIt {
thing.play();
}

When calls , we don't know if we're about to hear “Careless Whisper” or “Fore!” It

depends on whether you pass a Saxophone or a GolfClub to the function, and we don’t know that until
runtime.

=)2 i BOOAHMERINEZITENZE "Careless Whlsper £ Z "Fore!" o XEURT
1R8] ERELE B A2 Saxophone X 2GolfClub - MENIEZ TR A FEX —=R

Scope and environments are close cousins. The former is the theoretical concept, and the latter is the
machinery that implements it. As our interpreter works its way through code, syntax tree nodes that
affect scope will change the environment. In a C-ish syntax like Lox’s, scope is controlled by curly-
braced blocks. (That's why we call it block scope.)

ERBMHMEZRAR - IEERICHS MEEEXRNEHNE - ZHMNOEFRVELEN - FIERRR
EAMTRESWEWRE LY - ERLoxXFRNECESHATP - (FREZRTCESHRZERR - (ZmENT
LFEANRERNRER) .

{

var a = "in block";

}

print a;

The beginning of a block introduces a new local scope, and that scope ends when execution passes the
closing }. Any variables declared inside the block disappear.

RFESIA Y —DHREHERE - SWTBEERN N - XNMEREMER 7 - RAFHENTOESHS
HR

8.5.1 Nesting and shadowing

185/932

craftinginterpreters_zh.md 2024-09-25
8.5.1 BREMEL
A first cut at implementing block scope might work like this:
SCHNRE IR S — D Ol BE R XAFH
1. | As we visit each statement inside the block, keep track of any variables declared.
SIHORANES MEN - IRIRFIAFIINESE -
2. | After the last statement is executed, tell the environment to delete all of those variables.
WiTR&E—REQYGE SFRFAREXLETSZEMER -

That would work for the previous example. But remember, one motivation for local scope is
encapsulation—a block of code in one corner of the program shouldn't interfere with some other
block. Check this out:

XX pIEN A FZ20TH - BRIBICHE - BEMERHEN— M ENEFHE—RFP—TMRANNE - ANizT
HEMER - BE NEHF

var volume = ;

volume = 0;

{

var volume = & ¥ 5
print volume;

}

Look at the block where we calculate the volume of the cuboid using a local declaration of

After the block exits, the interpreter will delete the global variable. That ain't right. When we
exit the block, we should remove any variables declared inside the block, but if there is a variable with
the same name declared outside of the block, that's a different variable. It shouldn't get touched.

BFEXMBR - #XERNFH -1 EERE RUBERGERERR - ABREBLEG - ERZRRM
bk £/ TE - XEANH - ARNVELACERE - HAIN ZBERERASPMELEE - BENRER
BRINEIR T HRIBIRNEE - B — M AENEE - BAN MR -

When a local variable has the same name as a variable in an enclosing scope, it shadows the outer
one. Code inside the block can't see it any more—it is hidden in the “shadow” cast by the inner one—
but it's still there.

HEEEESIEFRAETHNEEERHBNERIRE - ANTERERIMNILE - NIBRNEAEBRRIINED
TE—ERERENSTENREP—BEINREFEN -

186 /932

craftinginterpreters_zh.md 2024-09-25
When we enter a new block scope, we need to preserve variables defined in outer scopes so they are
still around when we exit the inner block. We do that by defining a fresh environment for each block

containing only the variables defined in that scope. When we exit the block, we discard its environment
and restore the previous one.

HHA-DRRIEREN - RNFBERBENMEREPEXNTE - XFESHNREARCIERE X LS
BEEMATFE - AL - BROAWEMBREX—TMHHNHE - BARREIREREPEXNEE - ZHA])
RECERE - BIIREFENRARER —TPHIE -

We also need to handle enclosing variables that are not shadowed.

HMNEFBRVAESBRIERVIELE -

var global = "outside";
{
var local = "inside";
print global + local;
}
Here, lives in the outer global environment and is defined inside the block’s
environment. In that statement, both of those variables are in scope. In order to find them, the

interpreter must search not only the current innermost environment, but also any enclosing ones.

XERAEH - R = SEINE MTERIMEPE X - ERITprint BN - KR NEEEEEH
B - N7 HBEN] BESANZELRRIANEAENHIERE - BOJERAAEINERINIE -

We implement this by chaining the environments together. Each environment has a reference to the
environment of the immediately enclosing scope. When we look up a variable, we walk that chain from

innermost out until we find the variable. Starting at the inner scope is how we make local variables
shadow outer ones.

HMNBS S RERE —ERIAE—R - BIHRAEE - D WEEINEERERIHRRISIA - BIRMNEEK—
PMEEN - HMNMNEABEHEENHREERHINZEE - NNEMEREHE - B2 EBHEEERIMND
LEMH -

TOP LEVEL
global — “outside”
P
PARENT
BLOCK
local — “inside”

Before we add block syntax to the grammar, we'll beef up our Environment class with support for this
nesting. First, we give each environment a reference to its enclosing one.

187 /932

craftinginterpreters_zh.md 2024-09-25

ERAVAIREBEZA - FAEB{EEnvironment XXM BRERN T - Bt - HMES DR RMN—DX
HIMNEHERISIA -

lox/Environment.java - # Environment 3£ #5517

class Environment {
/] FIEE DA
final Environment enclosing;
/] FIBEE D AR
private final Map<String, Object> values = new HashMap<>();

This field needs to be initialized, so we add a couple of constructors.
ENFEREEVRE - FIUEIIAIA MM EREL -

lox/Environment.java - # Environment £ 2,557

Environment() {
enclosing = null;

}

Environment (Environment enclosing) {
this.enclosing = enclosing;

}

The no-argument constructor is for the global scope’s environment, which ends the chain. The other
constructor creates a new local scope nested inside the given outer one.

TEMERYATERFRAGNERE BERIRENERR - Z3— TMERHARUBE-—TREELEINBIER
ENEH R B ERMER L -

We don’t have to touch the method—a new variable is always declared in the current
innermost scope. But variable lookup and assignment work with existing variables and they need to
walk the chain to find them. First, lookup:

FATADER HEF—RANHLELSZESRARNENIERE PSR - EETENERNEES
EANETE—EBAEYN FREMNHMREULIEN] - EXSERIERF

lox/Environment,java - 7F get() 7,2 LM -

return values.get(name.lexeme);
}
// FEER D Fa
if (enclosing I= null) return enclosing.get(name);
// FIBERS
throw new RuntimeError(name,
"Undefined variable '" + name.lexeme + "'.");

188 /932

craftinginterpreters_zh.md 2024-09-25

If the variable isn’t found in this environment, we simply try the enclosing one. That in turn does the
same thing recursively, so this will ultimately walk the entire chain. If we reach an environment with no
enclosing one and still don't find the variable, then we give up and report an error as before.

MRIFHEPRKBHITE - SiESIEHRFEE - RARBIMEELIRF - REIEHTEMELR - IR
FHAMRR T —DRANEFENHIE - HFEMDRBEBRIXNEE - BRNMNF - AEHEZAI—HFRE—1

Hix °
Assignment works the same way.
I EHZME -

lox/Environment java - 7F assign().J7;% F 1

values.put(name.lexeme, value);
return;

}

// FIEER D a

if (enclosing != null) {
enclosing.assign(name, value);
return;

}
// FIBEB L
throw new RuntimeError(name,

Again, if the variable isn't in this environment, it checks the outer one, recursively.
Bt - MRTEBAELWHIRED - BRBFMCEINELIE -
8.5.2 Block syntax and semantics

8.5.2 WFEEMIFNX

Now that Environments nest, we're ready to add blocks to the language. Behold the grammar:

WENBZEERE Y - BRMMAEROESPARMR Y - BEUNEEX

statement > exprStmt
| printStmt
| block ;
block > "{" declaration* "}" ;

A block is a (possibly empty) series of statements or declarations surrounded by curly braces. A block is
itself a statement and can appear anywhere a statement is allowed. The syntax tree node looks like this:

REHERESEEN—RINETAFP(OERZEN) - RASMZE—FRED - /BN ERTRFEINMT -

BAMT R RFR

189/932

craftinginterpreters_zh.md 2024-09-25

tool/GenerateAst.java - # main() 7 % F w1 .

defineAst(outputDir, "Stmt", Arrays.asList(
// FIGER DA
"Block : List<Stmt> statements”,
/] FIBER DL
"Expression : EXxpr expression",

It contains the list of statements that are inside the block. Parsing is straightforward. Like other
statements, we detect the beginning of a block by its leading token—in this case the {. In the
method, we add:

BESRPEINIIE - BT REE - SEMEBEQ—F - RIVBZRAIRIFC(ERSI P Z ()RR
% - & T3RH - FATAMAE -

lox/Parser.java - # statement() 7,2 L] -

if (match(PRINT)) return printStatement();

// FEER D Fa

if (match(LEFT_BRACE)) return new Stmt.Block(block());
/] FIBER LA

return expressionStatement();

All the real work happens here:
BIFRTFERE X BIATT ¢

lox/Parser.java - 7£ expressionStatement() 7 2%/ 00 -

private List<Stmt> block() {
List<Stmt> statements = new ArraylList<>();

while (!check(RIGHT_BRACE) && !isAtEnd()) {
statements.add(declaration());

}

consume (RIGHT_BRACE, "Expect '}' after block.");
return statements;

We create an empty list and then parse statements and add them to the list until we reach the end of

the block, marked by the closing . Note that the loop also has an explicit check for . We

have to be careful to avoid infinite loops, even when parsing invalid code. If the user forgets a closing
, the parser needs to not get stuck

190/932

craftinginterpreters_zh.md 2024-09-25

HNVCRIR—DZEIR - KEBTBOFANERAIRS EEBIRNEE (B FS5MR) M5 FR8 - %
BHEE— 1 IRIERY B - BBV OEETIRTEIF - BIERERET TR T ZIE - 1NRA
BIC VLR - BATSRFEERIEAERMEE -

That's it for syntax. For semantics, we add another visit method to Interpreter.
BREIEALE - W TFIEX - FAEEInterpreter A 15— MAOIEE

lox/Interpreter.java - 7 execute() 7 24/

public Void visitBlockStmt {
executeBlock(stmt.statements, new Environment(environment));
return null;

}

To execute a block, we create a new environment for the block’s scope and pass it off to this other
method:

BTN - BOVCHZRIEASIZ— MR - REFEEATERZXNITA

lox/Interpreter.java - rexecute() 77 2%/m . .

void executeBlock

Environment previous = this.environment;

try {
this.environment = environment;

for (Stmt statement : statements) {
execute(statement);

}
} finally {

this.environment = previous;

}
}

This new method executes a list of statements in the context of a given environment. Up until now, the

field in Interpreter always pointed to the same environment—the global one. Now, that
field represents the current environment. That's the environment that corresponds to the innermost
scope containing the code to be executed.

XA EAENE L NPT —RINET - UL ZAT - ERERPH FEEZEEHE
BHNE—=F/WIE - JE - XPNFREE0OGFE - ITRESENTHRNBEAZEREAEX MY
‘16,

To execute code within a given scope, this method updates the interpreter’s field, visits
all of the statements, and then restores the previous value. As is always good practice in Java, it

191/932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%AF%B7%E8%AE%B0%E4%BD%8F%EF%BC%8C%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E9%A1%B6%E5%B1%82%E4%BB%A3%E7%A0%81%E8%A7%86%E4%B8%BA%E9%9A%90%E5%BC%8F%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%8F%AA%E8%A6%81%E6%B7%BB%E5%8A%A0%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%EF%BC%8C%E6%88%91%E4%BB%AC%E5%B0%B1%E4%BC%9A%E8%BF%9B%E5%85%A5%E4%B8%80%E4%B8%AA%E5%B5%8C%E5%A5%97%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%96%E7%95%8C%E3%80%82

craftinginterpreters_zh.md 2024-09-25

restores the previous environment using a finally clause. That way it gets restored even if an exception

is thrown.
NTHEAEFEREANTRE ZH ik MEERN FE - MITEABIESD - REREZ
BINHIE - ETJavadbr—SRHILERES - ©FA FaRKEFLANHIE - XtFE—3FK - BIENE 7=

5 HREOSEKE -

Surprisingly, that's all we need to do in order to fully support local variables, nesting, and shadowing.
Go ahead and try this out:

EFERZE - BRMEHNA T E2XFHHRELE - REMERFIFZMAOEEEE - w7 NERNES :

var a = "global a";
var b = "global b";
var ¢ = "global c";
{
var a = "outer a";
var b = "outer b";
{
var a = "inner a";
print a;
print b;
print c;
¥
print a;
print b;
print c;
}
print a;
print b;
print c;

Our little interpreter can remember things now. We are inching closer to something resembling a full-
featured programming language.

N NEBRSRMETNCERA Y - RIEBEMEREESXEO T — -

a = 3; // OK.
(a) = 3; // Error.

A4 ER REFRIEE" lexikos” - REAZR'SREAR" . IRINEREZESTEATH - BEEKSLELEN
TERAUEFRIYMNRRIB RS PIRIE — LR A - EAFAEEREEALGOLLEINT - RHNES BB ESME
R - SR ENRZRINN - ISERENRTEREER - SX - 257 FHKSchemetfiFtE - FAIA
BERXAZEWN - EEQLUR - BREEHER - ZENAERRNAFTETRLERST - Emacs LispIHIANTE

S IERE Clojure Ry AR - JavaScripth EiE AR E A BN EREEERA
ASTEREE - M50k RORBWEDIIZR - AHE T3 R RES R E R AEStmt.Block
b XEEKRARTE REXEHEEANBEERINZER REEMTREUE - BN BRAREREABE

FHEStmt.Block® » AM6: FHERFRE — M LR FREZRALE - Z—KHETAZERN

192 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%8F%AF%E4%BB%A5%E9%80%9A%E8%BF%87%E6%AF%8F%E6%AC%A1%E6%9F%A5%E7%9C%8BCallFrame%E6%95%B0%E7%BB%84%E6%9D%A5%E8%AE%BF%E9%97%AE%E5%BD%93%E5%89%8D%E5%B8%A7%EF%BC%8C%E4%BD%86%E8%BF%99%E5%A4%AA%E7%B9%81%E7%90%90%E4%BA%86%E3%80%82%E6%9B%B4%E9%87%8D%E8%A6%81%E7%9A%84%E6%98%AF%EF%BC%8C%E5%B0%86%E5%B8%A7%E5%AD%98%E5%82%A8%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%B1%80%E9%83%A8%E5%8F%98%E9%87%8F%E4%B8%AD%EF%BC%8C%E5%8F%AF%E4%BB%A5%E4%BF%83%E4%BD%BFC%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E8%AF%A5%E6%8C%87%E9%92%88%E4%BF%9D%E5%AD%98%E5%9C%A8%E4%B8%80%E4%B8%AA%E5%AF%84%E5%AD%98%E5%99%A8%E4%B8%AD%E3%80%82%E8%BF%99%E6%A0%B7%E5%B0%B1%E8%83%BD%E5%8A%A0%E5%BF%AB%E5%AF%B9%E5%B8%A7%E4%B8%AD%60ip%60%E7%9A%84%E8%AE%BF%E9%97%AE%E3%80%82%E6%88%91%E4%BB%AC%E4%B8%8D%E8%83%BD%E4%BF%9D%E8%AF%81%E7%BC%96%E8%AF%91%E5%99%A8%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%EF%BC%8C%E4%BD%86%E5%BE%88%E6%9C%89%E5%8F%AF%E8%83%BD%E4%BC%9A%E8%BF%99%E6%A0%B7%E5%81%9A%E3%80%82
http://clojuredocs.org/clojure.core/binding
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%BF%99%E9%87%8C%E7%9A%84%60beginScope()%60%E5%B9%B6%E6%B2%A1%E6%9C%89%E5%AF%B9%E5%BA%94%E7%9A%84%60endScope()%60%E8%B0%83%E7%94%A8%E3%80%82%E5%9B%A0%E4%B8%BA%E5%BD%93%E8%BE%BE%E5%88%B0%E5%87%BD%E6%95%B0%E4%BD%93%E7%9A%84%E6%9C%AB%E5%B0%BE%E6%97%B6%EF%BC%8C%E6%88%91%E4%BB%AC%E4%BC%9A%E5%AE%8C%E5%85%A8%E7%BB%93%E6%9D%9F%E6%95%B4%E4%B8%AACompiler%EF%BC%8C%E6%89%80%E4%BB%A5%E6%B2%A1%E5%BF%85%E8%A6%81%E5%85%B3%E9%97%AD%E9%80%97%E7%95%99%E7%9A%84%E6%9C%80%E5%A4%96%E5%B1%82%E4%BD%9C%E7%94%A8%E5%9F%9F%E3%80%82
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E8%AF%B7%E8%AE%B0%E4%BD%8F%EF%BC%8C%E7%BC%96%E8%AF%91%E5%99%A8%E5%B0%86%E9%A1%B6%E5%B1%82%E4%BB%A3%E7%A0%81%E8%A7%86%E4%B8%BA%E9%9A%90%E5%BC%8F%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%BB%E4%BD%93%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%8F%AA%E8%A6%81%E6%B7%BB%E5%8A%A0%E4%BB%BB%E4%BD%95%E5%87%BD%E6%95%B0%E5%A3%B0%E6%98%8E%EF%BC%8C%E6%88%91%E4%BB%AC%E5%B0%B1%E4%BC%9A%E8%BF%9B%E5%85%A5%E4%B8%80%E4%B8%AA%E5%B5%8C%E5%A5%97%E5%87%BD%E6%95%B0%E7%9A%84%E4%B8%96%E7%95%8C%E3%80%82

craftinginterpreters_zh.md 2024-09-25

MIFIMBE RS HEREE MANTGE - MREB QWL R - SipetiE T BENEA— M RENHE - RA
MR EIBRHR - ARNFHROMEEFET Java xS - SEBESEAROBDOGARLON - ZHREWERAEF -
HEBEZETEjloxPREEFMY - BES—PHETEPMA-—IHESE - XEREIHNAK - N 7UEREBEE
B REFTITRFR -

CHALLENGES
&

1. The REPL no longer supports entering a single expression and automatically printing its result value.
That's a drag. Add support to the REPL to let users type in both statements and expressions. If they
enter a statement, execute it. If they enter an expression, evaluate it and display the result value.

1. REPLABFFRMA—NREAABNTEINELERE - K2R - 7 REPL PIEBINSHF - IEAFPBRI @A
BN ALEARER - IRMIIEA—NMED - MNTE - ARMIVBMA-DRES - WNRZBKEFAE
NERE -

2. Maybe you want Lox to be a little more explicit about variable initialization. Instead of implicitly
initializing variables to , make it a runtime error to access a variable that has not been initialized or
assigned to, as in:

2~ TFIRFBEELox W EEM ¥ Ia{LBARIR—LE - SEHEBIMINZEEYWBIE NI - RUFIHB—D R Y8163
IHENZEFA—TBEITRER W

var a;
var b;

a = "assigned";
print a;

print b;

3. What does the following program do?

3 FTENRBREANT?

var a = 1;
var a = a + 2;
print a;

What did you expect it to do? Is it what you think it should do? What does analogous code in other
languages you are familiar with do? What do you think users will expect this to do?

193 /932

craftinginterpreters_zh.md 2024-09-25

TJ\,HHWEMZ\?N T ? BERERBIRRIEENITIG ? (REARENEMIE S PROKZLEELANT ? IMAARF &
=

DESIGN NOTE: IMPLICIT VARIABLE DECLARATION
RITEILS : RALESH

Lox has distinct syntax for declaring a new variable and assigning to an existing one. Some languages
collapse those to only assignment syntax. Assigning to a non-existent variable automatically brings it
into being. This is called implicit variable declaration and exists in Python, Ruby, and CoffeeScript,
among others. JavaScript has an explicit syntax to declare variables, but can also create new variables
on assignment. Visual Basic has an option to enable or disable implicit variables.

When the same syntax can assign or create a variable, each language must decide what happens when
it isn't clear about which behavior the user intends. In particular, each language must choose how
implicit declaration interacts with shadowing, and which scope an implicitly declared variable goes into.

* In Python, assignment always creates a variable in the current function’s scope, even if there is a
variable with the same name declared outside of the function.

* Ruby avoids some ambiguity by having different naming rules for local and global variables.
However, blocks in Ruby (which are more like closures than like “blocks” in C) have their own
scope, so it still has the problem. Assignment in Ruby assigns to an existing variable outside of
the current block if there is one with the same name. Otherwise, it creates a new variable in the
current block’s scope.

* CoffeeScript, which takes after Ruby in many ways, is similar. It explicitly disallows shadowing by
saying that assignment always assigns to a variable in an outer scope if there is one, all the way
up to the outermost global scope. Otherwise, it creates the variable in the current function
scope.

* InJavaScript, assignment modifies an existing variable in any enclosing scope, if found. If not, it
implicitly creates a new variable in the global scope.

The main advantage to implicit declaration is simplicity. There's less syntax and no “declaration”
concept to learn. Users can just start assigning stuff and the language figures it out.

Older, statically typed languages like C benefit from explicit declaration because they give the user a
place to tell the compiler what type each variable has and how much storage to allocate forit. In a
dynamically typed, garbage-collected language, that isn't really necessary, so you can get away with
making declarations implicit. It feels a little more “scripty”, more “you know what | mean”.

But is that a good idea? Implicit declaration has some problems.

* A user may intend to assign to an existing variable, but may have misspelled it. The interpreter
doesn’t know that, so it goes ahead and silently creates some new variable and the variable the
user wanted to assign to still has its old value. This is particularly heinous in JavaScript where a
typo will create a global variable, which may in turn interfere with other code.

* JS, Ruby, and CoffeeScript use the presence of an existing variable with the same name—even in
an outer scope—to determine whether or not an assignment creates a new variable or assigns to
an existing one. That means adding a new variable in a surrounding scope can change the

194 /932

https://msdn.microsoft.com/en-us/library/xe53dz5w(v=vs.100).aspx

craftinginterpreters_zh.md 2024-09-25

meaning of existing code. What was once a local variable may silently turn into an assignment to
that new outer variable.

* In Python, you may want to assign to some variable outside of the current function instead of
creating a new variable in the current one, but you can't.

Over time, the languages | know with implicit variable declaration ended up adding more features and
complexity to deal with these problems.

* Implicit declaration of global variables in JavaScript is universally considered a mistake today.
“Strict mode” disables it and makes it a compile error.

® Python added a statement to let you explicitly assign to a global variable from within a
function. Later, as functional programming and nested functions became more popular, they
added a similar statement to assign to variables in enclosing functions.

* Ruby extended its block syntax to allow declaring certain variables to be explicitly local to the
block even if the same name exists in an outer scope.

Given those, | think the simplicity argument is mostly lost. There is an argument that implicit
declaration is the right default but | personally find that less compelling.

My opinion is that implicit declaration made sense in years past when most scripting languages were
heavily imperative and code was pretty flat. As programmers have gotten more comfortable with deep
nesting, functional programming, and closures, it's become much more common to want access to
variables in outer scopes. That makes it more likely that users will run into the tricky cases where it's

not clear whether they intend their assignment to create a new variable or reuse a surrounding one.
So | prefer explicitly declaring variables, which is why Lox requires it.

LoxfE B ABMNIBEZRFERFTEEMNEELEME - ALESNEEBEARBREEE - W — M AFENEE
HITENZBNERZEE - XERARNEERSIR - F1E T Python, RubyMCoffeeScript A R EMIES + -
JavaScriptA— TN EXMIEEZXRFBREE - B2 MUERENQZIEE - Visual BasicA— eI o] LIE L
ZHRAEE,

SEFREARILINEERE - talll BUL’T‘EET BERUMMIREERNSERE T TARNEZEL
7 FHIZE BHESUVIEERIATESHE EROREAT - UKRRBATBENZETMMERE -

* #Pythond - MESERSEIRRBNFAZEANCE—IMEE - AIEERIINIER I EREE -

* RubyBINWEHLTEMNEFTEFAABNMBAMN - &Ry —LEIEX - BZ - RubydrIR (ERN]
8 MAZCHN R) EEECHIERE - BILNAFEDA - fERubyd - IRELFE—TREBZWE
£ NHESRAZRZIINNVNEEE - & - mSEISRRNIEASFE—HEE

* CoffeeScriptEEFZ L EE M HRUby - X—R L - TRARRIET SR - ZREERRDZ2M M
HERBPMENTE (—ERRIENERERE) - IRTEATFENE - BEESRIREFRAE
Dol EE

* fEJavaScriptd - IEZENERINMEREPHN—TINELE (MNREXFZEENE) - MRTEAR
7% - BRIt EZBERENEIZ— M HNEE -

RAFPENEIENREEER - BEARYD TRFI'EREE - BRUEEFRRE - AR ESHMEERAE
Bia# -

I;l]]

BCREFRFPNBARVEESRaTENFRH - ERANBNERHFREE 7 —Mth77 - itlSFREERES IR
SRR ANEREZ/ D FHEEE - EHSHEE - AEIRWERES S - XESLZZALEN - FIBURTILUS

195/932

https://msdn.microsoft.com/en-us/library/xe53dz5w(v=vs.100).aspx

craftinginterpreters_zh.md 2024-09-25
SRIUEAREI - XEE "HE" - ERE "IREHNERIE,
BEEMNMFERE? RAFSRAEGFTE— LA -

s AFUEEIEANNBLERE BELIHBEHER - BRESAMNEX—R - FILIEHEEARE 7 —LH
TE MAFPBERENTENRZRENE - XttlavaScriptP LELANRK - BA—MHBEHIRSE
B—1TEREE IRGKNIEZTEERS -

* JS. Ruby#CoffeeScriptBI Hi EEFERI ZLEE—EREIMNMERE—KBEEREZCIEMEEL
EWELNEEE - XFERSEIIBEIFRARPAN—MHEETESIRBIAARBHZX - RENFEL

e #EPythond - (ROJEEBEMBEL IR ZINENLTE - MAZEIFRYPLBR-—IHEE - B2
TRIAZ] -

BEENERER - HEAMBNEARATCEFPNESREEIEN 7 ESMINEFE 2 M RKAIEX LD -

o T - HiRIANJavaScriptP ZFELTEMRIBIAE—MEIR « “Strict mode "2 T E - HFNEMA—T

MEHEIR -

* PythoniAM Y —1 BQ - AP YMERHABENMREL—TE2FEE - BXK - BEREA
RN ERE BB REARAT - AR Y — DR IRY BORBESINE R PHEE

* Ruby¥ BT BHRIBE - A ERPEXMBFIPRELTE BIEIINMERARPEFEREBHNEE -

ERIXL WNABEUENEREERETEN - B—MURIANRIASERZERNBINED - BEDAN
ARFULEALBRR -

HHWARZ - BRAFHELTEN/LFEZEEXN SNAZSHURNESHZIFEmAR - NBE2HEIEE
BV - BEEFRAXNAERE - RAARENEEIEAE - HOSMNIERAR PN EETTHREER -
XEFHAFERUEBIMFNER - IAFEMINNEEZZE—TTHEELEEMINENEEEE -

FRUBEENEAERTE - X ZLoxEBXAFMAVRR -

9.3%5l57% Control Flow

Logic, like whiskey, loses its beneficial effect when taken in too large quantities.
—— Edward John Moreton Drax Plunkett, Lord Dunsany
ZENEB LT —F URBAXZ MaRkEZHBEZIUR -

Compared to last chapter’s grueling marathon, today is a lighthearted frolic through a daisy meadow.

But while the work is easy, the reward is surprisingly large.
5F—SRENZUMNELL - X—ERSEHRBEM FHORREN - BRTFRES - BRIRAIRANK -

Right now, our interpreter is little more than a calculator. A Lox program can only do a fixed amount of
work before completing. To make it run twice as long you have to make the source code twice as
lengthy. We're about to fix that. In this chapter, our interpreter takes a big step towards the
programming language major leagues: Turing-completeness.

ME - BIWBEBRRIFT2—MTESRTE - —MNoxBRELR A REHEEN IS - ERILTHIET
RHERE K —18 - RS FILRAIBHKEEMN—E - ROEDFRARNOH - EAED - RIINBRBERERER
BESABBILET —AS BR=&% -

196 /932

http://craftinginterpreters.com/statements-and-state.html

craftinginterpreters_zh.md 2024-09-25

9.1Turing Machines (Briefly)
9.1 EIRA (&)

In the early part of last century, mathematicians stumbled into a series of confusing paradoxes that led
them to doubt the stability of the foundation they had built their work upon. To address that crisis,
they went back to square one. Starting from a handful of axioms, logic, and set theory, they hoped to
rebuild mathematics on top of an impervious foundation.

EEHLY) - BERMBA T -2 ARRNFIEZF - SBMIINY EC TIEFMRBRIE MR E M ER
A e N BRXE - NN ER TRR - EZENVENAE - BENESEIEH G E— P AEK
AR FEREE -

They wanted to rigorously answer questions like, “Can all true statements be proven?”, “Can we
compute all functions that we can define?”, or even the more general question, “"What do we mean

when we claim a function is ‘computable’?”

il AR Z = AR B 25X A AOIDIR P A B SKRVRRZUER o DARIERRNS ? 7, "F 1ol It EHAIEE AR A R %
B? EERE—MMUNDA - "HENER—PREZ I HENH - ARFARR?”

They presumed the answer to the first two questions would be “yes”. All that remained was to prove it.
It turns out that the answer to both is “no”, and astonishingly, the two questions are deeply
intertwined. This is a fascinating corner of mathematics that touches fundamental questions about
what brains are able to do and how the universe works. | can’t do it justice here.

I TARNBEIA DNOENERENZZ Z" - F FHMEEILRE - BSSNERXMMNOENERLZ'E" - ME<S

ANRZRZE - BRNOAZR R RRAE—EN - XBHFN—TNEANEE - BBK 7 RTKMEBET A
MFEWETIFOERDR - WEXBRAFE -

7

What | do want to note is that in the process of proving that the answer to the first two questions is
“no”, Alan Turing and Alonzo Church devised a precise answer to the last question—a definition of
what kinds of functions are computable. They each crafted a tiny system with a minimum set of
machinery that is still powerful enough to compute any of a (very) large class of functions.

HBBENZE - FIERAIANOENERZ "& "WEED - C-ERMAEE BSASKE— ORI 7 —
MERNER - BIEX T 2AFNREZOHERN - t]SERI F —TMEAR/NMIMENME RS - 2245
MARBAR U E-PNEARERYFHNEDT— -

These are now considered the “computable functions”. Turing’s system is called a Turing machine.
Church's is the lambda calculus. Both are still widely used as the basis for models of computation and,
in fact, many modern functional programming languages use the lambda calculus at their core.

XEMERNNZ T HERE - AR AARTABERNA2 - BHHZRGFZlambdaiES - XFF7IANIARRK
[TZRfEEEENEM - B FSUARBEFERESHNZ/OERlambdaiE S -

197 /932

https://en.wikipedia.org/wiki/Foundations_of_mathematics#Foundational_crisis
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%AF%AB%E6%97%A0%E7%96%91%E9%97%AE%EF%BC%8CCS%E8%AE%BA%E6%96%87%E4%B9%9F%E6%9C%89%E6%AD%BB%E8%83%A1%E5%90%8C%EF%BC%8C%E8%A2%AB%E5%BC%95%E4%B8%BA%E9%9B%B6%E7%9A%84%E6%82%B2%E6%83%A8%E5%B0%8F%E4%BC%97%E8%AE%BA%E6%96%87%E4%BB%A5%E5%8F%8A%E5%A6%82%E4%BB%8A%E8%A2%AB%E9%81%97%E5%BF%98%E7%9A%84%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%EF%BC%8C%E8%BF%99%E4%BA%9B%E4%BC%98%E5%8C%96%E6%96%B9%E6%B3%95%E5%8F%AA%E6%9C%89%E5%9C%A8%E4%BB%A5%E5%8D%95%E4%B8%AA%E5%AD%97%E8%8A%82%E4%B8%BA%E5%8D%95%E4%BD%8D%E6%9D%A5%E8%A1%A1%E9%87%8F%E5%86%85%E5%AD%98%E6%97%B6%E6%89%8D%E6%9C%89%E6%84%8F%E4%B9%89%E3%80%82
https://en.wikipedia.org/wiki/Foundations_of_mathematics#Foundational_crisis
https://en.wikipedia.org/wiki/Computable_function
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E6%88%91%E4%BB%AC%E5%9C%A8%E6%9C%AC%E4%B9%A6%E4%B8%AD%E6%9E%84%E5%BB%BA%E7%9A%84%E8%AF%AD%E8%A8%80%E6%98%AF%E5%8A%A8%E6%80%81%E7%B1%BB%E5%9E%8B%E7%9A%84%EF%BC%8C%E5%9B%A0%E6%AD%A4%E5%B0%86%E5%9C%A8%E7%A8%8D%E5%90%8E%E7%9A%84%E8%BF%90%E8%A1%8C%E6%97%B6%E4%B8%AD%E8%BF%9B%E8%A1%8C%E7%B1%BB%E5%9E%8B%E6%A3%80%E6%9F%A5%E3%80%82

craftinginterpreters_zh.md 2024-09-25

@ 1
A i-»8 1-»@? %\

B ©~+»C 1+B

C 1«C 1¢A

2

Turing machines have better name recognition—there’s no Hollywood film about Alonzo Church yet—

but the two formalisms are equivalent in power. In fact, any programming language with some minimal

level of expressiveness is powerful enough to compute any computable function.

ERNNHBEES—BRLRARTHREEA SN RIBER - EXMPEANEEI LEZ2EFNH - B
F HUEERERAENNFRZESHELUTEEA I ERE -

You can prove that by writing a simulator for a Turing machine in your language. Since Turing proved
his machine can compute any computable function, by extension, that means your language can too.
All you need to do is translate the function into a Turing machine, and then run that on your simulator.

RO HBECHESNERINEES — MENGRRKIERX —~ - BT ERIER Y thagfl8 o LUt S E ol it E X
- EMmM 2 - XEERERAES Ol - MATREZEMAIMZERBEFERER - REERVENGRE LB1T

™

b o

If your language is expressive enough to do that, it's considered Turing-complete. Turing machines
are pretty dang simple, so it doesn't take much power to do this. You basically need arithmetic, a little
control flow, and the ability to allocate and use (theoretically) arbitrary amounts of memory. We've got
the first. By the end of this chapter, we'll have the second.

MRIRWEBESEEBHNRLENKHE X —R - EMHIANNZBRTEN - BERNIIFREE - ILEARE
ZHEEN) - BEXLERJEER - —mZEfRMURDEMNERAGEIE HERREANFWES - RIIEZEE S
F—NREN3 - EARABERN - HMIGEEE KRG -

9.2Conditional Execution

9.2 RAFINAT
Enough history, let's jazz up our language. We can divide control flow roughly into two kinds:
W rAE - MEUEHMNBESMIE—T - RORBILUEZESRD HFL

198 /932

https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
https://en.wikipedia.org/wiki/Church%E2%80%93Turing_thesis
file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/Java%E4%B8%8D%E5%85%81%E8%AE%B8%E4%BD%BF%E7%94%A8%E5%B0%8F%E5%86%99%E7%9A%84void%E4%BD%9C%E4%B8%BA%E6%B3%9B%E5%9E%8B%E7%B1%BB%E5%9E%8B%E5%8F%82%E6%95%B0%EF%BC%8C%E8%BF%99%E6%98%AF%E5%9B%A0%E4%B8%BA%E4%B8%80%E4%BA%9B%E4%B8%8E%E7%B1%BB%E5%9E%8B%E6%93%A6%E9%99%A4%E5%92%8C%E5%A0%86%E6%A0%88%E6%9C%89%E5%85%B3%E7%9A%84%E9%9A%90%E6%99%A6%E5%8E%9F%E5%9B%A0%E3%80%82%E7%9B%B8%E5%BA%94%E7%9A%84%EF%BC%8C%E6%8F%90%E4%BE%9B%E4%BA%86%E4%B8%80%E4%B8%AA%E5%8D%95%E7%8B%AC%E7%9A%84Void%E7%B1%BB%E5%9E%8B%E4%B8%93%E9%97%A8%E7%94%A8%E4%BA%8E%E6%AD%A4%E7%94%A8%E9%80%94%EF%BC%8C%E7%9B%B8%E5%BD%93%E4%BA%8E%E8%A3%85%E7%AE%B1%E5%90%8E%E7%9A%84void%EF%BC%8C%E5%B0%B1%E5%83%8FInteger%E4%B8%8Eint%E7%9A%84%E5%85%B3%E7%B3%BB%E3%80%82

craftinginterpreters_zh.md 2024-09-25

o Conditional or branching control flow is used to not execute some piece of code. Imperatively,
you can think of it as jumping ahead over a region of code.

KD ZEFREARAMTEELEN - BEERZ - RULEBEFEWT 7 BN — X -

. Looping control flow executes a chunk of code more than once. It jumps back so that you can
do something again. Since you don't usually want infinite loops, it typically has some conditional
logic to know when to stop looping as well.

]
m

BEFZEFIRZER TS RRT—REOEN - EX /LR - NMAEBRRNITRELERS - BRBEAFTEL
PRIEX - FRA—RESBE—ERGE Eaﬁ%ﬂ:#ULﬁﬂH‘H*ﬂ:ﬂEﬂ—\

Branching is simpler, so we'll start there. C-derived languages have two main conditional execution
features, the i+ statement and the perspicaciously named “conditional” operator (7 :). An i+ statement
lets you conditionally execute statements and the conditional operator lets you conditionally execute

expressions.

DX EERE—LE - FIUEIENAD RN - CHTEESPEH D EEZNRGNTIEE - [EGIRIRES
BB () M. HBDRERYMURFERITIEY - MK 14:5:%?’-?E@J\Tu}tm#atﬂﬁ%bﬂ°

For simplicity’s sake, Lox doesn’t have a conditional operator, so let's get our i statement on. Our
statement grammar gets a new production.

AT EREL - LoxRBREEBER - FRLOLRNEZ 0 1ETIE - WIBEIEEIFTEZ—TIHNEMS -

statement -»> exprStmt
| ifstmt
| printStmt
| block ;
ifStmt > "if" "(" expression ")" statement

("else" statement)? ;

An if statement has an expression for the condition, then a statement to execute if the condition is
truthy. Optionally, it may also have an keyword and a statement to execute if the condition is
falsey. The syntax tree node has fields for each of those three pieces.

ifBEBE—IMRENFARS REE2—TMERTAERNZRTINED - B - BhRABE— R
FENBREZHRTED - EEANT RPN EENX =80 EBEN N FER -

tool/GenerateAst.java - & main() 72 L -

"Expression : Expr expression",

"If : Expr condition, Stmt thenBranch," +
" Stmt elseBranch",

"Print : Expr expression",

199 /932

file:///d%3A/Users/rpa/Downloads/craftinginterpreters_zh-main/content/%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%E7%9A%84%E5%90%8D%E5%A3%B0%E4%B8%8D%E5%A5%BD%E3%80%82%E5%BD%93%E7%84%B6%EF%BC%8C%E8%BF%87%E5%A4%9A%E7%9A%84%E5%85%A8%E5%B1%80%E7%8A%B6%E6%80%81%EF%BC%88%E5%B0%A4%E5%85%B6%E6%98%AF%E5%8F%AF%E5%8F%98%E7%8A%B6%E6%80%81%EF%BC%89%E4%BD%BF%E7%BB%B4%E6%8A%A4%E5%A4%A7%E5%9E%8B%E7%A8%8B%E5%BA%8F%E5%8F%98%E5%BE%97%E5%9B%B0%E9%9A%BE%E3%80%82%E4%B8%80%E4%B8%AA%E5%87%BA%E8%89%B2%E7%9A%84%E8%BD%AF%E4%BB%B6%E5%B7%A5%E7%A8%8B%E5%B8%88%E4%BC%9A%E5%B0%BD%E9%87%8F%E5%87%8F%E5%B0%91%E4%BD%BF%E7%94%A8%E5%85%A8%E5%B1%80%E5%8F%98%E9%87%8F%E3%80%82%E4%BD%86%E6%98%AF%EF%BC%8C%E5%A6%82%E6%9E%9C%E4%BD%A0%E6%AD%A3%E5%9C%A8%E6%8B%BC%E5%87%91%E4%B8%80%E7%A7%8D%E7%AE%80%E5%8D%95%E7%9A%84%E7%BC%96