
Security Assessment

Seedify finance Locked-
Yield-Farming
CertiK Assessed on Nov 13th, 2023

Executive Summary

Highlighted Centralization Risks

Withdraws can be disabled

Vulnerability Summary

0 Critical

Critical risks are those that impact the safe functioning of

a platform and must be addressed before launch. Users

should not invest in any project with outstanding critical

risks.

2 Major 2 Acknowledged
Major risks can include centralization issues and logical

errors. Under specific circumstances, these major risks

can lead to loss of funds and/or control of the project.

0 Medium
Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

5 Minor 4 Resolved, 1 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient than

other solutions.

2 Informational 2 Resolved

Informational errors are often recommendations to

improve the style of the code or certain operations to fall

within industry best practices. They usually do not affect

the overall functioning of the code.

SUMMARY SEEDIFY FINANCE LOCKED-YIELD-FARMING

CertiK Assessed on Nov 13th, 2023

Seedify finance Locked-Yield-Farming

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

Farming

ECOSYSTEM

EVM Compatible

METHODS

Manual Review, Static Analysis

LANGUAGE

Solidity

TIMELINE

Delivered on 11/13/2023

KEY COMPONENTS

N/A

CODEBASE
https://github.com/Seedifyfund/Locked-Yield-

Farming/blob/main/contracts/LockedFarming.sol

View All in Codebase Page

COMMITS
def3af9ebf0f78af2235e3f98ff2e501cc118d2d

49e987095e999cee9602ea9421452162ef57a354

626d304d632b06ab8b660f83ceeab33b916b50a7

View All in Codebase Page

9
Total Findings

6
Resolved

0
Mitigated

0
Partially Resolved

3
Acknowledged

0
Declined

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/main/contracts/LockedFarming.sol
https://github.com/Seedifyfund/Locked-Yield-Farming/tree/def3af9ebf0f78af2235e3f98ff2e501cc118d2d
https://github.com/Seedifyfund/Locked-Yield-Farming/tree/49e987095e999cee9602ea9421452162ef57a354
https://github.com/Seedifyfund/Locked-Yield-Farming/tree/626d304d632b06ab8b660f83ceeab33b916b50a7

SUMMARY SEEDIFY FINANCE LOCKED-YIELD-FARMING

TABLE OF
CONTENTS

SEEDIFY FINANCE LOCKED-YIELD-
FARMING

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Findings

GLOBAL-02 : Centralization Risks in LockedFarming.sol

GLOBAL-03 : Incompatibility With Deflationary Tokens

GLOBAL-01 : Ambiguous Use of `isPaused`

GLOBAL-04 : Inconsistency in `initialStake` Behavior and Comment Description

GLOBAL-05 : Delay in Updating Expired Periods' Rewards Details

LFL-01 : Third-Party Dependency Usage

LFL-02 : Potentially Limits Recovery of Excess Tokens

LFL-03 : Incomplete Information Retrieval from `userDeposits()`

LFL-04 : Flawed `stakedBalance` Update Mechanism in `__withdraw()` Function

Appendix

Disclaimer

TABLE OF CONTENTS SEEDIFY FINANCE LOCKED-YIELD-FARMING

CODEBASE SEEDIFY FINANCE LOCKED-YIELD-FARMING

Repository

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/main/contracts/LockedFarming.sol

Commit

def3af9ebf0f78af2235e3f98ff2e501cc118d2d

49e987095e999cee9602ea9421452162ef57a354

626d304d632b06ab8b660f83ceeab33b916b50a7

CODEBASE SEEDIFY FINANCE LOCKED-YIELD-FARMING

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/main/contracts/LockedFarming.sol
https://github.com/Seedifyfund/Locked-Yield-Farming/tree/def3af9ebf0f78af2235e3f98ff2e501cc118d2d
https://github.com/Seedifyfund/Locked-Yield-Farming/tree/49e987095e999cee9602ea9421452162ef57a354
https://github.com/Seedifyfund/Locked-Yield-Farming/tree/626d304d632b06ab8b660f83ceeab33b916b50a7

AUDIT SCOPE SEEDIFY FINANCE LOCKED-YIELD-FARMING

3 files audited 1 file with Acknowledged findings 2 files without findings

ID Repo File SHA256 Checksum

LFL
Seedifyfund/Locked-

Yield-Farming
contracts/LockedFarming.sol

60a71cb909f31604a7b430fabdd6bba3ab46

e1dd4fc4d02c9a5900873ce8b262

LFY
Seedifyfund/Locked-

Yield-Farming
LockedFarming.sol

2bf96c4cba09be2c4b45c29b5829a7fa2f5fc

95eb0ffc4829c3a9ff44d1bfffa

LFF
Seedifyfund/Locked-

Yield-Farming
LockedFarming.sol

5b21ff0a0ee99da564314c7d135bddacdcc6

716ae298b0fe0292e7b2f548efc2

AUDIT SCOPE SEEDIFY FINANCE LOCKED-YIELD-FARMING

APPROACH &
METHODS

SEEDIFY FINANCE LOCKED-YIELD-
FARMING

This report has been prepared for Seedify finance to discover issues and vulnerabilities in the source code of the Seedify

finance Locked-Yield-Farming project as well as any contract dependencies that were not part of an officially recognized

library. A comprehensive examination has been performed, utilizing Manual Review and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS SEEDIFY FINANCE LOCKED-YIELD-FARMING

FINDINGS SEEDIFY FINANCE LOCKED-YIELD-FARMING

This report has been prepared to discover issues and vulnerabilities for Seedify finance Locked-Yield-Farming. Through this

audit, we have uncovered 9 issues ranging from different severity levels. Utilizing the techniques of Manual Review & Static

Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

GLOBAL-02
Centralization Risks In

LockedFarming.Sol
Centralization Major Acknowledged

GLOBAL-03
Incompatibility With Deflationary

Tokens
Logical Issue Major Acknowledged

GLOBAL-01 Ambiguous Use Of isPaused
Design Issue,

Inconsistency
Minor Resolved

GLOBAL-04
Inconsistency In initialStake

Behavior And Comment Description
Inconsistency Minor Resolved

GLOBAL-05
Delay In Updating Expired Periods'

Rewards Details
Design Issue Minor Resolved

LFL-01 Third-Party Dependency Usage Design Issue Minor Acknowledged

LFL-02
Potentially Limits Recovery Of

Excess Tokens
Logical Issue Minor Resolved

LFL-03
Incomplete Information Retrieval

From userDeposits()
Design Issue Informational Resolved

LFL-04

Flawed stakedBalance Update

Mechanism In __withdraw()

Function

Logical Issue Informational Resolved

FINDINGS SEEDIFY FINANCE LOCKED-YIELD-FARMING

9
Total Findings

0
Critical

2
Major

0
Medium

5
Minor

2
Informational

GLOBAL-02 CENTRALIZATION RISKS IN LOCKEDFARMING.SOL

Category Severity Location Status

Centralization Major Acknowledged

Description

In the contract SMD_v5 the role _owner has authority over the functions shown in the diagram below. Any compromise to

the _owner account may allow the hacker to take advantage of this authority and set rewards periods, extend the current

period, pause/unpause functions, and withdraw excess tokens mistakenly sent to the contract. Notably, the hacker can

prevent users from withdrawing staked tokens by updating lockDuration to a large value via setNewPeriod() .

GLOBAL-02 SEEDIFY FINANCE LOCKED-YIELD-FARMING

Function

State Variables

Internal Calls

Authenticated Role

Function

State Variables

Function

External Calls

Function
State Variables

Internal Calls

Internal Calls

Function

State Variables

Internal Calls

External Calls

External Calls

Internal Calls

Internal Calls

External Calls

External Calls

External Calls

Internal Calls

setNewPeriod

isPaused

__addReward

__configNewPeriod

__updateShare

__reset

__saveOldPeriod

_owner

unPause

recoverLostERC20

pause

extendCurrentPeriod

isPaused

IERC20.balanceOf

IERC20.safeTransfer

isPaused

rewardBalance

totalReward

endingDate

endingDate.add

rewardsToBeAdded.div

__payMe

rewardBalance.add

totalReward.add

rewPerSecond

GLOBAL-02 SEEDIFY FINANCE LOCKED-YIELD-FARMING

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

Alleviation

GLOBAL-02 SEEDIFY FINANCE LOCKED-YIELD-FARMING

[Seedify Finance Team, 10/24/2023]: Issue acknowledged. I won't make any changes for the current version.

GLOBAL-02 SEEDIFY FINANCE LOCKED-YIELD-FARMING

GLOBAL-03 INCOMPATIBILITY WITH DEFLATIONARY TOKENS

Category Severity Location Status

Logical Issue Major Acknowledged

Description

When transferring standard ERC20 deflationary tokens, the input amount may not be equal to the received amount due to

the charged transaction fee. For example, if a user stakes 100 deflationary tokens (with a 10% transaction fee), only 90

tokens actually arrive in the contract. However, the user can still withdraw 100 tokens from the contract, which causes the

contract to lose 10 tokens in such a transaction.

If tokenAddress (the staking token) is deflationary, an attacker can repeatedly call deposit() and

withdraw() / emergencyWithdraw() to empty the contract's funds and put other users' tokens at risk.

Similarly, if the rewardTokenAddress (the rewards token) is deflationary, the actual balance is lower than anticipated,

leaving the potential for insufficient funds when disbursing rewards.

Reference: https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-

ybear-piggy-caramelswap-3943ee23a39f

Recommendation

Is is recommended to either not use deflationary tokens or accurately account for the received amount post-fees, both for

staking and rewards.

Alleviation

[Seedify Finance Team, 10/24/2023]: Issue acknowledged. I won't make any changes for the current version.

GLOBAL-03 SEEDIFY FINANCE LOCKED-YIELD-FARMING

https://thoreum-finance.medium.com/what-exploit-happened-today-for-gocerberus-and-garuda-also-for-lokum-ybear-piggy-caramelswap-3943ee23a39f

GLOBAL-01 AMBIGUOUS USE OF isPaused

Category Severity Location Status

Design Issue, Inconsistency Minor Resolved

Description

In the SMD_v5 contract, certain functions require isPaused variable to be false, suggesting these functions may be paused

under specific conditions. However, based on the current implementation, the contract will only ever be paused before the

initial period is set. The sole function that can toggle isPaused to true is __reset() , which is called within

setNewPeriod() . Immediately afterward, setNewPeriod() invokes __setStartEnd() , which in turn sets isPaused

back to false. As a result, functions that require isPaused to be false will always proceed without interruption.

Also, the pause behavior is inconsistent. For example:

1. The viewOldRewards() function is a view function that requires isPaused to be false. However, the other view

functions lack this requirement.

2. The withdraw() does not directly require isPaused to be false, instead, it relies on viewOldRewards() which

does. This implementation leads to ambiguity, causing one to question what the intended design it.

3. The emergencyWithdraw() function does not require isPaused to be false, it is recommended to check if this

aligns with the intended design.

Recommendation

It is recommended to review the usage of the isPaused mechanism to ensure it aligns with its intended behavior.

Alleviation

[Seedify Finance Team, 10/24/2023]: The team heeded the advice and resolved the issue in commit

49e987095e999cee9602ea9421452162ef57a354.

GLOBAL-01 SEEDIFY FINANCE LOCKED-YIELD-FARMING

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/49e987095e999cee9602ea9421452162ef57a354/contracts/LockedFarming.sol

GLOBAL-04 INCONSISTENCY IN initialStake BEHAVIOR AND

COMMENT DESCRIPTION

Category Severity Location Status

Inconsistency Minor Resolved

Description

The Deposits struct maintains data related to the deposits made by a user. Within this struct, the initialStake field is

intended to record the timestamp when a user renews their stake for new periods, as described in the comment. However,

there seems to be a discrepancy. The initialStake gets updated even when a user re-stakes within the current period,

diverging from its intended behavior as per the comment. As a result, users could be prevented from withdrawing their

stakes, as withdrawals are permitted only after lockDuration.mul(SECONDS_PER_HOUR) from the initialStake ."

73 /**

74

 * @notice struct which should represent the deposit made by a wallet based on

all period if the wallet

75 * called {renew}.

76 *

77 * @param amount amount of LP {tokenAddress} deposited accross all period.

78

 * @param initialStake should be the timestamp at which the wallet renewed their

stake for new periods.

79

 * @param latestClaim latest timestamp at which the wallet claimed their

rewards.

80

 * @param userAccShare should be the amount of rewards per wei of deposited LP

token {tokenAddress}

81 * accross all periods.

82

 * @param currentPeriod should be the lastest periodCounter at which the wallet

participated.

83 */

84 struct Deposits {

85 uint256 amount;

86 uint256 initialStake;

87 uint256 latestClaim;

88 uint256 userAccShare;

89 uint256 currentPeriod;

90 }

Recommendation

GLOBAL-04 SEEDIFY FINANCE LOCKED-YIELD-FARMING

It is recommended to avoid updating the initialStake when a user restakes during the ongoing period. However, if a

user's most recent stake was in a past period, their initialStake should be adjusted.

Alleviation

[Seedify Finance Team, 10/24/2023]: The team has modified the field name to latestStakeAt , which indicates in commit

49e987095e999cee9602ea9421452162ef57a354.

 * @param latestStakeAt timestamp at which the latest stake has been made by the

wallet for current

 * period. Maturity date will be re-calculated from this timestamp which

means each time the

 * wallet stakes a new amount it has to wait for `lockDuration` before

being able to withdraw.

GLOBAL-04 SEEDIFY FINANCE LOCKED-YIELD-FARMING

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/49e987095e999cee9602ea9421452162ef57a354/contracts/LockedFarming.sol

GLOBAL-05 DELAY IN UPDATING EXPIRED PERIODS' REWARDS
DETAILS

Category Severity Location Status

Design Issue Minor Resolved

Description

The endAccShare mapping in the contract captures the details of expired periods that determine the rewards users can

claim from these old periods. The endAccShare is only updated via the __reset() function, which is exclusively triggered

by setNewPeriod() . This design means that stakers must wait for a new period to start before they can claim rewards from

an expired period, introducing potential delays.

Recommendation

Consider adding a function to manually update endAccShare once a period ends. Alternatively, include automatic update

logic into the claimOldRewards() function, allowing anyone to refresh it upon expiration.

Alleviation

[Seedify Finance Team, 10/24/2023]: The team heeded the advice and added the __saveOldPeriod() function into

claimOldRewards() in commit 49e987095e999cee9602ea9421452162ef57a354. This function is designed to enable users

to update expired periods.

[CertiK]: However, the introduction of the __saveOldPeriod() function led to an unintended issue: it mistakenly treated

ongoing periods as expired, thereby incorrectly updating the endAccShare mapping. One variable affected was accShare ,

which determines stakers' rewards. Its value could be lower than it should be at the period's expiry, resulting in stakers

claiming fewer rewards than anticipated after the period expires.

To address this, the team implemented a solution by adding a block.timestamp > endingDate check, as detailed in

commit 626d304d632b06ab8b660f83ceeab33b916b50a7.

GLOBAL-05 SEEDIFY FINANCE LOCKED-YIELD-FARMING

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/49e987095e999cee9602ea9421452162ef57a354/contracts/LockedFarming.sol
https://github.com/Seedifyfund/Locked-Yield-Farming/blob/626d304d632b06ab8b660f83ceeab33b916b50a7/contracts/LockedFarming.sol

LFL-01 THIRD-PARTY DEPENDENCY USAGE

Category Severity Location Status

Design Issue Minor contracts/LockedFarming.sol (pre): 23, 25 Acknowledged

Description

The contract is serving as the underlying entity to interact with tokens tokenAddress and rewardTokenAddress . The

scope of the audit treats third party entities as black boxes and assumes their functional correctness. However, in the real

world, third parties can be compromised and this may lead to lost or stolen assets.

Recommendation

The auditors understood that the business logic requires interaction with third parties. It is recommended for the team to

constantly monitor the statuses of third parties to mitigate the side effects when unexpected activities are observed.

Alleviation

[Seedify Finance Team, 10/24/2023]: Issue acknowledged. I won't make any changes for the current version.

LFL-01 SEEDIFY FINANCE LOCKED-YIELD-FARMING

LFL-02 POTENTIALLY LIMITS RECOVERY OF EXCESS TOKENS

Category Severity Location Status

Logical Issue Minor contracts/LockedFarming.sol (pre): 686 Resolved

Description

The recoverLostERC20() function is designed to enable the _owner to retrieve tokens mistakenly sent to the contract. A

safeguard mechanism is embedded within the function to ensure that the _owner cannot withdraw tokens (tokenAddress)

that are actively staked by users. It achieves this by subtracting stakedTotal from the amount before the withdrawal.

However, there's a flaw in the logic: the stakedTotal represents the total amount of tokenAddress staked in the contract

over its whole existence. Since it never decreases even when users make withdrawals, it could be larger the actual current

staked balance. This flawed design means that the _owner might not be able to recover all the excess tokens beyond the

current user stakes.

677 function recoverLostERC20(address token, address to) external onlyOwner {

678 if (token == address(0)) revert("Token_Zero_Address");

679 if (to == address(0)) revert("To_Zero_Address");

680

681 uint256 amount = IERC20(token).balanceOf(address(this));

682

683 // only retrieve lost {rewardTokenAddress}

684 if (token == rewardTokenAddress) amount -= rewardBalance;

685 // only retrieve lost LP tokens

686 if (token == tokenAddress) amount -= stakedTotal;

687

688 IERC20(token).safeTransfer(to, amount);

689 }

Recommendation

Consider implementing a currentStakedBalance variable that increases upon deposits and decreases upon withdrawals.

Use this value in place of stakedTotal within the recoverLostERC20() function to safeguard active stakes while allowing

full recovery of any excess tokens.

Alleviation

[Seedify Finance Team, 10/24/2023]: The team heeded the advice and resolved the issue in commit

49e987095e999cee9602ea9421452162ef57a354.

LFL-02 SEEDIFY FINANCE LOCKED-YIELD-FARMING

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/49e987095e999cee9602ea9421452162ef57a354/contracts/LockedFarming.sol

LFL-03 INCOMPLETE INFORMATION RETRIEVAL FROM
userDeposits()

Category Severity Location Status

Design Issue Informational contracts/LockedFarming.sol (pre): 351 Resolved

Description

The userDeposits() function allows users to retrieve deposit details of a given address from . The Deposits struct

contains a field name userAccShare , which represents the amount of rewards per wei of deposited LP token

{tokenAddress} accross all periods. Notably, the userDeposits() function does not provide access to view the

userAccShare , which appears to be an oversight.

351 /// @notice get user deposit details

352 function userDeposits(

353 address from

354) external view returns (uint256, uint256, uint256, uint256) {

355 if (hasStaked[from]) {

356 return (

357 deposits[from].amount,

358 deposits[from].initialStake,

359 deposits[from].latestClaim,

360 deposits[from].currentPeriod

361);

362 } else {

363 return (0, 0, 0, 0);

364 }

365 }

84 struct Deposits {

85 uint256 amount;

86 uint256 initialStake;

87 uint256 latestClaim;

88 uint256 userAccShare;

89 uint256 currentPeriod;

90 }

Recommendation

It is recommended to add deposits[from].userAccShare to the return statement of the function.

Alleviation

LFL-03 SEEDIFY FINANCE LOCKED-YIELD-FARMING

[Seedify Finance Team, 10/24/2023]: The team heeded the advice and resolved the issue in commit

49e987095e999cee9602ea9421452162ef57a354.

LFL-03 SEEDIFY FINANCE LOCKED-YIELD-FARMING

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/49e987095e999cee9602ea9421452162ef57a354/contracts/LockedFarming.sol

LFL-04 FLAWED stakedBalance UPDATE MECHANISM IN

__withdraw() FUNCTION

Category Severity Location Status

Logical Issue Informational contracts/LockedFarming.sol (pre): 552 Resolved

Description

The __withdraw() function only decreases stakedBalance when isPause is false. The stakedBalance represents the

amount of tokenAddress staked in the contract for the current period, and it directly impacts the reward calculations.

Therefor, It should be updated whether the contract is paused or not. Failing to do so could lead to skewed reward

distributions.

Specifically, the following scenario highlights the issue:

1. With isPaused being false, a user could invoke emergencyWithdraw() and reduce the actual staked balance

without affecting the recorded stakedBalance in the contract.

2. When isPaused is set to true and __updateShare() function is triggered. When calculating the accShare

(amount of rewards per wei), the formula uses the potentially inflated stakedBalance value, resulting in a smaller

accShare than should be the case. This miscalculation means users might receive fewer rewards than they should.

It's worth mentioning that, in the current design, isPaused remains true after the setting of the first period, thus avoiding the

described situation. Nevertheless, the logic appears faulty and could lead to unintended consequences if modified in the

future.

Recommendation

It is recommended to revise the __withdraw() function, ensuring the stakedBalance is updated consistently if other

requirements have been satisfied.

Alleviation

[Seedify Finance Team, 10/24/2023]: The team heeded the advice and resolved the issue in commit

49e987095e999cee9602ea9421452162ef57a354.

LFL-04 SEEDIFY FINANCE LOCKED-YIELD-FARMING

https://github.com/Seedifyfund/Locked-Yield-Farming/blob/49e987095e999cee9602ea9421452162ef57a354/contracts/LockedFarming.sol

APPENDIX SEEDIFY FINANCE LOCKED-YIELD-FARMING

Finding Categories

Categories Description

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX SEEDIFY FINANCE LOCKED-YIELD-FARMING

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER SEEDIFY FINANCE LOCKED-YIELD-FARMING

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER SEEDIFY FINANCE LOCKED-YIELD-FARMING

CertiK Securing the Web3 World

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

Seedify finance Locked-Yield-Farming Security Assessment CertiK Assessed on Nov 13th, 2023 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

