Fluency Assessment Outcome EV-5 Attempt 1

This assessment should be complete **closed book**; you are permitted to use sage/octave as instructed in class, unless specifically directed not to. Read each question carefully and be sure to upload all work as a .pdf file to gradescope.

1. (a) Consider the set of vectors

(-3		[1]		4	1	4)
]	-4		1		5		4	
Ì	-4	,	0	,	5	,	3	ÌÌ
	4		1		5		1 _]]

- i. Write a statement *involving spanning and linear independence* that's equivalent to this claim: "The set of vectors is a basis for \mathbb{R}^4 ."
- ii. Explain and demonstrate how to determine whether or not these statements are true.
- (b) Consider the set of vectors

$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} -3\\1\\-1\\3 \end{bmatrix}, \begin{bmatrix} -1\\-2\\3\\-3 \end{bmatrix}, \begin{bmatrix} -3\\-4\\6\\-6 \end{bmatrix} \right\}$$

- i. Write a statement *involving the solutions of a vector equation* that's equivalent to this claim: "The set of vectors is a basis for \mathbb{R}^4 ."
- ii. Explain and demonstrate how to determine whether or not these statements are true.